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ZBTB20 regulates WNT/CTNNB1 signalling pathway by
suppressing PPARG during hepatocellular carcinoma
tumourigenesis
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Background & Aims: Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver
cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in
adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of
hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis,
the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis.
Methods: A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the
role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the
relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1).
Results: Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (Trp53)
inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro
overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating
PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis.
Conclusions: These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the
WNT/CTNNB1 signalling pathway in HCC tumourigenesis.
Lay summary: ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in
liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading
to tumourigenesis.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Zinc finger and BTB domain containing 20 (ZBTB20) belongs to
the POK (POZ and Kruppel) protein family, which functions pri-
marily as transcriptional repressors via protein interactions
mediated by DNA-binding C2H2 Kruppel-type zinc finger and
broad complex, tramtrack, bric a brac/poxvirus and zinc finger
(BTB/POZ) domains. ZBTB20 mRNA expression level is poorly
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detectable in the foetal liver, but gradually increases after birth.1

ZBTB20 is a nuclear protein and has two isoforms as a result of
alternative translation initiation sites, both containing the N-
terminal BTB/POZ and C-terminal zinc finger domains.2 Isoform 1
is predominantly found in the early postnatal development,
whereas isoform 2 becomes dominantly expressed at the later
postnatal stage.1

Zbtb20 knockout studies have demonstrated a severe
phenotype characterised by postnatal retardation, metabolic
dysfunction, and lethality.3 In addition, a liver phenotype was
also observed in Zbtb20 mutant mice that included increased
serum bilirubin and alanine aminotransferase levels, indicative
of liver dysfunction.3 Zbtb20 has also been implicated as a posi-
tive regulator of hepatic replication for liver regeneration in
mice.4 Liver-specific inactivation of Zbtb20 resulted in dramatic
de-repression of the alpha-foetoprotein (Afp) gene in the liver
throughout adult life.1 Although Afp is highly expressed in the
foetal liver, Zbtb20 expression is developmentally activated in the
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Fig. 1. In vivo validation of Zbtb20 as an oncogene involved in WNT/CTNNB1 pathway-associated HCC tumourigenesis. (A) Structural differences between the
2 major isoforms of ZBTB20. BTB, broad complex, tramtrack, bric a brac; POZ, poxvirus and zinc finger; C2H2, Kruppel-type zinc finger; aa, amino acid. (B) Gene
delivery plasmids used for hydrodynamic tail vein injection. (C) Representative 120-day-old PHI livers taken from Fah/SB11 animals injected with ZBTB20/shp53
(left) and Empty/shp53 (right). Arrows, liver tumour nodules; scale bars, 0.5 cm. (D) Number of liver tumour nodules in ZBTB20/shp53 and Empty/shp53 cohorts.
(E) Liver weight to body mass percentage of ZBTB20/shp53 and Empty/shp53 cohorts. (F) Representative RT-PCR for various genes in liver samples from Fah/SB11
mice co-injected with ZBTB20/shp53. FVB, 12-day-old wild-type FVB/N mouse liver; Tumour, tumour liver nodule; Liver, macroscopically normal liver. (G)
Representative immunohistochemical staining for CTNNB1 in animals injected with ZBTB20/shp53 (left panel). Right panel, no primary antibody control. Scale bar,
250 lm. (H) Upregulation of Ctnnb1 and downstream target genes of the WNT/CTNNB1 pathway by qRT-PCR. Mean ± SD; p, unpaired t test; n, number of animals.
HCC, hepatocellular carcinoma; PHI, post-hydrodynamic injection; (q)RT-PCR, (quantitative) reverse transcription PCR.
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liver after birth. It has been shown that ZBTB20 functions as a
transcriptional repressor of Afp by specifically inhibiting Afp
promoter-driven transcriptional activity.1

