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The actin cytoskeleton is composed of a dynamic filament meshwork that builds the 
architecture of the cell to sustain its fundamental properties. This physical structure is 
characterized by a continuous remodeling, which allows cells to accomplish complex 
motility steps such as directed migration, crossing of biological barriers, and interaction 
with other cells. T lymphocytes excel in these motility steps to ensure their immune 
surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the 
journey of T lymphocytes through distinct tissue environments and to tune their stop and 
go behavior during the scanning of antigen-presenting cells. The molecular mechanisms 
controlling actin cytoskeleton remodeling during T lymphocyte motility have been only 
partially unraveled, since the function of many actin regulators has not yet been assessed 
in these cells. Our review aims to integrate the current knowledge into a comprehensive 
picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the 
molecular actors that control actin cytoskeleton remodeling, as well as their role in the 
different T lymphocyte motile steps. We will also highlight which challenges remain to 
be addressed experimentally and which approaches appear promising to tackle them.
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iNTRODUCTiON

Cell motility relies on the remodeling of cell shape, a process which is highly controlled both in 
time and space to allow cell polarization and coordination of movement in response to extracellular 
cues (1). The integration of motility signals into coordinated cell shape remodeling is ensured by 
the actin cytoskeleton. The building block of the actin cytoskeleton is the globular actin, which 
polymerizes into filament networks of various complexity depending on the levels of actin filament 
branching and crosslinking (2). Actin networks that undergo rapid and dynamic remodeling provide 
the physical basis for the emission of diverse types of protrusions that allow complex motility tasks 
such as environment probing, cell body translation, and invasion through natural tissue barriers. Via 
its anchorage to cell surface receptors allowing attachment to the cell substratum and its association 
with molecular motor proteins such as myosins, the actin cytoskeleton sustains mechano-sensing 
and mechano-transduction, allowing the cell to both sense the physical constraints of its environ-
ment and assemble force generating protrusions that ultimately lead to cell body translation (3).

In most migrating cells, the front or leading edge is made of a thin and widely spread structure 
called the lamellipodium. It is composed of highly branched actin fibers that compose a dense 
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meshwork. The lamellipodium undergoes periodical contrac-
tions that are coupled to a retrograde actin flow (4). The cell lead-
ing edge is also characterized by the presence of thin longilineal 
protrusions of various lengths called filopodia that carry out an 
exploratory function (5). Parallel bundles of cross-linked actin 
fibers are the structural basis for filopodia. These protrusions 
can either be embedded within the lamellipodium or be emitted 
independently from it. Cells such as immune cells and tumor cells 
that have the capacity to cross tissue barriers made of dense extra-
cellular matrix (ECM) networks assemble invadopodia or related 
structures that can locally digest the ECM to allow cell invasion. 
In some cells such as lymphocytes, the leading edge structure can 
be a pseudopodium, which is a more bulky protrusion than the 
lamellipodium since it is filled with cytoplasm. Behind the cell 
leading edge, the shape of the cell body is maintained by the actin 
cortex, a thin network of actin fibers localized beneath the cell 
membrane. Alternative motility strategies, not depending on the 
assembly of a lamellipodium, can be ensured by the formation of 
membrane blebs as a result of hydrostatic pressure from within 
the cell and local relaxation of cortical actin (6). The cell rear or 
trailing edge is generally characterized by actin filament bundles 
coupled to myosin. This allows the sliding of actin fibers that 
generate cell tension driving the cell body and cell rear forward. 
Importantly, each cell type is endowed with specific motility char-
acteristics, which are reflected by different abilities to remodel the 
actin cytoskeleton to support the assembly of protrusions.

In this context, lymphocytes are classified as cells exhibiting 
amoeboid motility. Indeed, their motility characteristics are 
comparable to those described in the Dictyostelium discoideum 
amoeba. The morphology of migrating lymphocytes is charac-
terized by the emission of actin-rich pseudopodia, blebs, and a 
highly contractile trailing edge referred to as the uropod. The 
amoeboid motility of lymphocytes [reviewed in Ref. (7)] is fur-
ther characterized by weak adhesion to the substratum and little 
or no ECM proteolysis. The motility of lymphocytes is intimately 
related to their function as immune sentinels and effectors. 
Indeed, lymphocytes can migrate extremely rapidly, adapt their 
motility strategies to cross different tissue barriers, and orient 
their migration in response to various chemotactic factors. In 
addition, the motility behavior of lymphocytes tunes the quality 
of their interaction with antigen-presenting cells (APC). How 
the specific features of lymphocyte migration are controlled by 
the underlying actin cytoskeleton is only partially elucidated. 
The objective of this review is to cover the current knowledge on 
how specific molecular aspects of actin cytoskeleton remodeling 
contribute to T lymphocyte motility characteristics. We also aim 
at pointing to the unsolved questions and to the approaches that 
could help unraveling them.

ACTiN CYTOSKeLeTON DYNAMiCS iN 
MiGRATiNG T LYMPHOCYTeS

Overview of T Lymphocyte Motility
T lymphocytes are among the cells displaying the highest explora-
tory behavior. They are able to migrate all around the body and 
to explore most tissues. Beyond those large-scale displacements, 

T lymphocytes continuously scan their local environment in a 
manner favoring recognition of specific antigens at the surface 
of APC. Motility is therefore an inherent property of T lympho-
cytes that guarantees optimal and timely recognition of foreign 
antigens as well as local activity at the site of the antigenic chal-
lenge. The development of intravital two-photon microscopy has 
permitted the investigation of T lymphocyte motility directly in 
tissues (8). This motility can be assimilated to a search behavior 
that has been characterized as a Brownian random walk (9) or 
a Lévy walk (10). T lymphocyte motility is known to be driven 
by local factors such as the architecture of the stromal network 
(11) and chemokines (12). The encounter with APC modifies the 
dynamic behavior of the T lymphocytes since the recognition of 
the cognate antigen by the TCR halts migration (13–15). Even if 
many environmental cues modulate T lymphocyte motility, many 
T lymphocyte motility features appear to be cell intrinsic. Indeed, 
the speed as well as the stop and go behavior of T lymphocytes is 
comparable under in vivo and in vitro conditions lacking stromal 
network and chemokines (16). In addition, T cells autonomously 
regulate their ability to turn while migrating, a key parameter for 
the efficiency of the meandering search of rare antigens (17).

T Lymphocyte Motility Parameters
To describe and understand more precisely the motility behaviors 
of T lymphocytes, it is crucial to define parameters and to verify 
that they are measured appropriately (18). In this chapter, we 
will provide an overview of the parameters pertaining to speed, 
direction, and cell shape that are being used to characterize and 
compare motility patterns of T lymphocytes both in  vitro and 
in vivo.

Although T lymphocytes are very rapid cells, their speed is 
far from being constant. To measure the speed of lymphocytes is 
not a straightforward task since not all considered lymphocytes 
might migrate during the window of observation, and because a 
key feature of T lymphocyte motility is the alternation of running 
and pausing phases. A first basic point is therefore to consider the 
proportion of actively migrating lymphocytes within a popula-
tion of interest. It has been long established that upon isolation 
from human blood, only a portion of lymphocytes display spon-
taneously a motile behavior (19). Transwell assays performed 
to measure the ability of T lymphocytes to migrate toward a 
chemokine consistently show that not all cells migrate, even if 
they express apparently homogeneous levels of the corresponding 
chemokine receptor. What distinguishes the motile versus non-
motile fractions of lymphocytes is currently unknown. However, 
the activation state might be related to the propensity to migrate, 
since lymphocyte stimulation with mitogens can result in a 
majority of lymphocytes to acquire a motility behavior (20).

