
fimmu-11-570919 September 23, 2020 Time: 16:38 # 1

PERSPECTIVE
published: 25 September 2020

doi: 10.3389/fimmu.2020.570919

Edited by:
Christophe Matthys,
KU Leuven, Belgium

Reviewed by:
Melissa M. Markofski,

University of Houston, United States
Keith R. Martin,

University of Memphis, United States

*Correspondence:
Ricardo Wesley Alberca

ricardowesley@gmail.com

Specialty section:
This article was submitted to

Nutritional Immunology,
a section of the journal

Frontiers in Immunology

Received: 09 June 2020
Accepted: 07 September 2020
Published: 25 September 2020

Citation:
Alberca RW, Teixeira FME,

Beserra DR, de Oliveira EA,
Andrade MMS, Pietrobon AJ and

Sato MN (2020) Perspective:
The Potential Effects of Naringenin

in COVID-19.
Front. Immunol. 11:570919.

doi: 10.3389/fimmu.2020.570919

Perspective: The Potential Effects of
Naringenin in COVID-19
Ricardo Wesley Alberca1* , Franciane Mouradian Emidio Teixeira2,
Danielle Rosa Beserra1, Emily Araujo de Oliveira1, Milena Mary de Souza Andrade1,
Anna Julia Pietrobon2 and Maria Notomi Sato1

1 Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, School of Medicine and Institute
of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil, 2 Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil

Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), was declared a pandemic by the World Health
Organization in March 2020. Severe COVID-19 cases develop severe acute respiratory
syndrome, which can result in multiple organ failure, sepsis, and death. The higher
risk group includes the elderly and subjects with pre-existing chronic illnesses such
as obesity, hypertension, and diabetes. To date, no specific treatment or vaccine is
available for COVID-19. Among many compounds, naringenin (NAR) a flavonoid present
in citrus fruits has been investigated for antiviral and anti-inflammatory properties like
reducing viral replication and cytokine production. In this perspective, we summarize
NAR potential anti-inflammatory role in COVID-19 associated risk factors and SARS-
CoV-2 infection.
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INTRODUCTION

The respiratory diseases named Coronavirus disease 2019 (COVID-19) is generated by a respiratory
infection with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) (1, 2). Due to the
rapidl viral transmission, the disease was declared a pandemic by the World Health Organization a
few months after the first diagnosed case (3, 4).

Besides the similar clinical manifestations to previous Severe Acute Respiratory Syndrome
Coronavirus-1 (SARS-CoV-1), SARS-CoV-2 infection presents a much lower death rate (5).
Approximately 5% of patients progress to a severe COVID-19, developing mainly severe acute
respiratory syndrome, with 3% needing assisted respiratory mechanic ventilation. Coronavirus
disease 2019 can progress to septic shock and multiple organ failure (6) and exhibits a death rate of
approximately 2% (7).

The SARS-CoV-2 can infect human cells by entry via the angiotensin-converting enzyme 2
(ACE2) receptor and Transmembrane Serine Protease 2 (TMPRSS2) (8). Although this process
is wildly accepted, other possible infective routes are being explored such as antibody-dependent
enhancement (ADE) (7) and via CD147 (9).

Angiotensin-converting enzyme 2 expression is one of the main explanations for the higher
airway infection, as it is highly expressed in the respiratory tract such as epithelial cells of the alveoli,
trachea, and bronchi, some bronchial glands and alveolar macrophages (10). However, ACE2 is also
expressed in the ileo, kidney, adipose tissue, heart, brain, blood vessels, stomach, liver, and oral and
nasal mucosas (11), which could corroborate the systemic inflammatory profile in COVID-19.
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Upon viral entry, the virus induces the host to increase
the production and release of inflammatory cytokines, which
can lead to greater immune activation and tissue damage (12).
Hypothetically, the reduction of inflammation could aid COVID-
19 patients (13).

