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Abstract

Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft
failure in lung transplant recipients. During acute rejection episodes, CD8" T cells can contribute to lung epithelial
injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To
study the mechanisms regulating CD8" T cell-mediated lung rejection, we used a transgenic model in which
adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing
an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar
to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation
resolves by day 30. Using CC10-OVA.RAG"- mice, we found that CD4* T cells and ICOS** T cells were required for
protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4*Foxp3 * ICOS* T
cells were enriched in the lungs of animals surviving lung injury and ICOS** Tregs promoted survival in animals that
received ICOS* T cells. Direct comparison of ICOS Tregs to ICOS** Tregs found defects in vitro but no differences
in the ability of ICOS” Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg
development but is not necessarily required for Treg effector function.
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Introduction

CD8* T cells are important mediators of the adaptive immune
response to pathogens and tumors but their function as
cytotoxic T lymphocytes (CTL) can also Ilead to
immunopathology. During viral infections bystander activation
and recruitment of inflammatory cells can lead to prolonged
lung injury and collateral damage to the tissue [1]. For lung
transplants, CD8* T cells may play a critical role in driving the
alloimmune response that leads to acute rejection and may
promote chronic rejection [2—6]. Increased pro-inflammatory
cytokine producing CD8* T cells can be found in the
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bronchoalveolar lavage (BAL) during episodes of acute lung
transplant rejection in humans [7]. CD8* T cells have also been
found to be capable of inducing rejection in the lung
independent of CD4* T cells in a mouse model of orthotopic
lung transplant [7,8]. However, the mechanisms to control
CD8* mediated injury and damage to lung tissue are not well
understood.

Several types of T cell subpopulations have been shown to
display immunoregulatory capacity [9]. Natural T regulatory
cells (Tregs) represent approximately 5-10% of CD4* T cells
and express the intracellular transcription factor Foxp3 [10,11].
Accumulating evidence from both animal models and clinical
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studies demonstrate that Tregs are important in both the
induction and maintenance of allograft tolerance [12—14]. The
localization of Tregs in the graft after transplant is important for
effectively controlling aggressive immune reactivity to the graft
[15-18]. Investigators have found that stable lung transplant
recipients have an increased percentage of Tregs in
bronchoalveolar lavage (BAL) fluid compared to subjects with
subsequent lung allograft dysfunction, suggesting Tregs may
control the alloimmune response in the lung [19]. A better
understanding of the mechanisms controlling Treg function and
expansion may lead to better therapies for lung transplant
recipients.

Costimulatory molecules are known to regulate the
development and function of Tregs [20]. Mouse and human
Tregs express the negative regulator CTLA-4 and blockade of
CTLA-4 leads to a decrease in alloantigen-specific Treg-
mediated suppression [21-25]. CD28 is also known to be
important for Treg differentiation and homeostasis as targeted
mutations in CD28, as well as blockade of the CD28/B7-1/B7-2
pathway during development result in a remarkable decrease
in Treg numbers [26,27]. More recently, inducible costimulator
(ICOS) has been found to be required for optimal Treg function
and development [28-31]. ICOS has been found to be
expressed by Tregs infiltrating the lung during viral infection
and is suggested to play a role in controlling CD8-mediated
inflammation in the skin [30,31]. However, the requirement for
ICOS-expression by Tregs in the lung to control CD8-mediated
lung injury is not known.

In this study, we have used a previously developed model of
antigen-specific T cell mediated acute bronchiolitis using
transgenic animals expressing transmembrane ovalbumin
(OVA) in the small airway epithelium of the lung under the
control of the Clara cell promoter (CC10) [32]. Adoptive transfer
of in vitro activated OVA-specific CD8* T cells from OVA TCR
transgenic (OT-1) mice induces lung pathology similar to
findings in humans with acute lung transplant rejection and
virus- induced lung injury. By adjusting the conditions for
activated OT-I transfer, we have used this model in CC10-
OVA.RAG" mice to dissect the mechanism by which bystander
cells modulate lung rejection. We found that neutrophils were
not required for lethal lung injury and ICOS* Tregs were
significantly increased in the lung during acute inflammation.
Moreover, ICOS” lymphocytes were not sufficient to prevent
death in CC10-OVA.RAG” mice but wild-type Tregs could
rescue this defect. These data suggested that ICOS expression
regulated the ability of CD4* Tregs to suppress CD8 T cell
mediated lung injury.

However, when equal numbers of ICOS”™ Tregs were
transferred compared to wild-type Tregs, ICOS” Tregs were
able to prevent lethal lung injury. Our data suggest ICOS may
be required for Treg development but is not necessarily
required for Treg effector function in the lung.