To appreciate the alternation of running and pausing phases, 
it is important to image T lymphocytes over sufficient periods 
of time. In 3D collagen lattices, T lymphocytes display periods 
of highly directional migration alternating with frequent turns 
(21). Under these conditions, the mean velocity of human 
unstimulated lymphocytes is approximately 7 μm/min (exclud-
ing non-migrating cells and periods of pausing), with half of 
the cells migrating. Following stimulation with Concanavalin 
A, the proportion of migrating cells increased to 80% without 
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any change in the velocity. Can T lymphocyte velocity be tuned? 
In addition to the well-established role of chemokines in driving 
directional migration, chemokine might exert a chemokinetic 
role. During CD8+ T cell infiltration of the murine brain in the 
context of Toxoplasma infection, CXCL10 increased the velocity 
of T lymphocytes and their ability to find infected target cells, 
without modifying the walk pattern (10). T lymphocyte velocity 
also seems to be increased during (dendritic cell) DC scanning 
(22). Indeed, T lymphocytes migrate within the paracortex of 
lymph nodes at a high speed (10–15 μm/min on average) (23, 24). 
In comparison, naive T lymphocyte locomotion in the subcapsu-
lar region was reported to be 38% slower and had higher turning 
angles and arrest coefficients than naive T lymphocytes in the 
deep paracortex (25). Is T lymphocyte velocity dependent on their 
phenotype? Memory T lymphocytes were shown to move faster 
during CCL21-driven chemokinesis when compared to naive T 
lymphocytes (26). The higher motility characteristics of memory 
T lymphocytes were associated with an increased propensity to 
attach to the substratum. In addition, T regulatory cells exhibit 
higher cell motility properties (basal and across barriers) than the 
non-T regulatory cell counterparts (27).

The random walk trajectories that T lymphocytes follow are 
influenced both by the architecture of the reticular network and 
by interactions between cells. This is particularly true during 
scanning of lymphoid organs, as T lymphocyte motility is halted 
upon TCR-dependent antigen recognition at the surface of APC 
(28). Indeed, a key aspect of the motility of T lymphocytes is 
the stop and go behavior directed by the encounter with APC 
and in particular DC (24). The parameter usually used to assess 
this behavior is the arrest coefficient, which corresponds to the 
proportion of time in which a T cell does not move (threshold 
<2 μm). The arrest coefficient is generally low when T cells are 
not engaged in stable contacts with DC, with a baseline mean 
arrest coefficient value around 0.35 (29). In the presence of 
antigen, the mean arrest coefficient is increased to 0.5 and above. 
Interestingly, T regulatory cell inhibitory activity can be medi-
ated through preventing the arrest of effector T cells. Indeed, in a 
murine model of experimental autoimmune encephalomyelitis, 
the absence of T regulatory cells significantly decreased the speed 
and increased arrest (0.70) of specific CD4+ T cells in the presence 
of auto-antigen (30).

The exploratory behavior of T lymphocytes is usually appreci-
ated by calculating the confinement ratio, which is defined as the 
ratio of the distance between the initial and the final positions of a 
cell to the total distance covered by that cell. In a murine model of 
subcutaneous thymoma, the exploratory behavior of cytotoxic T 
lymphocytes was more restrained in the antigen-bearing tumors 
(confinement ratio of 0.4), compared with tumor that did not 
present specific antigens (confinement ratio of 0.6) (31). This 
parameter also revealed that cytotoxic T lymphocytes resumed 
motility following tumor cell killing. This shows that motility 
parameters evolve as a T cell response is developing.

Another aspect useful to appreciate T lymphocyte motility is 
the study of the turnings. A couple of studies focusing on in vitro 
T cell tracking have reported that periods of turning coincide 
with a slower motility (26, 32). The assessment of turnings via an 
angle analysis is useful to assess whether cells tend to be attracted 

toward preferential positions or cellular partners. This has helped 
to show that naive CD8+ T cells are attracted to sites of CD4+ T 
cell–dendritic cell interactions (33). Additionally, the measure-
ment of the angle between the directions of travel of T cells as a 
function of the distance between each other revealed the presence 
of dynamic microstreams of naive T cells in lymph nodes (34).

The shape of T lymphocytes is also an important parameter to 
assess their motility behavior. As we will see in details below, the 
shape of T lymphocytes is constantly remodeled as they migrate 
due to a combination of protrusive and contractile activities. 
In addition, cell shape can be informative about the physical 
interaction of T lymphocytes with tissue structures. For example, 
during tumor infiltration, cytotoxic T lymphocytes were shown 
to frequently move along blood vessels. In doing so, they adopted 
a particularly elongated morphology, which was assessed by 
calculating an elongation index (ratio between the length and the 
width of the cell) (31).

Actin Cytoskeleton and Shape Remodeling 
Driving T Lymphocyte Migration
As for any motile cell, actin cytoskeleton remodeling plays a 
central role in T lymphocyte motility (35). Beyond the classical 
rules of cell motility mediated by a dynamical actin cytoskeleton, 
we will consider here what is specific about T lymphocytes. A 
migrating T lymphocyte harbors a highly dynamical leading edge, 
a contractile central region and an adhesive uropod. It undergoes 
periodical leading edge extension, central region traction, and 
uropod retraction. It ensues an amoeba-like motility behavior 
(36). As observed for D. discoideum amoebas, lymphocytes 
migrate in a cyclic fashion characterized by peaks of high velocity 
interrupted by pausing periods (37). Velocity peaks correlate with 
pseudopod extension and pauses correlate with both pseudopod 
contraction and generally rounder cell morphology (32).

A widely used approach to visualize actin cytoskeleton 
dynamics in living cells is to use a fluorescently tagged actin or 
fluorescently tagged LifeAct, a short peptide that binds polym-
erized actin filaments (38). With the scope to image the actin 
cytoskeleton of a primary T lymphocyte, we have electroporated 
Dendra2-LifeAct in CD8+ T lymphocytes purified from human 
peripheral blood. These cells were then exposed to a CXCL12 
gradient generated in a chemotaxis microchamber. As depicted 
in Figure 1A, at most of the snapshots, the cell is clearly polar-
ized pointing toward the source of CXCL12 (see also Movie S1 in 
Supplementary Material). The leading edge is enriched in actin 
and is under constant remodeling. Intense ruffling occurs at this 
site. Consequently, an unstable actin-rich structure is assembled, 
which takes the shape of a pseudopodium for most of the time. 
When T lymphocytes are studied on 2D surfaces like it is the case 
on these images, the leading edge might also transiently adopt a 
structure approaching that of a lamellipodium (time frames 264 
and 276 s). In the case of our short movie, while the primary T 
lymphocyte is constantly remodeling its shape, it manages to move 
along a very directional path. When plotting the displacement of 
the centroid of the cell (Movie S1 in Supplementary Material), we 
appreciate that the cell is moving toward higher concentration 
of CXCL12 (top) with some oscillations of direction. A useful 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5864

Dupré et al. Actin Cytoskeleton Control of T Lymphocyte Migration

Frontiers in Immunology | www.frontiersin.org

way to measure the directionality of a cell along a linear gradi-
ent of known orientation is to calculate the forward migration 
index, which is defined as the ratio between the cell displacement 
length along the gradient axis and the track length (39). This 
calculation yields a value of +0.76 for the lymphocyte depicted 
here, which indicates a relatively straight and directed path. For 
theoretical comparison, a cell that would migrate along a perfect 
line perpendicularly to the gradient would yield a value of +1, 
while a cell that would move but not progress along the gradient 
axis would yield a value of 0. Interestingly, when measured over 
12 s intervals, the velocity of the primary lymphocyte along its 
path is highly variable (Figure 1B). Indeed, it varies from 0.01 to 
0.35 μm/s. Over the 288 s of the registration, the T lymphocyte 
migrates at a mean velocity of 0.16 μm/s or 9.6 μm/min. This is 
compatible with velocities recorded by two-photon microscopy 
in tissues. Roughly, it corresponds to the estimation that a lym-
phocyte migrates at a speed of one body length per minute. In 

parallel, the general morphology of the cell is changing as well, as 
it can be appreciated by plotting the Aspect Ratio (length/width 
of a fitted ellipsis) over time (Figure 1C).