Zbtb20 has also been shown to be involved in liver intrinsic
functions, possibly through regulating genes such as P450 family
members, glucose metabolism, and somatotropic hormonal
axis.3 It has been recently shown that ZBTB20 expression was
increased in HCC and associated with poor prognosis in patients
with high levels of ZBTB20.5 Interestingly, hepatocellular carci-
noma (HCC) tissues with hepatitis B viral integration frequency
were also found to have upregulation of ZBTB20 expression
compared with normal liver tissues.6 We are particularly inter-
ested in the role of Zbtb20 in HCC since it was initially identified
as a candidate liver cancer gene in a forward genetic screen using
the Sleeping Beauty (SB) insertional mutagenesis system.7,8

Different studies involving similar SB insertional mutagenesis
screen have also identified Zbtb20 as a candidate gene in the
carcinogenesis of HCC.9,10 To elucidate the role of ZBTB20 in liver
tumourigenesis, ZBTB20 was introduced into the livers of
fumarylacetoacetate hydrolase (Fah)-deficient/SB transposase-
expressing transgenic mice (Fah/SB11 mice) using the SB
JHEP Reports 2021
transposon system in a reverse genetic manner as previously
described.7,8,11,12 Fah/SB11 mice co-injected with transposon
vectors that overexpress ZBTB20 and a short-hairpin RNA
directed against the Trp53 gene developed hepatic hypertrophy
and developed tumours. In addition, we confirmed the enhanced
hepatic hypertrophy leading to hepatomegaly was the result of
WNT/catenin beta 1 (CTNNB1) pathway activation. Both in vivo
and in vitro experiments suggest a novel interaction between
ZBTB20 and peroxisome proliferator activated receptor gamma
(PPARG) in regulating CTNNB1. Taken together, the current study
confirms the novel role of ZBTB20 interaction and suppression of
PPARG expression, resulting in the upregulation of CTNNB1 and
contributing to HCC tumourigenesis.
Materials and methods
Hydrodynamic injection
A detailed description of the vectors and protocol used for hy-
drodynamic injections can be found in the Supplementary Ma-
terials and methods.
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Liver tumour analyses
A detailed description of the protocol used for liver tumour and
histopathological analyses can be found in the Supplementary
Materials and methods.

Immunohistochemical analyses
A detailed description of the protocol used for immunohisto-
chemical analyses can be found in the Supplementary Materials
and methods.

RT-PCR
A detailed description of the protocol and primer sequences used
for RT-PCR can be found in the Supplementary Materials and
methods.

ZBTB20 overexpression in human liver cell lines
A detailed description of the vectors and protocol used for
ZBTB20 overexpression transfection in human liver cell lines can
be found in the Supplementary Materials and methods.

Targeted disruption of ZBTB20 in human liver cancer cell lines
A detailed description of the vectors and protocol used for tar-
geted disruption of ZBTB20 in human liver cancer cell lines can
be found in the Supplementary Materials and methods.

Analyses of the ZBTB20-disrupted cells
A detailed description of the protocol used for analysing targeted
disruption of ZBTB20 in human liver cancer cell lines can be
found in the Supplementary Materials and methods.

Quantitative RT-PCR for in vivo liver tissues
A detailed description of the protocol and primer sequences used
for in vivo liver tissues quantitative RT-PCR (qPCR) can be found
in the Supplementary Materials and methods.

qPCR for transfected cells
A detailed description of the protocol and primer sequences used
for transfected cell qPCR can be found in the Supplementary
Materials and methods.

Immunofluorescent staining
A detailed description of the protocol used for immunofluores-
cent (IF) staining can be found in the Supplementary Materials
and methods.

Western blot analyses of transfected cells
A detailed description of the protocol used for Western blot an-
alyses can be found in the Supplementary Materials andmethods.

Promoter activity analyses
A detailed description of the vectors and protocol used for pro-
moter activity analyses can be found in the Supplementary Ma-
terials and methods.