Several compounds have been associated with antiviral and
anti-inflammatory properties and could impact COVID-19
development such as vitamin D (14), vitamin E (15), vitamin
B12 (16), omega-3 (17), and flavonoids (18). Naringenin (NAR)
is an important natural flavonoid present in citrus fruits, like
grapefruit (43.5 mg/100 mL) and oranges (2.13 mg/100 mL)
(19), with a high analgesic, anti-oxidant, anti-inflammatory,
anti-tumoral, and anti-viral effect (20–23) (Figure 1). The
consumption of 8 mL/kg of orange juice increases NAR plasma
levels from 0 to 300 µg/L 4 h after ingestion (24).

The antiviral effect of NAR has been studied in several
viruses, such as dengue (25, 26), hepatitis C (27), zika (28),
chikungunya (29), Semliki Forest (30), herpes simplex 1 and
2 (31), yellow fever (32), and human immunodeficiency virus
(33). Several in vitro studies have highlighted NAR’s antiviral
effect in pre-infection and post-infection (28). Similar to other
natural compounds, NAR has extensively been investigated in
in vitro, but has very limited results in in vivo models of viral
infection (34, 35) (Figure 1B). Nevertheless, the in vitro and
in vivo anti-inflammatory potential of NAR has been highlighted
in several animal models, including respiratory syndromes
(35, 36). In this perspective, we highlight the mechanism
in which NAR may present an important anti-inflammatory
role in COVID-19.

ANTI-INFLAMMATORY PROPERTIES OF
NARINGENIN

Inflammation can be characterized by the regulation of pro-
and anti-inflammatory mediators in resident cells and leukocytes
recruited from the blood (37). There are strong pieces of
evidence of the role of NAR under inflammatory conditions
due to a wide range of mechanisms. The immunomodulatory
properties of NAR are associated with the regulation of
key signaling pathways, like nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) (38), PI3K/AKT (23), and
mitogen-activated protein kinases (MAPK) (39) in different cell
types (Figure 1A).

Macrophages are an important cell in the COVID-19
pathology, being able to sense and respond to pathogens
and produce inflammatory cytokines and chemokines (40). In
murine macrophages, NAR can reduce inflammatory mediators
production induced by LPS, and in a murine endotoxemia
model reduces the mortality rates from 60 to 0% (41). Murine
macrophages infected with a gram-negative bacteria (Chlamydia
trachomatis) NAR reduced the production of IL-1β, IL1α, IL-
6, TNF, IL-12p70, and IL-10 in a dose-dependent manner
(42). Moreover, NAR’s anti-inflammatory effects have been
demonstrated in vivo (41), in macrophage and ex vivo human
whole-blood models, reducing IL-1β, IL-6, IL-8, and TNF upon
LPS stimulus to close to non-stimulated levels (43) (Figure 2).

Barnes et al. described that the cytokine storm developed
by severe COVID-19 patients is related to an exacerbation
of neutrophil activation (44). It is clear the central role of
neutrophils in COVID-19, as neutrophilia and neutrophil-to-
lymphocyte ratio in COVID-19 patients is associated with disease
severity (45, 46).

Lung biopsies have also identified an infiltration of neutrophils
(47) and the formation of neutrophil extracellular traps in
COVID-19 patients (48) (Figure 1A). Although some animals
like cats, ferrets, mice, hamsters, and macaques can be infected
by SARS-CoV-2, the usage of animal models in COVID-19 is
currently limited (49).

In an animal model of acute respiratory distress syndrome
(ARDS), a syndrome with an increase in IL-6, TNF, and
neutrophils in the lungs, NAR supplementation can reduce
neutrophils infiltration and oxidative stress, greatly reducing
airway inflammation and lung injury (50). Naringenin reduction
of oxidative stress is partially mediated by a curb in the anion
superoxide production (51, 52) (Figure 2).