Let us now consider more in details the type of actin remod-
eling at work in the lymphocyte as it migrates directionally. For 
that purpose, we show in Figure  2 a schematic representation 
of the organization of the actin cytoskeleton filaments both at 
the leading edge and the uropod of the lymphocyte studied in 
Figure 1. This representation shall only be considered as a model 
since the ultrastructure of the actin cytoskeleton network has not 
yet been characterized in details in lymphocytes. At the leading 
edge, the polymerization and branching of actin filaments pro-
vide an engine for cell movement that pushes forward the cell 
membrane. The represented structure is inspired from that of 
a lamellipodium structured by a branched actin meshwork. At 
the trailing edge, the T cell uropod is structured by a network 
of parallel actin bundles that that serve as a basis for contractile 

FiGURe 1 | Actin cytoskeleton underlies T cell morphological changes during directional migration. (A) Snapshots of a movie showing a primary CD8+ 
human T cell expressing Dendra2-LifeAct moving along a CXCL12 gradient created in a collagen IV-coated Ibidi μ-Slide Chemotaxis2D. The cell extends dynamic 
protrusions and moves toward the source of CXCL12 (top). See Movie S1 in Supplementary Material. The organization of the actin cytoskeleton in T lymphocytes 
can also be appreciated in previous reports on the dynamics of actin during scanning of target cells (40) and polarization in response to CXCL12 (41). (B) Velocity of 
the cell shown in (A), calculated for successive 12 s intervals on the basis of the tracking of the cell. (C) Morphology of the cell shown in (A), calculated as Aspect 
Ratio (length/width of a fitted ellipsis) for each frame.
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FiGURe 2 | Actin cytoskeleton organization at the two poles of a 
migrating T cell. Schematic representations of the ultrastructure of the actin 
cytoskeleton networks at the leading and trailing edges of the migrating T cell 
shown in Figure 1. At the leading edge, the T cell that migrates on a 2D 
surface emits a protrusion that alternates between a lamellipodium and a 
pseudopodium. It contains a very dynamical and highly branched actin 
meshwork. At the trailing edge, the T cell uropod is made of a network of 
parallel actin bundles that can slide along each other to generate contractile 
forces.
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forces. Note that a thin layer of actin, called the cortical actin, 
coats the inner side of the plasma membrane. This actin pool is 
important for cell shape maintenance and changes. The rest of 
the cell probably contains a 3D network of crosslinked filaments 
interspersed with contractile bundles.

The simplified setting employed here to visualize actin 
cytoskeleton and cell shape remodeling in primary T lymphocytes 
illustrates the inherent nature of motility in these cells. Beyond the 
dynamic structures described above, it is important to stress that 
motile T lymphocytes can assemble additional actin-rich struc-
tures depending on the stimulatory context. Indeed, those cells 
have developed distinct migratory strategies, in particular as they 
need to cross the endothelial barriers, as they migrate through 
dense tissue environments and as they search for antigens.

The control of T lymphocyte motility is a key to the multistep 
process of extravasation from the blood stream into tissues. The 
mechanisms of tethering, rolling, firm adhesion, and transen-
dothelial migration have been well described (42). Interestingly, 
upon interaction with endothelial cells, T lymphocytes crawl with 
an amoeboid motility. The shear stress exerted by flowing blood 
is contributing to the formation of LFA-1-dependent adhesions 
(43). T lymphocytes orient their migration against fluid flow 
as they interact with the inner surface of blood vessels (44). A 
recent study suggests that upstream flow mechanotaxis may only 
rely on a passive self-steering mechanism, whereby the uropod 
would serve as a microscopic wind vane (45). In particular, lym-
phocytes have been shown to extend dynamic protrusions during 

transendothelial migration (Figure 3A). These actin-rich explor-
atory structures have been characterized as either podosomes 
or filopodia, depending on the lymphocyte activation state (43, 
46). They appear to allow lymphocytes to scan endothelial cells 
and to identify areas favorable for transcellular diapedesis. The 
nature of the endothelium may also determine different require-
ments from the T lymphocyte side. This is revealed by the role of 
uropod contractility in transendothelial migration to reach the 
lymph node but not the bone marrow (47).

The scanning behavior of T lymphocytes is evident as they 
migrate through both lymphoid and peripheral tissues. In 
these complex 3D environments, packed with multiple cells 
types embedded in ECM structures of different composition, 
porosity, and elasticity, T lymphocytes appear to not require 
functional integrins to migration (48). Instead, they use the force 
of actin-network expansion, which promotes protrusion of the 
leading edge. Contractions delivered by the actomyosin network 
allow the squeezing of the T lymphocyte through narrow gaps 
(Figure 3B).

Another key event in the T lymphocyte life cycle is the repeated 
encounters with antigen-presenting cells (Figure 3C). The immu-
nological synapses formed at the interface between T lymphocytes 
and APC are crucial sites for setting the duration, strength, and 
quality of the antigen stimulation. These dynamic structures can 
form in the context of both a relative arrest of migration and an 
ongoing scanning of the APC surface (49). They rely on actin 
cytoskeleton remodeling for initial assembly as well as for control-
ling dynamical molecular events (50, 51). Indeed, via a centripetal 
flow, the actin cytoskeleton provides a framework for signaling 
cluster movement (52). A newly added facet of actin cytoskeleton 
remodeling at the immunological synapse is the assembly of actin 
dots at the site of TCR engagement. Such dots are formed de novo 
as a result of TCR engagement and allow amplification of distal 
signaling events required for optimal T lymphocyte activation 
(53). The most detailed view of actin remodeling at the T cell syn-
apse has been provided recently by the use of 4D super-resolution 
microscopy (40). The use of lattice light-sheet microscopy allowed 
to image dynamic actin in 3D at a high speed. What it unravels is 
that lamellipodial membrane protrusions form the initial contact 
with the target cell. Within approximately 1 min, the contact site 
flattens and actin gets depleted from the center of the contact area. 
This remodeling is associated with a rearward flow of actin fila-
ments. Such remodeling allows MTOC docking and lytic granule 
delivery in the case of cytotoxic T lymphocytes.

MOLeCULAR CONTROL OF ACTiN 
CYTOSKeLeTON ReMODeLiNG iN T 
LYMPHOCYTeS

We have seen above that actin cytoskeleton remodeling is an 
essential component of the numerous dynamic processes involved 
in T lymphocyte motility. We will now review the molecular 
machinery that allows for actin remodeling, with a focus on the 
molecules whose function has been elucidated in T lymphocytes. 
For clarity, Table  1 provides a list of the molecules described 
throughout the text and depicted in the figures.
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FiGURe 3 | Migratory challenges faced by T cells during their journey 
through the organism. (A) The crossing of the endothelium barrier follows 
steps of T cell tethering and rolling on the luminal surface of the endothelial 
cells. The combination of chemokines and adhesion molecules triggers firm 
adhesion to the endothelial surface via the emission of filopodia-like 
protrusions. Depending on their activation state, T cells then either use the 
transcellular route by emitting invadopodia-like protrusions that go across the 
entire endothelial cell body, or the paracellular by squeezing through the 
junction between two adjacent endothelial cells. (B) Following the crossing of 
the endothelial barrier and underlying basal membrane, T cells undergo 
interstitial migration through the tissue they have entered in. Using an 
amoeboid mode of motility, they crawl and squeeze along and through 
extracellular matrix (ECM) fibers of various nature. In the lymph node cortex, 
T cells preferentially migrate along a network of fibroblastic reticular cells 
decorated with chemokines. (C) During the scanning of antigen-presenting 
cells (APC), T cells make multiple encounters of various duration and quality. 
Some contacts may last only a few minutes in the form of an immature 
immunological synapse. Upon recognition of an APC bearing specific 
antigens, the T cell stops migrating to assemble a long-lasting immunological 
synapse. In addition to controlling the interaction between the T cell and the 
APC, the dynamical actin cytoskeleton serves as a physical platform for 
numerous signaling events that take place at the immunological synapse to 
activate the T cell. After a few hours, the activated T cell detaches from its 
APC partner and regains its motility behavior.
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Basic Regulation of Actin Asssembly
The thermodynamics of actin filament assembly and turnover 
have been extensively studied as recently reviewed in Ref. (2). 
The building block is the actin monomer, which can form 
dimers and trimers. If a critical local concentration of free ATP-
bound actin monomers is available, a double-stranded helical 
and polar filament is assembled (Figure 4A). The two ends of 
an actin filament are distinct. The barbed end (plus end) is more 
dynamic than the pointed end (minus end) since it elongates 
10 times faster. The spontaneous assembly of actin filaments 
is kept under control by profilin, which inhibits the formation 
of actin oligomers. The function of this essential protein has 
not specifically been addressed in the context of T lymphocyte 
biology. Actin filaments tend to be capped by capping proteins, 
which stabilizes actin filament length by preventing both actin 
monomer association and dissociation at the filament barbed 
end. In T lymphocytes, over-expression of the capping protein 
gelsolin inhibits their spreading on plate-bound anti-CD3 
antibodies (81). However, the role of gelsolin in the context 
of T lymphocyte motility has not been investigated so far. A 
requirement to further enhance actin polymerization is the 
uncapping or severing of the capped actin filaments. Cofilin is 
severing actin at the pointed end to provide free barbed ends 
that can serve as a template for further actin polymerization 
(Figure 4A). Under conditions not favorable to polymerization, 
the action of cofilin will on the opposite lead to a depolymeriza-
tion of filaments. In T lymphocytes, the modulation of cofilin 
activity has been shown to occur downstream of costimulatory 
molecules (62).