Statistical analyses
Values are given as mean ± SD. Statistical significance was
assessed using the two-tailed unpaired Student t test with p
values (Prism Software). Values of p <0.05 were considered sta-
tistically significant.
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Results
Identification of Zbtb20 as a candidate cancer gene associated
with HCC
Current evidence in The Cancer Genome Atlas database (liver
HCC, TCGA, provisional) suggest that ZBTB20 copy number and
mRNA expression changes were altered in 22 (6%) of human
HCCs (n = 360). In these altered sequenced patients (n = 22), 1
patient displayed gene amplification, 3 patients displayed deep
deletions, 1 patient had a truncating mutation of unknown sig-
nificance, 16 patients displayed mRNA upregulation and 1 pa-
tient displayed both gene amplificationwith mRNA upregulation.
Taken together, these implicate the role of ZBTB20 as a potential
liver oncogene. Schematic representation of the 2 known ZBTB20
isoforms are shown in Fig. 1A, with both isoforms containing the
BTB/POZ and zinc finger domains. From a previous forward ge-
netic screen for candidate liver cancer genes using the SB
transposon insertional mutagenesis system, Zbtb20 was identi-
fied as a potential oncogene based on the insertion profiles of
65% mutagenic transposon vectors that were in the forward
orientation before the exon with the start site of translation
(Fig. S1A).7,8 Endogenous Zbtb20 was quantified using semi-
quantitative RT-PCR in liver tumours containing both orienta-
tions of mutagenic transposon insertions relative to the
endogenous gene (Fig. S1B). These liver tumours all express Afp
and/or secreted phosphoprotein 1 (Spp1), both known markers
of liver cancer, and were positive for the SB transposase enzyme
(SB11) indicating transposition event(s) were most likely
responsible for liver tumourigenesis (Fig. S1B). Liver tumours
with transposon insertions in a forward orientation relative to
the endogenous Zbtb20 gene tended to show higher expression
level compared with liver tumours with a reverse insertion
profile (Figs. S1B and S1C).

Validation of ZBTB20 as a novel oncogene involved in liver
tumourigenesis
As Zbtb20 was identified as a candidate liver oncogene in the
context of Trp53-deficient genetic background,7 SB transposon-
based expression vectors for the ZBTB20 (pT2/GD-IRES-GFP-
ZBTB20) and a short-hairpin RNA vector directed against the
Trp53 gene (pT2/shp53) were co-administered to Fah/SB11 mice
by high-volume rapid hydrodynamic tail vein injection (Fig. 1B).
As a control, SB transposon-based empty vector (pKT2/GD-
Empty) was co-administered with pT2/shp53 (Empty/shp53)
(Fig. 1B). At 120-days post-hydrodynamic injection (PHI),
experimental animals co-injected with pT2/GD-IRES-GFP-
ZBTB20 and pT2/shp53 (ZBTB20/shp53) were sacrificed. Experi-
mental Fah/SB11 animals injected with ZBTB20/shp53 (n = 8)
developed significantly more liver tumour nodules compared
with Fah/SB11 animals injected with Empty/shp53 (n = 6) (p
<0.0001, Student t test) (Fig. 1C and D). The number of liver
nodules isolated from injected cohorts are shown in Table S3.

Liver phenotype observed in Fah/SB11 cohorts injected with
ZBTB20/shp53
Fah/SB11 animals injected with ZBTB20/shp53 had significantly
enlarged livers relative to whole body weight (6.625% ± 0.306, w/
w percentage ±SD) compared with control cohorts injected with
Empty/shp53 (5.233% ± 0.367) (Fig. 1E). These results suggest that
ZBTB20 overexpression, together with Trp53 inactivation, could
induce hepatomegaly. Liver weight percentages of injected co-
horts are shown in Table S3. Interestingly, Fah/SB11 mice injected
with ZBTB20 overexpression vector only (n = 3) displayed
3vol. 3 j 100223