Naringenin can suppress inflammatory molecules production
through both transcriptional and post-transcriptional
mechanisms (18). In a LPS-induced model of inflammation
in a mouse model, NAR suppressed TNF and IL-6 production
by macrophages and T lymphocytes without interfering
in the toll-like receptor (TLR) cascade but by increasing
intracellular cytokine degradation through lysosome-dependent
mechanisms (23). These data indicate a potential role in the
control of inflammation and oxidative stress-related to airway
inflammatory insults (Figure 2A). These anti-inflammatory and
anti-oxidant effects are also described in chronic comorbidities
like in diabetes mellitus (53, 54), dyslipidemia, hyperinsulinemia,
and being overweight (55), which are all risk factors associated
with severe COVID-19 (4, 56, 57) (Figure 1C).

In animal experimental models, NAR was able to modulate
different inflammation syndromes and at different sites, such as
colitis (58), hepatitis (59), obesity (60), cancer (61), and acute
respiratory syndrome (36). This is particularly important in
COVID-19, because SARS-CoV-2 infection induces a systemic
inflammation and can infect many different organs including
lungs, heart, liver, brain, kidneys, and the intestines (62).

In addition, NAR can promote lysosome-dependent cytokine
protein degradation, which may be important in COVID-19 (63,
64), considering the systemic and cytokine storm during severe
COVID-19 (65). In fact, NAR-induced immunomodulation has
been demonstrated in airway inflammatory disorders. In a
murine asthma model, treatment with NAR reduced airway
hyperactivity and airway inflammation, with a reduction in the
levels of IL-4 and IL-13 in bronchoalveolar lavage and serum
IgE levels as well improvement in lung function assay (66–68).
Overall, the treatment with NAR reduced lung eosinophilia to
similar levels to non-asthmatic group (66–68).

In lung fibrosis induced by infection with Mycoplasma
pneumoniae, NAR reduced autophagy-mediated airway
inflammation and lung fibrosis (69, 70), and, in a chronic
obstructive pulmonary disease (COPD) model, NAR was
able to mitigate lung inflammation, reduce the expression of
TGF-β, and increase glucocorticoid receptor expression (GCR)
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FIGURE 1 | Immunomodulatory properties of nargenin. (A) NAR can act on Neutrophils, T cells, NK cells, Macrophages, and reduce the expression of proteins and
receptors. (B) NAR reduces viral entry, assembly, and replication via modulation of surface molecules, production of antiviral components, inflammatory molecules
and/or direct interaction with viral components. (C) NAR can influence the development and severity of many different diseases, in different organs, such as cancer,
hepatitis, colitis, and severe acute respiratory syndrome.

(71). Naringenin anti-inflammatory effect was also verified in
radiation-induced lung injury, reducing lung inflammation and
IL-1β levels (72).

The NAR anti-inflammatory effect is thus not directly
mediated to a type 2 or type 1/17 immune response but a
regulation of the immune response. Studies have highlighted the
increase in T regulatory cells and transforming growth factor-β
after NAR consumption via aryl hydrocarbon receptor-mediated
pathway (73).

Nevertheless, the excessive regulation of the inflammatory
response could impair anti-viral immune response, that has
not been previously observed with NAR supplementation.
Naringenin can also activate the interferon-stimulated response
element and enhance IFN-I production via an increase in the
expression of IRF7 (74) and increase NK cell activity via enhanced
NKG2D ligand expression (75). Considering the crucial role of
NK cells and IFN-I in the anti-viral immune response, NAR
may also contribute to the viral load control. Overall, these
previous studies demonstrated, in vivo and in vitro, that NAR

is a strong candidate as an adjuvant in reducing airway and
systemic inflammation.

NARINGENIN AND CORONAVIRUSES

Two coronaviruses have been responsible for recent epidemics.
In 2002, the SARS-CoV-1 epidemic caused 8,098 cases, with
774 deaths in 11 countries (76–78). In 2012, in the Middle
East, another coronavirus also caused Severe Acute Respiratory
Syndrome, being named MERS-CoV (79). Until 2020, MERS-
CoV had caused 2,494 cases, with 858 associated deaths (77).