Actin Filament elongation, Branching and 
Stabilization
The build-up of high-order actin cytoskeleton networks relies 
on actin-binding proteins that promote and organize actin 
nucleation and therefore filament assembly. Such proteins are 
actin nucleation factors such as formins and Arp2/3, as well as 
upstream promoting factors such as the WASP and WAVE family 
proteins.

Formins are actin nucleators that interact with the barbed 
end of actin filaments to further elongate them (Figure  4A). 
This activity leads to the elaboration of an unbranched actin net-
work. Formins studied so far in T lymphocytes include mDIA1, 
FMNL1, and INF2. Via its actin polymerization activity, mDia1 is 
involved in T cell chemotaxis as well as TCR-driven proliferation 
(87–89). Interestingly, formins are also important regulators of 
microtubule cytoskeleton orientation in T cells, such as during 
the formation of the immunological synapse (80, 85, 125). By the 
way, an interesting area of research will be to unravel the dynamic 
connections between the actin and tubulin cytoskeletons, which 
are most probably involved in key steps of T lymphocyte motility 
and activation.

Alternatively to the assembly of novel filaments or the elonga-
tion of existing ones, polymerization can take a different form. 
Indeed, the Arp2/3 complex branches new actin filaments to 
pre-existing filaments with an angle of 70° (Figure  4B). This 
activity is crucial in that it leads to the elaboration of a branched 
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TABLe 1 | Molecular actors contributing to actin cytoskeleton remodeling in T lymphocytes.

Protein Gene Function Associated immune-related disease Reference

a-actinin ACTN1 Actin crosslinking ACTN1-related thrombocytopenia (54, 55)

Arp2 ACTR2 Actin branching n.r. (2, 50)

Arp3 ACTR3 Actin branching n.r. (2, 50)

Cathepsin X CTSZ Uropod detatchment n.r. (56, 57)

Cdc42 CDC42 Filopodia assembly n.r. (58)

CIP4 TRIP10 Membrane curvature, WASP activation n.r. (59–61)

Cofilin CFL1 Filament dissasembly n.r. (62)

Coronin1A CORO1A Arp 2/3 inhibition Moderate to severe combined immunodeficiency (63–65)

DOCK2 DOCK2 Rac1 activation Primary immunodeficiency with early-onset invasive infections (66, 67)

DOCK8 DOCK8 Cdc42 and Rac1 activation Primary immunodeficiency with impaired cellular and humoral 
immunity

(68–70)

Drebrin DBN1 Actin bundling, microtubule interaction n.r. (71–73)

Ezrin EZR Actin-transmembrane proteins crosslinking n.r. (74–76)

Filamin A FLNA Actin crosslinking n.r. (77–79)

Formin-like 1 FMNL1 Filament elongation n.r. (80)

Gelsolin GSN Filament capping n.r. (81)

HS1 YWHAQ Branching stabilization n.r. (82–84)

INF2 INF2 Filament elongation n.r. (85)

Kindlin3 FERMT3 Actin-integrins interplay Autosomal recessive leukocyte adhesion deficiency syndrome-III 
(LAD-III)

(86)

L-plastin LCP1 Actin bundling n.r. (41)

mDIA1 DIAPH1 Filament elongation n.r. (87–89)

MLCK MYLK Actomyosin contraction n.r. (90)

Moesin MSN Actin-transmembrane proteins crosslinking n.r. (76)

Mst1 STK4 Chemokine receptor-integrins interplay T cell immunodeficiency (91–93)

Myo1g MYO1G Actin contraction n.r. (17)

MyoIIA MYH9 Actomyosin contraction n.r. (90, 94–98)

Paxillin PXN Actin-integrins interplay n.r. (99–101)

PI3K a PI(3,4,5)P3 generation n.r. (66, 102, 103)

Profilin PFN2 Actin polymerization n.r. (104, 105)

Rac1 RAC1 Actin branching (lamellipodia) n.r. (58)

Rap1 RAP1A Chemokine receptor-integrins interplay n.r. (106–110)

RapL RASSF5 Chemokine receptor-integrins interplay n.r. (91, 108)

RhoA RHOA Actomyosin contraction n.r. (111)

Rock ROCK1 Actomyosin contraction n.r. (90)

Sharpin SHARPIN Actin-integrins interplay n.r. (112)

srGAP2 SRGAP2 membrane curvature, mDia1 inhibition n.r. (113)

Talin TLN1 Actin-integrins interplay n.r. (114)

Vinculin VCL Actin-integrins interplay n.r. (115)

WASH WASH1 Arp 2/3 activation n.r. (116)

WASP WAS Arp 2/3 activation Wiskott–Aldrich syndrome (53, 117–119)

WAVE2 WASF2 Arp 2/3 activation n.r. (115, 120, 121)

WIP WIPF1 WASP activation Primary immunodeficiency resembling the Wiskott–Aldrich 
syndrome

(122–124)

n.r., not reported.
aFor a list of the many genes encoding the various PI3K subunits and isoforms, see Ref. (102).
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actin network. The activation of Arp2/3 is under the control of the 
WASP family and the WAVE family.

WASP is a well-studied actin regulator in hematopoietic cells, 
including T lymphocytes, because its deficiency is the cause of the 
Wiskott–Aldrich syndrome, a rare primary immunodeficiency. 
The lack of WASP results in abnormalities of T cell homing in vivo 
(126). Whether this is the consequence of reduced chemotaxis 
(117), transendothelial migration (46), or interstitial migration 
still needs to be clarified. In addition, WASP appears as a key 
regulator of immunological synapse stability (118, 119) and 

signaling by bridging both LFA-1 (16) and the TCR (53) to 
the actin cytoskeleton. WASH is a WASP family member that 
regulates Arp2/3-dependent endosomal trafficking processes. In 
T lymphocytes, it controls the recycling to the membrane of key 
receptors including the TCR, CD28, LFA-1, and GLUT1 (116). 
How its deficiency impacts on T lymphocyte migration remains 
to be studied.

WAVE2 is the main WAVE family member expressed in T 
lymphocytes. It is activated by Rac1 downstream the TCR as a 
multi-protein complex. It is required for the spreading of the 
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FiGURe 4 | Actin cytoskeleton architecture. (A) Actin cytoskeleton dynamics rely in part on the tightly controlled cycle of polymerization and depolymerization, 
also known as treadmilling. ATP-bound actin is added to the fast growing barbed end of filaments via the combined action of profilin, which prevents self-nucleation 
of actin monomers and actin-nucleating proteins such as the formin FMLN1 or WASP-family proteins, both of which are under the control of RhoGTPases. 
Depolymerization is promoted by cofilin, which stimulates dissociation of ADP-bound actin at the pointed end of filaments. The rate of cofilin-mediated 
depolymerization can be controlled by Rho via Rock and LimK. (B) In addition to be elongated by formins, actin filaments can build networks in multiple ways. Actin 
bundles or cables with parallel or anti-parallel orientation of actin filaments are assembled by cross-linking proteins such as fimbrin. Actin filaments can also be 
cross-linked in a non-parallel fashion via filamin to create a gelled network. Branched networks are promoted by the Arp2/3 complex that initiates nucleation of 
branched filaments on the side of existing ones. This activity is driven by WASP-family proteins and stabilized by HS-1. An additional important regulation of actin 
cytoskeleton networks is mediated by capping proteins such as gelsolin, which bind the plus end of actin filaments to prevent monomer exchange. (C) Actin 
filaments not only generate forces while they elongate. They also generate the cell contractile forces via the intercalation of the molecular motor myosin between 
parallel actin filaments, which results in filament sliding. Such process is regulated by the control of the myosin light chain phosphatase and kinase activities, as well 
as by the degree of actin cross-linking via α-actinin.
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lamellipodium, conjugate formation, actin accumulation at the 
immunological synapse, and Ca2+ entry from the extracellular 
medium (120). Upon TCR stimulation, WAVE2 interacts with 
vinculin and talin (activities of which are defined in the Section 
“Actin-Integrins Interplay”), thereby promoting the inside-out 
signaling that leads to the conformational activation of integrins 
(115, 121). Such activities place WAVE2 as a prominent actin 
regulator of the mobility and activation of T lymphocytes.