Flag Total CTNNB1 DAPI Merge

Flag-ZBTB20 (iso1) Total CTNNB1 DAPI Merge

Flag-ZBTB20 (iso2) Total CTNNB1 DAPI Merge

Flag-OFP Total CTNNB1 DAPI Merge
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Fig. 2. Immunofluorescent staining of ZBTB20 overexpression transfected cells. No Flag-tagged signal (yellow) could be detected in the wild-type HHL7 cell
line, while strong Flag-tagged signals were detected in cells transfected with ZBTB20 isoforms 1, isoform 2 and OFP, under the same excitation parameters. Strong
centralised CTNNB1 signals (red) were detected in both ZBTB20 isoforms 1 and 2 overexpression transfected cells, while only very weak CTNNB1 signals were
detected in wild-type HHL7 and OFP control cell lines, under the same excitation parameters. Nuclei of cells were stained with DAPI (blue). Merged image shown
in far-right panels. Scale bars, 10 lm. HHL, immortalized human hepatic cell line.
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unpaired t test.
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significantly higher liver to body weight percentage than Empty
only overexpression controls (p = 0.0098). The liver to body
weight percentage was 5.27% ± 0.26 and 7.03% ± 1.45 for Empty
only control and ZBTB20 only cohorts, respectively (Table S3).
Although no tumours were observed in Empty control animals,
only 1 animal displayed a single liver nodule for the ZBTB20 only
cohort (Table S3).

Livers of 120-day-old PHI Fah/SB11 mice co-injected with
ZBTB20 and short-hairpin directed against the Trp53 gene all
express ZBTB20 and GFP (green fluorescent reporter gene found
in the pT2/shp53 vector) (Fig. 1F). As expected, wild-type FVB
controls do not express GFP or the ZBTB20 transgene (Fig. 1F). As
the FVB liver controls were taken from young 12-day-old mice,
Afp expression was positive but no detectable level of Spp1 was
found, indicating normal liver physiology (Fig. 1F). A liver tumour
from Fah/SB11 M1582 had a well-circumscribed nodule
composed of sheets of pleomorphic hepatocytes with loss of
organisation, some exhibiting large irregular bizarre nuclei. In
addition, varying degrees of micro- and macrovesicular fat
droplets (steatosis) were observed in most of the cells.
Morphologically, this tumour is most compatible with moderate
to poorly differentiated HCC (Fig. S2A). Liver tumours from Fah/
SB11 M1584 and M1752 both had distinct nodules composed of
hepatocytes that exhibited very mild atypia and no significant
steatosis. Morphologically, these tumours would best be char-
acterised as well-differentiated hepatic neoplasms (Fig. S2B and
S2C).

Immunohistochemical analyses were performed to determine
whether cell proliferation was increased in experimental
(ZBTB20/shp53) and control (Empty/shp53) injected cohorts
(Fig. S3A). Interestingly, Fah/SB11 animals (n = 8) injected with
experimental plasmids (ZBTB20/shp53) had statistically signifi-
cantly larger livers (6.625% ± 0.306, liver to whole body per-
centage) than Fah/SB11 animals (n = 6) injected with the control
plasmids (Empty/shp53) (5.233% ± 0.364) (p <0.0001) (Fig. 1E).
However, mitotic activity as determined by uptake of Ki67
staining, did not show any detectable increase in staining be-
tween the 2 different cohorts (Fig. S3A). Consistent with the
histopathological results (Fig. S2), liver tumours induced by
ZBTB20/shp53 in experimental animals displayed varying de-
grees of increased mitotic activity, indicating varying HCC
tumour stage or grade (Fig. S3B).