Materials and Methods
Ethics Statement

All animal studies were done in concordance with principles
set forth by the Animal Welfare Act and the National Institutes
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of Health guidelines for the care and use of animals in
biomedical research. All experimental mouse protocols were
approved by the Institutional Animal Care and Use Committees
of the University of Chicago and Indiana University School of
Medicine.

Animals

C57BL/6 mice (4- to 6-wk-old) were purchased from the
National Cancer Institute (Frederick, MD), Harlan Laboratories
(Indianapolis, IN) or bred in house. B6.CC10-OVA (Thy1.2,
C57BL/6) mice were generated as previously described [32].
OT-l. Thy1.1 T cell receptor transgenic mice were a gift of Dr.
Yang-Xin Fu (University of Chicago). CC10-OVA mice were
crossed to B6.RAG-1" mice purchased from Jackson Labs
(Bar Harbor, ME to generate B6.CC10-OVA.RAG"mice. ICOS™"
mice), were backcrossed to C57BI/6 for greater than 10
generations or purchased from Jackson Labs (Bar Harbor,
ME). All mice were housed under specific pathogen-free
conditions in the animal care facility at University of Chicago or
Indiana University School of Medicine.

Activated OT-I T cell preparation

Preparation of OT-I CD8* CTL was modified from previously
published methods [32,33]. Cellular suspensions were
prepared from the spleen and lymph nodes of OT-l. Thy1.1
mice and cultured for 3 days with 1ug/ml OVA peptide antigen
(SIINFEKL), 1 pg/ml anti-CD28 (BioXcell), 25U/ml murine IL-2
(NIH), and 10 ng/ml recombinant mouse IL-12 (Invitrogen) in
10% FCS DMEM medium in 24-well plates. Cells were then
transferred to 75 ml flask and cultured with either 12.5U/ml IL-2
(low IL-2) or 25U/ml (high IL-2). OT-I CTL for transfer were
harvested 24 hours later.

Adoptive transfer and depletion experiments

Activated OT-I. Thy1.1 CTL were prepared as mentioned
above. Live cells were separated by centrifugation through a
ficoll gradient. Cells were washed and resuspended in PBS,
and the indicated numbers of cells were injected i.v. via the
retro-orbital venous plexus. Unfractionated lymphocytes
transfer: spleen and lymph nodes were harvested from C57BI/6
or ICOS™ mice to generate single cell suspensions. Cells were
washed, red cells lysed with ACK lysis buffer (spleen),
centrifuged through ficoll gradient to harvest live cells and
washed and resuspended in PBS. 50x10° single cells were
transferred via retro-orbital sinus 2 days prior to the
intravenous administration of activated OT-I T cells. CD4* T cell
depleted lymphocytes: C57BI/6 spleen and lymph nodes were
harvested and processed into single-cell suspensions. Cells
were incubated with anti-CD4 antibody (RL172.4) at 4°C for 1
hour followed by incubation with rabbit complement for 30
minutes at 37°C and recovery of non-CD4* T cells by ficoll.
Depletion was confirmed by flow cytometry and over 90% of
CD4* T cells were depleted. The CD4-depleted cells were
resuspended in PBS and 50x10° single cells were transferred
i.v. 2 days prior to the intravenous injection of OT-I T cells.
Alternatively, CD4* T cells were depleted using CD4 depletion
kit according to manufacturer’s instructions (Miltenyi Biotec).
Tregs were isolated from spleen and lymph node using the
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CD4*CD25* Regulatory T Cell Isolation Kit according to
manufacturer’'s instructions (Miltenyi Biotec). Tregs were
transferred i.v. along with ICOS" splenocytes or CD4-depleted
splenocytes two days prior to the transfer of OT-I T cells.
Neutrophil depletion: mice were injected i.p. 2 days before OT-I
transfer and 3 and 5 days after transfer with 300 pg anti-Ly6G
antibodies (1A8, BioXcell) or 300 ug isotype control antibody
(2A3, BioXcell). Mice were followed daily for morbidity and
were counted as a mortality if >20% weight loss was found.

Lung histology, digestions and bronchoalveolar lavage
(BAL)

Lungs were fixed in 10% formalin and embedded in paraffin
for H&E staining. Lung cell preparation has been previously
described [34]. Lung fragments were digested with 150u/ml
collagenase | for 30 min at 37° C and then gently pipetted for 1
min. Single-cell suspensions were stained for flow cytometry.
For BAL, lungs were lavaged with four consecutive washes
with 0.8 ml PBS, and 3 ml of pooled lavage fluid was
recovered. White cells were counted and stained with targeted
antibodies for flow cytometry.