The WASP-interacting protein (WIP) was initially described 
as a chaperone protein for WASP. However, T lymphocyte defects 
are more pronounced in WIP-deficient patients and mice as 
compared to their WASP-deficient counterparts. Indeed, WIP 
deficiency is associated with a disruption of the actin cytoskel-
eton network and defective chemotaxis (122, 123). This can be 
explained by the fact that WIP stabilizes actin filaments indepen-
dently of its binding to WASP. This property of WIP was recently 
found to be critical for the integrity of the actin cytoskeleton in T 
cells and for their migration into tissues (124).

HS1 is the hematopoietic homolog of cortactin. It binds WASP, 
promotes weakly the activity of the Arp2/3 complex, and stabi-
lizes branched actin filaments (Figure 4B). In the absence of HS1, 
T lymphocytes display unstable lamellipodia, as well as reduced 

Ca2+ influx and TCR-driven proliferation (82–84). The exact role 
of HS1 in the regulation of cytoskeleton dynamics in the context 
of T cell polarity and motility remains to be elucidated.

Another regulator of the Arp2/3 complex expressed in T 
lymphocytes is Coronin-1A (63–65). Mutations in the encoding 
gene are the cause of a primary immunodeficiency. Coronin-1A 
associates with and inhibits the Arp2/3 complex. As a homo-
trimer, it binds both the actin and the plasma membrane to link 
extracellular signals to the actin cytoskeleton. It is required to 
control the actin cytoskeleton remodeling driving T lymphocyte 
trafficking, in particular, the egress from the thymus.

Actin Filament Crosslinking and Myosin-
Driven Contraction
A pleiotropic cross-liker of actin filaments is the protein 
α-actinin (Figure 4C). In lymphocytes, it was initially reported 
to control receptor aggregation (54). Interestingly, in migrating T 
lymphocytes, it bridges intermediate-affinity LFA-1 to the actin 
cytoskeleton at the leading edge. This activity controls the attach-
ment of the leading edge, and therefore, both cell spreading and 
migration (55).
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Filamins are dimeric actin-binding proteins that differently 
from α-actinin, crosslink actin filaments in a non-parallel fashion 
(Figure 4B). They also play an important role as scaffolding pro-
teins since they link intracellular signaling molecules to the actin 
cytoskeleton and to cell membrane receptors. In T lymphocytes, 
filamin A stabilizes the inactive/low affinity conformation of inte-
grins and mediates the outside-in signaling via a cross-linking 
to the actin cytoskeleton. Consequently, filamin A regulates T 
lymphocyte motility (77). At the immunological synapse, filamin 
A colocalizes with PKCθ to favor TCR/CD28-driven activation 
(78). It also mediates the costimulatory signal of CD28 by permit-
ting its recruitment to lipid rafts (79).

Another level of actin filament assembly is controlled by 
actin-bundling proteins that favor the association of multiple 
actin filaments in a parallel fashion, resulting in the formation of 
cable-like structures. T lymphocytes express the actin-bundling 
protein L-plastin, which localizes to the leading edge in response 
to CXCR4 stimulation and regulates polarity and migration (41). 
Interestingly, T-plastin expression in lymphocytes is restricted 
to malignant lymphocytes from Sézary syndrome patients, in 
which it regulates chemotaxis (127). This observation suggests 
that abnormal T lymphocytes may hijack actin cytoskeleton 
regulators to acquire specific motility properties.

As highlighted above, the dynamic interconnections between 
the actin and tubulin cytoskeletons are probably key events in 
the organization and tuning of lymphocyte polarity and mobility. 
Drebrin is an actin-microtubule coupling protein that possesses a 
cryptic actin bundling activity. It colocalizes with the chemokine 
receptor CXCR4 and F-actin at the periphery of the immu-
nological synapse (71). It also plays a role in the regulation of 
extracellular calcium influx (72). In the context of HIV infection, 
it acts as a negative regulator of virus entry and virus-mediated 
cell fusion (73).

As mentioned in the previous chapters, the association of actin 
bundles with the molecular motor protein myosin produces con-
tractile forces that are essential to regulate leading edge dynamics, 
cell body contractions, and uropod retraction. Myosins belong 
to very large family that has not yet been very much investigated 
in hematopoietic cells (128). They form heteromeric complexes 
by the association of heavy and light chains. Myosins form anti-
symmetrical mini-filaments that, once incorporated within an 
actin network, provoke actin filament gliding, and thus local 
contraction and tension. The activity of the class II myosin 
MyoIIA (or Mhc9) in T lymphocyte migration is controlled by 
integrin and chemokine receptor-induced signals. Active forms 
of the upstream regulators Myosin Light Chain Kinase (MLCK) 
and ROCK are also present during lymphocyte migration. These 
kinases phosphorylate myosin regulatory light chains at distinct 
locations: MLCK is active at the leading edge to control adhesion 
and extension of the lamellipodium, while ROCK is involved 
in the retraction of the uropod (90). During the crossing of the 
endothelial barrier, MyoIIA facilitates T lymphocyte migration 
by squeezing the rigid nucleus through the endothelial junctions 
(94). T lymphocytes can rapidly switch between an adhesion-
dependent sliding motility and an amoeboid walking motility 
that depends on MyoIIA (95). In addition to the density of 
integrin ligand, T lymphocytes can adapt their motility mode to 

the degree of environmental confinement (96). The immunologi-
cal synapse is the site of an actin retrograde flow combined with 
actomyosin II contractions. Those contractions are generated 
by concentric actomyosin II arcs/rings at the periphery of the 
immunological synapse (97). These highly dynamic events are 
involved in the inward movement of TCR microclusters, a key 
process in the integration of antigenic signals by the T lympho-
cyte. T lymphocytes also express the class I myosin Myo1g. In 
a recent study, murine T lymphocytes genetically deleted for 
Myo1g were reported to have global reduction in membrane 
tension (17). However, their homeostatic tissue distribution and 
responsiveness to TCR stimulation were normal. The abnormal-
ity of Myo1g-deficient T lymphocytes resides in the fact that 
they moved faster and straighter. As a consequence, these cells 
scanned their environment too quickly for an optimal detection 
of rare antigens.

ACTiN CYTOSKeLeTON iNTeRACTiON 
wiTH ReCePTORS DRiviNG T 
LYMPHOCYTe MiGRATiON

As anticipated in the previous chapters, the multiple facets of 
actin cytoskeleton remodeling that drive T lymphocyte migration 
need to be highly coordinated in time and space in response to 
extracellular cues. As illustrated in Figure 5, we will discuss herein 
the privileged relationships that the actin cytoskeleton maintains 
with the main surface receptors controlling T lymphocyte motil-
ity: integrins, chemokine receptors, and the TCR.

Actin-integrins interplay
The integrin repertoire expressed by T lymphocytes and the 
molecular activation of integrins are tightly regulated phenom-
ena that dictate the homing of these cells. In migrating T lym-
phocytes, the anchorage of integrins to the actin cytoskeleton is 
going to give a “fulcrum” to exert traction forces. Indeed, mature 
adhesions serve as an anchor to exert pulling forces through the 
contraction of actin bundles. The connection the actin cytoskel-
eton is also key in regulating the assembly and disassembly of 
integrin mediated adhesions. The interaction between integrins 
and the actin cytoskeleton is not direct and requires the participa-
tion of several proteins.