As cellular proliferation was not deemed to be the cause of
the hepatomegaly phenotype seen in ZBTB20/shp53 injected Fah/
SB11 animals, arbitrary cell numbers in a fixed areawere counted
to determine whether cell area number density was decreased,
indicating cellular hypertrophy. Cell numbers within a fixed field
of view were counted for experimental and control cohorts.
Highly significant differences were seen between control and
experimental injected animals (p <0.0001) (Fig. S4A). These re-
sults suggest ZBTB20 induces hypertrophy as a liver phenotype.
To confirm the hypertropic phenotype, cell measurements of
experimental and control hepatocytes were taken using NIH
ImageJ software (National Institutes of Health, USA). Highly sig-
nificant differences were seen between control and experimental
injected animals (p <0.0001) (Fig. S4B and S4C). These results
suggest that the pronounced hepatic hypertrophy could explain
the hepatomegaly phenotype seen in experimental injected
animals.
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Activated WNT/CTNNB1 signalling pathway in Fah/SB11
cohorts injected with ZBTB20/shp53
As activation of the WNT/CTNNB1 pathway has been previously
associated with hepatomegaly,13 CTNNB1 immunohistochemical
staining was performed on both experimental and control co-
horts. Interestingly, activation of the WNT/CTNNB1 pathway was
observed in all experimental animals injected with ZBTB20/shp53
according to the positive results of immunohistochemical
staining for CTNNB1 (Table S4 and Fig. 1G). To confirm the acti-
vation of the WNT/CTNNB1 pathway in the animals injected with
ZBTB20/shp53, WNT target genes were evaluated using qRT-PCR.
Several downstream genes such as transcription factor 7, T cell
specific (Tcf7), lymphoid enhancer binding factor 1 (Lef1), axin 2
(Axin2), and myelocytomatosis oncogene (Myc) were signifi-
cantly upregulated compared with the control animals injected
with Empty/shp53, confirming the activation of the WNT/
CTNNB1 pathway (Fig. 1H).

Colocalisation of ZBTB20 and CTNNB1
To confirm whether any interacting relationship between
ZBTB20 and CTNNB1 exists, IF staining was performed on ZBTB20
overexpression transfected cells. The localisation of Flag-tagged
ZBTB20 and CTNNB1 were determined using specific anti-
bodies and both proteins were shown to be centralised in the cell
nucleus, comparing with the orange fluorescent protein (OFP)
control and non-transfected cells (Fig. 2). Interestingly, a higher
fluorescent signal of CTNNB1 were detected in both isoform 1
and 2 of ZBTB20 overexpression transfected cells compared to
the OFP control and non-transfected cells (Fig. 2). The IF results
were consistent with the in vivo data that overexpression of
ZBTB20 could induce the CTNNB1 signalling pathway. Nuclear
staining for CTNNB1 also indicated that its active form was being
detected in both isoforms of ZBTB20 overexpression transfected
cells.

Validating the effects of ZBTB20 on CTNNB1 in human liver
cell lines
To further study the effects of ZBTB20 on CTNNB1, both ZBTB20
isoforms were either overexpressed (Fig. 3) or disrupted (Fig. 4)
in human liver cell lines.

The piggyBac transposon system was used to stably transfect
both isoforms individually into various human liver cell lines
(Fig. 3A), with successful overexpression determined by qPCR
(Fig. 3B) and detection of GFP signals in culture (Fig. 3C). To
determine the function of ZBTB20 in human cells, the mRNA
expression level of a negative target of ZBTB20, AFP, was evalu-
ated by qPCR. Reduced expression of AFP was detected in both
isoform 1 and isoform 2 ZBTB20 overexpression transfected
immortalized human hepatic cell line (HHL) cells compared with
OFP control vector (Fig. 3B). This confirmed the efficiency and
function of overexpression of ZBTB20 in transfected HHL cells.
Interestingly, there was no significant difference in mRNA
expression level of CTNNB1 in ZBTB20 overexpression transfected
cell lines but significantly higher expression of AXIN2 and cyclin
D1 (CCND1) was detected in both isoform 1 and isoform 2
ZBTB20 overexpression transfected HHL cells (Fig. 3D). The
components for the canonical WNT/CTNNB1 destruction com-
plex, such as glycogen synthase kinase 3 beta (GSK3B) and APC
regulator of WNT signalling pathway (APC), were also
7vol. 3 j 100223
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Fig. 5. ZBTB20 acts as a transcriptional repressor for PPARG expression. (A)
Schematic diagram for the PPARG gene locus and the promoter sequence used
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significantly reduced in ZBTB20 overexpressing HHL cells
compared with OFP control vector (Fig. 3E). At the protein level,
ZBTB20 overexpression transfected HHL cells resulted in signifi-
cantly higher active CTNNB1 levels as determined by the results
of Western blot (Fig. 3F), consistent with the IF staining (Fig. 2).
Because PPARG has been suggested to be the intermediate pro-
tein that interacts with both ZBTB20 and CTNNB1, its expression
level was also investigated.14 Interestingly, ZBTB20 over-
expression transfected HHL cells do reflect this interaction as
significantly lower PPARG were detected at both the mRNA
(Fig. 3D) and protein levels (Fig. 3F), consistent with the CTNNB1
results. Similar results were also recapitulated in both PLC/PRF/5
and Hep3B cell lines stably transfected with both isoforms of
ZBTB20. ZBTB20 overexpression transfected PLC/PRF/5 (Fig. S5A)
and Hep3B (Fig. S5B) cell lines resulted in higher CTNNB1 levels
JHEP Reports 2021
and reduced PPARG levels as determined by Western blot ana-
lyses. In addition, TOP/FOP-Flash luciferase reporter assay was
also conducted on Hep3B and PLC/PRF/5 cell lines to confirm the
activation of the WNT/CTNNB1 signalling pathway. Cell lines
transfected with both ZBTB20 isoforms displayed dose-
dependent increase in TOP/FOP luciferase activity (Fig. S5C).