Clinical manifestation of SARS-CoV-1 and MERS-CoV
is similar. Patients report clinical symptoms such as fever,
cough, body pain, headache, and less commonly, diarrhea and
nausea (80). However, the need for intensive care and mechanical
ventilation is greater in MERS-CoV than in SARS-CoV-1 (81, 82).

Similarly to MERS-CoV and SARS-CoV-1, SARS-CoV-2
infection is mainly transmitted by respiratory droplets expelled

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 570919

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-570919 September 23, 2020 Time: 16:38 # 4

Alberca et al. Naringenin in SARS-CoV-2 Infection

FIGURE 2 | Outline of the putative role of naringenin in COVID-19 pulmonary pathophysiology. (A) Established effects of naringenin on different pulmonary diseases.
(B) Naringenin may reduce inflammatory cytokines and tissue damage, and it may directly bind to SARS-CoV-2. Abbreviations: Interferon gamma (IFN-γ),
glucocorticoid receptor expression (GCR), and cluster differentiation (CD).

from an infected person during sneezes or coughs (83, 84). Severe
Acute Respiratory Syndrome Coronavirus-2 surface glycoprotein
spike (S protein) binds to ACE2 on the surface of the host’s cell
surface. This invading process is the same used by SARS-CoV-
1 (85). In comparison, MERS-CoV uses dipeptidyl peptidase
4 (DPP4), a multifunction surface protein to entry into cells
(85). Dipeptidyl peptidase 4 is mainly expressed on the kidney,
intestine, liver, prostate, and activated leukocytes. Dipeptidyl
peptidase 4 is expressed on the lower respiratory tract, glands
located in submucosa of the upper respiratory tract, lung
macrophages, and alveolar epithelial cells (86).

After these coronaviruses (MERS-CoV, SARS-CoV-1, and
SARS-CoV-2) invade the host’s cell, polypeptides are released
from the polyproteins by proteolytic processing. The proteolytic
process is mediated by papain-like protease (PLpro) and 3-
chymotrypsin-like protease (3CLpro). The 3CLpro cleaves the
polyprotein to generate various non-structural proteins, crucial
for viral replication (87, 88). Due to the main role of 3CL in
coronaviruses viral cycle, inhibitors of 3CL could potentially be
used in COVID-19.

Flavonoid inhibition of the 3CL protease has been described
in MERS-CoV (89) and SARS (90), but NAR was not among
the flavonoids investigated. Nevertheless, in silico analysis
demonstrated that NAR has the potential to inhibit SARS-CoV-2
3CLpro (91). A recent study verified that SARS-CoV-1 and SARS-
CoV-2 share 99.02% of genetic similarity of 3CL, with only 12
punctual mutations (88), leading to the possible inhibition of 3CL
by NAR and other flavonoids.

Another possible mechanism is the inhibition of the two-
pore ionic channel (TPC1 and TPC2) (92). Inhibition of TPC1
and TPC2 reduces MERS-CoV infectivity, intracellular traffic
(93), and viral replication (93, 94). Due to SARS-CoV-2 viral
genome sequencing similarities with MERS-CoV and SARS-
CoV-1 (95), it is possible that similar mechanism of inhibition
of TPC1 and TPC2 channel be effective in COVID-19, aiding
in the reduction of viral replication (96).Interestingly, NAR can
inhibit the activity of TPC1 and TPC2 both in humans and
plants (97).

NAR is a hydrophilic substance with a higher affinity for the
cytoplasmic membrane generating intracellular accumulation of
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NAR (98). Therefore, this affinity probably enhances intracellular
signaling and the modulation of and TPC1 and TPC2 (27).
Therefore, the TPC1 and TPC2’s modulation by NAR should be
further investigated as a possible anti-coronavirus intervention.