In the nascent adhesions associated with the leading edge 
of migrating lymphocytes, the action of talin is considered key 
to drive integrin activation (129). Upon chemokine-dependent 
signaling, the leukocyte specific talin-1 binds to LFA-1 β2 
cytoplasmic tail (114) in a PIP2-dependent way (130), induc-
ing integrin switch to an open conformation of high affinity. 
Ligand binding and talin connection with the cortical actin 
will stabilize this high-affinity conformation and strengthen the 
cell–matrix adhesion (114). This integrin–actin molecular bridge 
will be reinforced by kindlin-3 binding to the integrin β chain 
(86) and regulated by multiple cytoplasmic interactors such as 
the adhesion scaffold protein paxillin. Paxillin associates to the 
intracytoplasmic tail of β-integrin and interacts with many of 
its regulators such as vinculin. Paxillin activity controls adhe-
sion assembly and turnover, thereby driving LFA-1-dependent 
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FiGURe 5 | The different facets of actin cytoskeleton remodeling in migrating T cells. Represented at the center of the scheme (green zone) are the 
dominant receptors in the control of T cell motility. They include chemokine receptors, the TCR and integrins such as LFA-1, each being interconnected with the 
actin cytoskeleton with specific sets of signaling molecules. Ligand-mediated triggering of these receptors leads to the activation of the RhoGTPases Rac, Rho, and 
Cdc42 via GEFs and GAPs (purple zone). Such activation is highly controlled in time and space to orchestrate the assembly of distinct actin networks. Rac activates 
the WAVE complex, leading to Arp2/3-mediated actin polymerization at the leading edge to form a branched actin network. Cdc42 also favors membrane extension 
by activating the Arp2/3 complex via WASP. In addition to its major role at the uropod, Rho plays a dual role at the leading edge by promoting actin filament 
elongation via the formin mDia and by favoring membrane retraction via myosin activation. The left side of the scheme depicts the role of ERM proteins as anchors 
of the actin cytoskeleton in the plasma membrane (orange zone). The right side of the scheme illustrates the role of BAR-domain proteins as molecular links to 
guarantee local coordination of membrane curvature and actin polymerization (yellow zone). The actin meshwork is represented as blue filaments that are intertwined 
with the different signaling areas.
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T lymphocyte spreading and motility (99, 100). In the context 
of T lymphocyte migration across the endothelium, paxillin is 
involved in VLA-4 adhesiveness to low density VCAM-1 under 
shear stress conditions (101).

Vinculin is a physical interactor linking the cytoplasmic tail 
of integrins to the actin cytoskeleton. In leukocytes, it has been 
mainly studied in the context of immunological synapse assem-
bly, where it is recruited by the Cdc42 effector WAVE2 (115, 121) 
and appears crucial to maintain a stable contact (131). Vinculin 
may also be playing important roles in lymphocyte chemotaxis 
that would merit dedicated studies.

One step further along the integrin–actin connection, 
the actin crosslinking protein α-actinin is also considered an 
important component of the “molecular clutch” that establishes 

new adhesions (132). At the cell leading edge of T lymphocytes, 
α-actinin interacts physically with the β2 chain of the LFA-1 open 
conformation and is required for directional migration (55). 
The sequential cleavage of the β2 cytoplasmic tail by cathepsin 
X promotes interaction with both α-actinin and talin, thereby 
modulating LFA-1 affinity toward the high-affinity conformation 
(56, 57).

Probably as important as the leading edge protrusion, the less 
studied uropod contraction is a key process during extravasation 
and tissue migration. It is a site of integrin detachment. ROCK1 
(90) and MyoIIA heavy chain (98) drive uropod retraction and 
favor integrin recycling. LFA-1 detachment is promoted by 
sharpin binding to the αL chain, which antagonizes the open 
conformation (112).
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Actin-Motility Receptors interplay
The expression of chemokine receptors is tightly regulated 
in T lymphocytes and varies as a function of maturation and 
functional subset (133). This receptor family belongs to the 
seven-transmembrane domain protein superfamily called G 
protein-coupled receptors (GPCRs) and includes 18 genes, 
divided in CXCR, CCR, XCR, and CXCR subfamilies (134). 
Upon chemokine binding, chemokine receptors change their 
conformation, transmitting their signal via the activation of G 
protein heterotrimers, composed of the α, β, and γ subunits. This 
results in GTP loading of the Gα subunit. G protein activation 
stimulates phospholipase Cβ (PLCβ) isoforms, Ser/Thr-kinases, 
phosphatidylinositol 3-kinase-γ (PI3Kγ), and c-Src-related non-
receptor tyrosine kinases (135).

Upon stimulation, most chemokine receptors undergo a 
desensitization process that includes phosphorylation of their 
Ser/Thr residues located in the C-terminal region by GPCR 
kinases (GRKs). This abrogates G protein coupling, promotes 
binding of β-arrestins, and ultimately induces endocytosis of 
the chemokine-bound receptor (136). Alternatively, GRKs may 
phosphorylate ligand-free (non-engaged) chemokine receptors, 
which also prevents G protein coupling. These processes favor 
redistribution of receptors to assist T lymphocytes in sensing 
changes in local concentrations of chemokines (134).

Key signaling proteins integrate the interplay between 
chemokine receptors, integrins, and cytoskeleton dynamics. 
Rap GTPases are crucial in promoting adhesion in response to 
chemokine or antigen stimuli. In T lymphocytes, chemokine 
stimulation leads to Rap1 activation that binds and activates 
RapL, which acts as an adaptor and activator of the kinase Mst1. 
The RapL/Mst1 complex has the ability to bind either to β1 or 
β2 integrins and induces their conformational activation (106). 
Furthermore, results obtained with primary T cells show that 
Rap1 activation favors LFA-1 transport to the leading edge in 
vesicles also containing the RapL/Mst1 complex (91). In humans, 
Mst1 deficiency is associated with a severe naïve T cell lympho-
penia (92), in agreement with the role of this kinase in thymic 
egress as observed in the corresponding murine model (93). Rap1 
activation is driven by several GEFs, such as CALDAG-GEF1 and 
the CRKL/C3G complex (107, 108). Homozygous mutations in 
the gene encoding CalDAG-GEFI have been reported in patients 
with a form of leukocyte adhesion deficiency (LAD-III). In these 
patients, T lymphocytes display defects in LFA-1 activation, in 
particular following CXCL12 stimulation (109). Many actin-
related proteins are involved in the activation and transport of 
these proteins to the membrane. Phospholipase C promotes the 
delivery of Rap1 vesicles to the leading edge (110) and activates 
CALDAG-GEF1 through Ca2+ and diacylglycerol (DAG) gen-
eration (107). On the other hand, WAVE2, Arp2/3, and ABL 
are required for the transport of the CRKL/C3G complex to the 
membrane (121).

Actin–Antigen Receptor interplay
In addition to LFA-1, the TCR and its associated signalosome 
require the actin cytoskeleton and remodel it (137). As we will 
see in this chapter, the main impact of TCR signaling on T 
lymphocyte motility is the delivery of a stop signal to assemble 

the immunological synapse. The actin cytoskeleton provides a 
mechanical platform for TCR signaling at the immunological 
synapse. The first evidence for this cross-talk came from an early 
study that used a fractionation approach showed anchorage of 
cell surface expressed ζ chain of the TCR/CD3 complex to the 
cytoskeleton in resting T cells (138). Over the last 10 years, it has 
become clear that the TCR and signaling modules are distributed 
as microclusters. At the immunological synapse, these microclus-
ters follow centripetal motion driven by a combination of actin 
flow and actomyosin contraction (52, 139–142).

An important function of TCR signaling is to promote the 
conformational activation of LFA-1 (143). In this context, 
how both receptors interact in modulating the remodeling of 
the actin cytoskeleton was unclear. Using a micropatterning 
approach, a recent study established that the TCR stimulates 
actin network extension downstream of LFA-1. This generates 
the cytoskeletal tensions necessary to mechanical sensing and T 
cell spreading (144).