To investigate the role of ZBTB20 in HCC tumourigenesis, its
function was disrupted by gene editing. Using the CRISPR/Cas9
system in PLC/PRF/5 cell line (Fig. 4A), successful knockout of
ZBTB20 in mixed culture and single cell culture was determined
by PCR using specific primer pairs located about 50 bp flanking
the targeted regions by gRNAs. At the genomic level, gRNA1 and
gRNA2 successfully generated a deletion indel in the BTB
domain, whereas gRNA4 and gRNA5 generated a deletion indel
in the zinc finger domain (Fig. 4B and Fig. S6). In addition, these
indels could also be detected at the transcriptional level using
cDNA (Fig. 4C). As expected, ZBTB20 disrupted cells demon-
strated significantly increased levels of AFP compared with the
scrambled control (Fig. 4D). However, consistent with the ZBTB20
overexpression results (Fig. 3D), AXIN2 levels were reduced in
cells deficient for ZBTB20 (Fig. 4D). Inversely, significantly lower
active CTNNB1 levels with unchanged total CTNNB1 levels were
detected in ZBTB20 disrupted cells (Fig. 4E). Consistent with the
ZBTB20 overexpression results (Fig. 3D), ZBTB20 disrupted cells
demonstrated significantly increased levels of PPARG compared
with the scrambled control (Fig. 4D). Similar gene disruption
experiments were also performed on the human liver cancer cell
line C3A (Fig. S7). Significant reduction in ZBTB20 mRNA levels
was demonstrated in both C3A cell pools (Fig. S7A). Consistent
with the PLC/PRF/5 results (Fig. 4D), ZBTB20 disrupted C3A cell
pools demonstrated significantly increased PPARG levels
compared with the scrambled control (Fig. S7A). While ZBTB20
disrupted C3A cell pools demonstrated no significantly changes
in CTNNB1 levels compared with the scrambled control
(Fig. S7A), downstream target genes of the WNT/CTNNB1 sig-
nalling pathway, such as CCND1 and MYC, were significantly
reduced (Fig. S7B).

The pGL3-PPARG reporter plasmid containing the 1038 bp
PPARG promoter sequence was used to determine if ZBTB20 acts
as transcriptional repressor to PPARG expression (Fig. 5A). The
1038-bp PPARG promoter sequence is located on chromosome
3p25.2 12392051 to 12393088, whereas the putative binding
motif for ZBTB20 is located from 12392366 to 12392374 (UCSC
Genome Browser, GRCh37/hg19) (Fig. S8). Using PPARG promoter
luciferase activity analyses containing the putative binding site
for ZBTB20 (Fig. 5A), both ZBTB20 isoforms 1 and 2 over-
expressing cells were able to decrease PPARG promoter activities
by 47% and 45%, respectively, when compared with OFP control
transfected or HHL7 wild-type cells (Fig. 5B). Taken together,
ZBTB20 is suggested to repress PPARG expression to activate
WNT/CTNNB1 signalling resulting in HCC tumourigenesis
(Fig. 5C).