DISCUSSION

Several reports of natural compounds with anti-SARS-CoV-2
potential are currently being investigated. Substances that may
compete with the ACE2 receptor or reduces the ACE2 expression
may present an alternative or adjuvant therapy in COVID-19
(99). In fact, NAR consumption has been associated with a
reduction in ACE2 expression in the kidneys of rats (100) and
could bind directly to the ACE2 receptor (101).

However, nutritional interventions aiming to regulate SARS-
CoV-2 entry receptor ACE2 need to be carefully evaluated, as
downregulating of ACE2 could also lead to greater inflammation
and lung damage (102, 103). Previous reports demonstrated that
the oral consumption of NAR can reduce acute lung injury
in a mouse model (50) and reduce the production of pro-
inflammatory cytokines (18). This is extremely relevant, as a part
of COVID-19 lung injury can be classified as ARDS (104).

Coronavirus disease 2019 can also lead to cytokine storm,
progress to septic shock, and cause death (105, 106). Modulating
the cytokine storm is thus a vital process for treating COVID-19.
Naringenin has been used in experimental models to regulate the
production of IL-6 and TNF (23), cytokines that are increased in
COVID-19 and further increased in severe cases (107, 108). Also
in an animal model of septic shock, the consumption of NAR has
been demonstrated to reduce kidney damage via an increase in
antioxidant enzymes (109).

Studies verified a direct role of NAR in abrogating viral
replication in human cells, before (21) and after infection (30).
In SARS-CoV2, in silico analysis demonstrated that NAR has
the potential to inhibit SARS-CoV-2 3CLpro and consequently
inhibit viral replication (91), which still needs to be further
verified experimentally.

The consumption of NAR via citrus fruits (110) or
supplementation (111) can rapidly increase circulating levels of
NAR and increase intracellular levels of NAR (98, 111). An
increase in the concentration of NAR in plasma samples can
be observed 20 min oral consumption and peaking around
4 h post-consumption (112). In addition, in vitro models have
also demonstrated a long-term anti-viral benefit, even after
discontinuation of supplementation with NAR (21), although
there is little evidence of in vivo antiviral activity (35).

Previous clinical trials with the consumption of 500 mL/day
for 8 weeks of orange juice, rich in NAR, has demonstrated an
adjuvant effect in antiviral therapy (34). The consumption of

340 mL of grapefruit juice per day (containing approximately
210 mg of NAR) also improved cardiac-related measurements
in post-menopause women (113). Although NAR is one of the
most important naturaly occurring flavonoids, there is a lack of
clinical trials and data on pharmacokinetic aspects, metabolic
fate, and chemical stability that may limit the usage of this
bioactive compound in humans (35).

A caveat of NAR is the oral consumption. Although widely
accepted by patients, it could be a barrier in severe COVID-
19 patients. Therefore, NAR may be better applied as a
prophylactic intervention or on the onset of SARS-CoV-2
infection. The possible effect of NAR on the ACE2 receptor also
needs to investigated, as ACE2 reduction could lead to greater
inflammation (102, 103). Naringenin is mostly absorbed in the
small intestine (114), and differences in microbiota may thus also
present an important inter-individual variable (24, 112).

Another caveat is the NAR poor aqueous solubility and
bioavailability; currently, the usage of liposomes, nanoparticles,
and other formulations may present itself as a solution (115–118).

Furthermore, NAR interactions with the cytochrome P450
(CYP) system need to be evaluated, as NAR can affect drug-
metabolizing enzymes and pharmacokinetic of important drugs
that may be of regular use or specific in COVID-19 patients
(119–121).

In conclusion, NAR potential as an anti-inflammatory
nutritional intervention has been demonstrated in many
different diseases, such as SARS-CoV-1 and MERS-CoV. Further
investigations and clinical trials are needed to help understand
the role of NAR consumption in humans during a viral infection,
especially in SARS-CoV-2 infection and COVID-19.
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