The amplitude and quality of an antigen-specific T cell 
response depends on the scanning behavior, and in particular 
the sampling time that T cells spend in contact with APC. 
Recognition of cognate antigens through the TCR transmits a 
stop signal that leads to reduced motility and prolonged contact 
with the APC (13). The combination of LFA-1 triggering through 
ICAM-1 and TCR with MHC molecules presenting cognate 
antigens is sufficient to arrest T cell motility. An initial wave 
of [Ca2+]i is required for the stop signal (145). In addition, the 
[Ca2+]i signaling pattern regulates the shape and stability of T 
lymphocyte contacts with APC (146). The stopping of T lympho-
cytes upon APC encounter is also dependent on myosin II (147). 
Strikingly, during this phase of arrest, T lymphocytes undergo 
an extensive reorganization of their membrane, cytoskeleton and 
even internal organelles. As a result, the interface is segregated 
into a central cluster of antigen receptors and a peripheral ring 
of adhesion molecules, building up the so-called immunological 
synapse (148, 149).

Interestingly, a continuum from the asymmetric leading edge 
of the migrating lymphocyte to the axisymmetric periphery of 
the immunological synapse of the APC-engaged lymphocyte 
has been proposed on the basis of the distribution of key mol-
ecules (28). Although apparently very distinct, the structural 
organizations supporting the motile polarized cell and the cell 
establishing a synapse could then switch easily. Such mecha-
nism would facilitate the successive encounter of multiple APC. 
Along these lines, live recording rather than imaging of fixed 
samples reveals that immunological synapse can be motile. 
Such synapses, termed kinapse, are characterized by a moving 
adhesive junction and a leading lamellipodium (150, 151). 
Therefore, synapses should be seen as dynamic and flexible 
structures that can accommodate T lymphocyte displacement 
at the surface of the APC. Indeed, time-lapse total internal 
reflection fluorescence (TIRF) microscopy has been used to 
show that TCR signaling can occur while the synaptic contact 
is undergoing translation (152). In this context, collapse of the 
leading edge was followed by an inward flow of TCR micro-
clusters toward a region impoverished in filamentous actin, as 
observed in prototypical concentric synapses (40). A recent 
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study combining intravital two-photon microscopy and migra-
tion along micro-channels revealed that the kinapse versus syn-
apse behavior of T cells depends on the affinity of the antigen. 
Interestingly, stimulation with only high-affinity antigen is able 
to evoke for full arrest, which is mediated via Arp2/3-dependent 
actin remodeling (153). The requirement for this pathway in 
stabilizing the immunological synapse is in agreement with our 
previous observation that T lymphocytes from Wiskott–Aldrich 
syndrome patients displayed reduced actin polymerization at 
the immunological synapse and that these cells were abnor-
mally elongated and motile at the contact with APC (119, 154). 
Accordingly, a study using lipid bilayers showed that WASP 
promotes immunological synapse symmetry to counteract 
PKC-θ-mediated immunological synapse destabilization (118). 
Together, this identifies the WASP-Arp2/3 pathway as central in 
setting the kinapse versus synapse behavior.

Chemokines have been proposed to modulate the TCR-driven 
arrest of T lymphocytes. CCL21 has been shown to increase 
LFA-1 responsiveness to TCR stop signals (155). T lymphocytes 
migrating on immobilized CCL21 and CXCL12 cluster LFA-1 
at the leading edge, which is then primed for activation via the 
TCR-driven inside-out signal. On the opposite, chemokines that 
bind CXCR3 and CCR7 have been shown with Transwell assays 
to override the TCR-mediated stop signal (156, 157). In  vivo, 
chemokines may therefore tune the encounters between T lym-
phocytes and APC by attracting T lymphocytes, favoring arrest 
and eventually promoting detachment.

Additionally, different surface receptors can modulate the 
scanning behavior of T lymphocytes as they encounter APC, 
by tuning the Stop signal. The co-receptor CTLA4 overrides 
the TCR-mediated stop signal by increasing T-cell motility, 
thereby inhibiting T-cell activation (158). Anti-CTLA-4 Abs 
have been tested to activate T cell immunity under numerous 
preclinical and clinical settings (159, 160). Another inhibitory 
receptor expressed at the surface of T lymphocytes, PD-1 can 
modulate the stop signal. Indeed, in a murine model of diabetes, 
the blockade of PD-1 or PD-L1 in pancreatic islets abrogated 
peripheral tolerance by favoring the stop signal, which resulted 
in prolonged interactions with the APC and enhanced T lym-
phocyte response (161).

In vivo, the effect of TCR signaling on the motility behavior 
has been well characterized in naïve T lymphocytes encountering 
antigen presented by dendritic cells in lymph nodes. Three succes-
sive steps have been characterized: (1) transient serial encounters, 
(2) stable contacts leading to full T lymphocyte activation, and 
(3) high motility and rapid proliferation (24). Therefore, during 
an immune response, the motility behavior of T lymphocytes is 
changing dramatically. Interestingly, within the same tissue, the 
motility behavior of T lymphocytes might be heterogeneous. 
Time-lapse video recording by two-photon microscopy revealed 
distinct behaviors, from rapid single-cell migration along random 
paths to collective behaviors as highly dynamic T cell swarms or 
stable T cell clusters (23, 162). This latter observation might cor-
respond to the phenomenon of homotypic clustering, which is 
secondary to the encounter with dendritic cells and results in the 
formation of T cell-T cell synapses that allow concerted activation 
via cytokine sharing (163).

ACTiN CYTOSKeLeTON iNTeRACTiONS 
wiTH THe PLASMA MeMBRANe

The plasma membrane is the interphase between the cytoplasm 
and the extracellular environment and the physical support of 
the cell receptors that sense extracellular cues. As such, it is a 
key element to consider in the context of T lymphocyte motil-
ity. There is a compartmentalized interplay between the plasma 
membrane and the actin cytoskeleton [for a general review, see 
Ref. (164)]. At the molecular level, this interplay includes lipid 
components such as phosphoinositides and the RhoGTPases 
as master controllers of actin-regulatory proteins. In addition, 
there is a physical interplay via membrane-associated proteins 
that can anchor the actin cytoskeleton (ERM proteins) or that 
concomitantly govern actin dynamics and membrane curvature 
(BAR domain-containing proteins).

Phosphoinositides
The role of phosphoinositides in the regulation of actin dynamics 
has been studied in many cell types including T lymphocytes. 
The triggering of most of the chemokine receptors expressed by 
T lymphocytes is accompanied by a robust activation of phospho-
inositide 3-kinase (PI3K) (102). This leads to the accumulation 
of PI(3,4,5)P3 at the leading edge (103). In contrast, at the rear 
of the cell, membrane phosphoinositide levels contribute to cell 
detachment since the hydrolysis of PI(3,4,5)P3 by PTEN hampers 
the protrusive activity. Combination of both processes establishes 
a guidance axis in the cell. More precisely, chemokine receptors 
and the TCR activate PI3K that catalyzes the phosphoinositide 
conversion to PI(3,4,5)P3, which allows the activation of the 
Rac activator DOCK2 at the plasma membrane. PI3K inhibition 
affects the in vivo motility of T lymphocytes with effects on migra-
tion speed (103) and directionality (66). DOCK2 deficiency is 
also affecting T lymphocyte motility, as recently identified in a 
cohort of immunodeficient patients carrying DOCK2 mutations. 
T lymphocytes from these patients were found to be defective 
in actin polymerization and directional motility in response to 
chemokines (67). Importantly, changes of local concentrations of 
phosphoinositides may modify the relative prevalence of specific 
actin structures such as branched or unbranched networks. This 
can in part be mediated by the propensity of PI(4,5)P2 to inhibit 
profilin activity (104, 105). How such regulation applies to the 
context of T lymphocyte motility remains to be explored. The 
distribution of phosphoinositides is also tightly regulated at the 
immunological synapse (40), but this aspect is beyond the scope 
of the present review.