Potential therapeutic implications
To investigate any potential therapeutic implications of our re-
sults, the online database Gene Expression Omnibus was used
for comparison. The GSE6764 dataset contains gene expression
profiles of 75 tissue samples comparing 4 neoplastic stages (very
early HCC, early HCC, advanced HCC, and very advanced HCC) to
individuals with normal livers (controls).23 Higher expression of
ZBTB20 was detected at very early stages of HCC whereas no
significant changes in AFP were detected (Fig. S9A). PPARG
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expression was also downregulated at very early stages of the
disease although not statistically significant, whereas activation
of WNT signalling pathway was evident at very early stages of
the disease via the upregulation of CTNNB1 and its targets genes
– such as LEF1, TCF7, and CCND1 (Fig. S9B).
Discussion
Zbtb20 is essential for liver development as mice deficient for
this gene display a liver dysfunction phenotype.3 AFP is
currently an accepted tumour marker for HCC as its level is
generally increased in the diseased stage.15 Zbtb20 has been
shown to be a transcriptional repressor of Afp using gene-
targeting studies.1,3 However, it has also been shown that
higher ZBTB20 expression in human HCC is associated with poor
prognosis, suggesting its role as a potential oncogene.5 It has
also been recently reported that another member of the POK
transcription factor family, Zbtb7a, can act as an oncogene in
some context but also has onco-suppressive activity in others.16

Zbtb20 was previously identified in forward genetic screens as a
candidate driver gene for liver cancer using the SB transposon
insertional mutagenesis system in a Trp53-predisposed genetic
background.7,8 As tumor protein p53 (TP53) mutation is one of
the most commonly observed molecular abnormalities in hu-
man HCC and because of the discrepancies in the role of ZBTB20
in liver tumourigenesis, ZBTB20 was co-introduced with a short-
hairpin RNA directed against Trp53 (ZBTB20/shp53) into the
livers of Fah/SB11 mice for functional validation. The results of
this study implicate ZBTB20 as an oncogene, causing signifi-
cantly more liver tumours than in control Fah/SB11 mice co-
injected with an empty vector and shp53 (Empty/shp53)
(Fig. 1D). These tumours have been classified as well-
differentiated hepatic neoplasms to HCC (Fig. S2). Interest-
ingly, ZBTB20/shp53 injected Fah/SB11 mouse livers also dis-
played hepatomegaly when compared with Empty/shp53
controls (Fig. 1E). Although ZBTB20 overexpression alone could
induce hepatomegaly, Trp53 deficiency appears to cooperate
with ZBTB20 overexpression in HCC tumourigenesis.

Therefore, this in vivo study strongly implements the onco-
genic role of ZBTB20 in the development of HCC. Liver tumours
that developed in ZBTB20/shp53 injected animals had varying
levels of Ki67-intensity, indicating various stages of tumour
development or grade (Fig. S2 and Fig. S3B). Although cell
number density appears to be reduced in animals injected with
ZBTB20/shp53 (Fig. S4A), hepatic hypertrophy could be a
contributing factor to the hepatomegaly phenotype seen in
experimental animals. ZBTB20/shp53 injected animals have
significantly enlarged hepatocytes compared with animals
injected with control vectors (Fig. S4B and S4C). Hepatocytes
transgenic for ZBTB20, functioning as a transcriptional repressor,
may have targeted downstream gene(s) involved in the feedback
regulation of hypertrophy. These transgenic hepatocytes may
remain constitutively hypertrophic even when proliferation had
been initiated. Therefore, the combined enhanced hypertrophy
and proliferation effect may have contributed to liver tumouri-
genesis. Interestingly, activation of the WNT/CTNNB1 pathway
was observed in all experimental animals injected with ZBTB20/
shp53 (Table S4). In vivo validation also demonstrated the acti-
vation of downstream genes of the WNT/CTNNB1 signalling
pathway, such as Axin2, Lef1, Myc, and Tcf7 by ZBTB20/shp53
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(Fig. 1H). Taken together, this suggests that WNT/CTNNB1 and
Zbtb20 cooperate in the pathogenesis of liver cancer.