RhoGTPases
RhoGTPases are master controllers of cell polarity and shape 
by regulating protrusive and contractile activities downstream a 
number of receptors. RhoGTPases belong to the Ras superfam-
ily, cycle between inactive GDP-bound and active GTP-bound 
forms, which activate effectors (165). This cycle is dynamically 
controlled by two groups of proteins called GTPase Activation 
Proteins (GAPs) and guanosine exchange factors (GEFs) that 
respectively promote inactive and active forms (58). A further 
level of GTPase activity regulation is exerted by guanosine 
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dissociation inhibitors (GDIs), which act by sequestering the 
RhoGTPases in the cytosol, preventing their interaction with 
GEFs and effectors. Post-translational modifications such as 
phosphorylation or palmitoylation fine-tune the activity of these 
molecules (166).

Rac1 and Rac2, whose functions usually overlap, are con-
sidered the main actin polymerization controllers, exerting 
their role mainly at the leading edge, where they activate 
WAVE and Arp2/3 to generate protrusions enriched in 
branched actin. In T lymphocytes, Rac1/Rac2 activation will 
be mainly under the control of DOCK2 and Vav1 GEFs, both 
of which are activated under chemokine receptors and the 
TCR (58).

At the back of the cell, RhoA is described as the key mol-
ecule controlling uropod contraction. RhoA activates ROCK, 
which binds and phosphorylates the Myosin Light Chain, 
thereby inducing the contraction of actomyosin bundles. By 
governing uropod detachment, this pathway is central for T cell 
chemotaxis (111). Although a front-back cell polarity is estab-
lished through Rac1 and RhoA, RhoA activity is also present 
at the leading edge, where two of its main effectors are though 
to be MLCK and mDia1 (90). This might generate an internal 
polarity of Rho actions depending on the local presence of its 
effectors.

Cdc42 controls the assembly, collapse and reorientation of 
cell polarity, which are determinant steps in the chemotaxis 
of T lymphocytes. This RhoGTPase promotes the generation 
of filopodia, which sense the environment and prepare the 
assembly of the lamellipodium. In T lymphocytes, Cdc42 
stimulates WASP activity, which promotes Arp2/3-dependent 
actin branching. Cdc42 is activated downstream of chemokine 
receptors through different GEFs, including DOCK8, which 
deficiency causes a combined immunodeficiency (68, 69). 
DOCK8 appears to activate Cdc42 specifically at the cell 
leading edge. Defective expression of DOCK8 causes a T 
cell migration defect in confined spaces, with a phenotype 
of abnormally elongated cells associated to cell death by 
fragmentation (70). In addition, by interacting with the polar-
ity complex Par, Cdc42 plays a key role in polarizing several 
organelles including the Golgi apparatus, the nucleus and the 
MTOC (106).

A remarkable work has been done in dissection the role of the 
main RhoGTPases. Still, the promiscuity with which RhoGTPases 
interact with effectors and regulators, the modulation of their 
activity depending on their location as well as the existence of 
yet poorly characterized family members, remain questions to be 
addressed. In that respect, the use of dedicated biosensors and 
optogenetic tools appears promising.

BAR Domain-Containing Proteins
Interplay between plasma membrane and cytoskeleton goes 
beyond signaling connections. Indeed, there is a concerted 
regulation of the physical properties of both elements. This is 
mostly controlled by a heterogeneous group of BAR domain-
containing proteins that have the ability to promote and respond 
to membrane curvature changes (167). In addition, some of 
those proteins can also recruit and modulate different actin 

regulators. For example, the protein srGAP2 binds and inhibits 
the formin FMNL1 (113). The protein CIP4 appears to play 
the role of a switch between actin elongation and branching 
activities. Indeed, it activates Arp2/3 complex through interac-
tion with WASP, while inhibiting the formin mDia1 (59). The 
importance of F-BAR proteins in lymphoid cell migration 
has been illustrated recently in tumoral lymphocytes, where 
CIP4 regulates lamellipodia assembly and orientation along 
chemokine gradients (60). CIP4-deficient T lymphocytes display 
defective adhesion to VCAM1 and ICAM1 present at the surface 
of endothelial cells. Consequently, CIP4-deficient T cells display 
impaired transendothelial migration (61).

eRM Proteins
The ezrin, radixin, moesin (ERM) family is composed by cyto-
plasmic proteins with the capability to bind simultaneously to 
the actin cytoskeleton and to the cytoplasmic tails of different 
transmembrane proteins such as integrins, antigen receptors and 
chemokine receptors (168). ERM proteins are key for T lym-
phocyte migration, as their over-activation or silencing induces 
defects in β1 integrin-dependent cell adhesion, TCR response, 
transmigration, and lymph node homing in vivo (74–76). ERM 
proteins switch from a folded to an unfolded active conformation 
depending mainly on the phosphorylation state of a threonine 
residue located in their actin-binding domain. ERM protein 
phosphorylation state is highly controlled in lymphocytes by 
kinases such as ROCK, GPCR kinase 2, or PKCs (169, 170). 
Chemokine stimulation induces dephosphorylation of ERM 
proteins and resorption of surface microvilli (171). ERM proteins 
are particularly active at the rear of migrating lymphocytes, where 
they coordinate contraction and retraction of the uropod (172). 
This polarized activity is coordinated by RhoGTPases since the 
presence of a constitutive active RhoA induces a hyper-phospho-
rylation of ERM proteins and protrusion stabilization, whereas 
the over-activation of Cdc42 or Rac1 evokes a dephosphorylation 
of ERM proteins and protrusion disappearance (173).

CONCLUDiNG ReMARKS

The actin cytoskeleton provides a fascinating mechanical frame-
work that endows T lymphocytes with an autonomous motility 
program. Importantly, the many connections between the actin 
cytoskeleton and the membrane, receptors, and signaling modules 
allow an integration of environmental cues so that T lymphocytes 
adapt their motility behavior. Such tunable motility supports the 
main missions of T lymphocytes: immuno-surveillance (timely 
recognition of foreign antigens) and immune defense (mounting 
of adapted immune responses against pathogens).

Beyond the many facets of actin cytoskeleton remodeling 
reported in this review, key fundamental questions remain 
open. To fully appreciate the role of specific actin regula-
tors and better characterize the actin networks elaborated in 
precise cellular locations, we need more detailed analysis of 
the actin cytoskeleton microarchitecture. For this purpose, 
novel methods to visualize actin polymerization combined 
with super-resolution microscopy approaches appear promis-
ing (40, 53, 174). An important challenge is that we need to 
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achieve adequate temporal resolution in the imaging of motile 
lymphocytes, as the characteristic timescales of lymphocyte 
migration and actin dynamics are very short. For example, actin 
filament barbed ends have been shown to assemble at a rate of 
3,000  subunits/s (2). This implies that an actin filament can 
reach length scales equivalent to the diameter of a lymphocyte 
(10 μm) in <2 s. An additional difficulty is to assess very fine 
regulation of motility due to cell-to-cell asynchrony within a 
population, for example if one wishes to study relative timing 
of GTPase activation within protrusions. This requires single-
cell analysis. Cell-to-cell asynchrony could then be solved by 
computational alignment.

We should be able to learn more from cell shape dynamics, in 
association with membrane curvature and protrusion dynamics. 
Existing approaches useful to study the evolution of cell shape, 
such as kymographs (175) or edge velocity maps (176), have not 
yet been applied to lymphocyte populations migrating over dif-
ferent substrates. It will also be important to better understand 
which molecular regulation tunes actin-related biophysical 
properties to generate tensions and forces. Along this line, the 
mapping of contractile forces using pillar arrays has recently been 
applied to T lymphocytes (177). The field also needs to develop 
integrated approaches that can combine molecular and bio-
mechanical data together with motility parameters. Along this 
line, a recently developed MATLAB-based toolset called TIAM 

allows for integration of data such as area of attachment to the 
underlying substrate, cell polarity and fluorescence intensity from 
two fluorescence channels (26).

Finally, the part of the review dedicated to the actin cytoskel-
eton regulators studied in T lymphocytes reveals that the func-
tion of many proteins remains to be characterized in these cells. 
Screening approaches combined to high-content automated 
imaging would accelerate our discovery of novel molecules con-
trolling specific aspects of actin cytoskeleton remodeling during 
T lymphocyte migration. This knowledge could then be exploited 
to identify targets for the tuning of T lymphocyte activation in the 
context of infection, auto-immunity and cancer.
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