By overexpressing and disrupting ZBTB20 in human liver cell
lines, the positive relationship between ZBTB20 and CTNNB1
could be confirmed. Novel results demonstrating the activity of
CTNNB1 could be regulated by ZBTB20, further confirms the
oncogenic role of ZBTB20 in HCC development acting on the
WNT/CTNNB1 signalling pathway. Moreover, both the colocali-
sation and centralisation of ZBTB20 and CTNNB1 in the nucleus
of ZBTB20 cells by IF staining further confirms this interaction
(Fig. 2). Using PPARG as a bait protein expressed as a DNA-
binding domain fusion and ZBTB20 as the prey expressed as a
transcriptional activation domain fusion, it has been previously
shown that unique physical interaction between these 2 proteins
were measured by reporter gene activation in a 2-hybrid system
study.14 Furthermore, expression and transcription of PPARG, the
apparent intermediate protein for both ZBTB20 and CTNNB1, was
downregulated in ZBTB20 overexpression transfected cells (Fig.
3D and F). Using PPARG promoter analyses, both ZBTB20 iso-
forms 1 and 2 overexpressing cells were able to decrease PPARG
promoter activities (Fig. 5B). Consistent with other in vitro re-
sults, these results confirm the repressive role of ZBTB20 on
PPARG expression. An inverse relationship of CTNNB1 activation
and PPARG reduction has been previously reported in various
diseases and cancers, such as neurodegenerative diseases, colo-
rectal cancer, and breast cancer.17–19 In these cancers, PPARG was
downregulated whereas the WNT/CTNNB1 pathway was upre-
gulated. Previous studies have demonstrated that PPARG can
target CTNNB1 to proteasome through the interaction between
the catenin-binding domain of PPARG and the TCF-binding
domain of CTNNB1.20 Therefore, downregulation of PPAGR
might increase accumulation of active CTNNB1 via inhibiting
proteasomal degradation. Several studies had also reported that
activation of PPARG can inhibit HCC growth and progression.21,22

Furthermore, the expression of PPARG is significantly reduced in
HCC tumour tissues compared with adjacent non-tumour liver
tissues.21 Taken together, our results demonstrate the over-
expression of ZBTB20 could activate CTNNB1 via the suppression
of PPARG expression and induce its translocation into the nucleus
of the cells (Fig. 5C). Currently, the commonly used biomarker
AFP is not effective in early diagnosis of HCC, particularly in AFP-
negative HCC patients. In the GSE6764 dataset, higher expression
of ZBTB20 was detected at very early stages of HCC whereas no
significant changes in AFP were only detected at very advanced
HCC stage (Fig. S9A).23 Therefore, ZBTB20 could be further eval-
uated as a potential marker for the early diagnosis of HCC.
ZBTB20 also likely plays a role in the activation of the WNT sig-
nalling pathway at very early stages of the disease via the
upregulation of CTNNB1 and its target genes (Fig. S9B).

In conclusion, the role of ZBTB20 in liver tumourigenesis ap-
pears to involve hepatic hypertrophy and hepatomegaly
augmented by TP53 inactivation. Experimental animals co-
injected with ZBTB20/shp53 have increased tumour multiplicity
and hepatomegaly associated with enhanced hepatic hypertro-
phy associated with activation of the WNT/CTNNB1 pathway via
the interaction and suppression of PPARG expression. Based on
the several methods of reverse genetics for both in vivo and
in vitro validation, the role of ZBTB20 as a novel oncogene and its
mechanism involved with HCC tumourigenesis has been
implicated.
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