Flow cytometry

Cell surface staining: cells from lung and BAL were
incubated with Fc block (2.4G2 antibody) and then stained with
APC-anti-CD3, APC-Cy7-anti-CD8, PE-anti-Gr1 (Ebioscience),
and PE-Cy7-anti-Thy1.1 (Biolegend) in FACS buffer (PBS
containing 2% BSA and 0.01% sodium azide) on ice for 30 min.
Neutrophils were identified by characteristic size by FSC and
Gr1f staining. Intracellular staining for Foxp3: staining was
conducted using the anti-Mouse/Rat Foxp3 Staining Set APC
according to the manufacturer's instructions, with some
modifications (eBioscience). Lung cells were washed after
incubation with FITC-anti-ICOS (from Biolegend), PerCp-
Cy5.5-anti-CD4, PE-anti-CD25, and resuspended in FoxP3
fixation/permeabilization buffer (eBioscience), and then
incubated for 10 min at 4° C, washed twice in FoxP3
permeabilization buffer (eBioscience), and stained with anti-
Foxp3-APC in Foxp3 permeabilization buffer for 1 h at 4° C.
Cells were then washed twice in Foxp3 permeabilization buffer
and resuspended in FACS buffer. Intracellular cytokine
staining: cells were incubated with PMA (20ng/ml) and
ionomycin (2 pg/ml) for 5 Hours and Brefeldin A (10ug/ml) was
added for the last 4 hours of culture. Cells were stained with
surface stains for CD8, Thy1.1 and CD3, fixed with 2% PFA
and then permeabilized with 0.1% saponin buffer and stained
intracellularly with anti-Interferon- y, anti-TNF-a or the
respective isotype controls. Cells were acquired with an LSR-II
flow cytometer (BD Biosciences) and analyzed with FlowJo
software (Tree Star, Ashland, OR).

Treg in vitro cytokine expression: ELISA and gRT-PCR

Spleen and lymph node were harvested from C57BL/6 ICOS **
and ICOS * mice, and Treg were separated using mouse
CD4*CD25* Regulatory T Cell Isolation Kit (Miltenyi Biotec). 4 x
10° cells were stimulated with 0.5ug/mL anti-CD3 and 100 U
IL-2 and cultured at 37° C for 72 hours [35]. Culture
supernatants were harvested and analyzed with Mouse IL-10
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ELISA MAX Standard Sets (BioLegend). For gqRT-PCR, RNA
was isolated from ex vivo and activated CD4*CD25* Treg using
RNeasy Mini Kit (Qiagen) and stored at -80° C. cDNA was
generated with qScript cDNA SuperMix, and qRT-PCR was
immediately performed using PerfeCTa™ SYBR Green
FastMix™, Low ROX™ (Quanta Biosciences) and the following

primers: (l110) 5- GGTTGCCAAGCCTTATCGGA-3, 5'-
ACCTGCTCCACTGCCTTGCT-3’; (TgfB1) 5-
TGACGTCACTGGAGTTGTACGG-3, 5-
GGTTCATGTCATGGATGGTGC-3; (Ebi3) 5-
AGCAGCAGCCTCCTAGCCT-3, 5-
ACGCCTTCCGGAGGGTC-3; (I12a) 5-
TGGCTACTAGAGAGACTTCTTCCACAA-3, 5-
GCACAGGGTCATCATCAAAGAC-3; and  (B-actin) 5
GGCTGTATTCCCCTCCATCG-3', 5-

CCAGTTGGTAACAATGCCATGT-3'. Relative quantification
(RQ) values were calculated relative to B-actin and presented
as fold change compared to ICOS** unstimulated samples.

Treg in vitro proliferation and survival analysis

Spleen and lymph node were harvested from C57BL/6 ICOS *'*
and ICOS " mice, and single-cell suspensions were
prepared. Cells were resuspended and labeled with 2 uM
CFSE (Sigma) for 10 minutes at room temperature. Labeled
cells were left unstimulated or stimulated with 0.01 pug/ml or 0.1
pg/ml anti-CD3¢ antibody (2C-11) for 72 hours in DMEM + 5%
FCS at 37° C. Cells were harvested and incubated with Fc
block (2.4G2 antibody). Dead cells were labeled using near-IR
LIVE/DEAD Fixable Dead Cell Stain Kit (Invitrogen). Cells were
stained with PerCP-Cy5.5-anti-CD4 (BioLegend); stained for
intracellular Foxp3 and analyzed by flow cytometry as outlined
above.

Statistical analysis

All data are expressed as mean and SEM unless otherwise
noted in the legend. Statistical significance was determined
using GraphPad Prism 5.0 as indicated in the legends.
Differences were considered significant at p < 0.05.

Results

CD8"* induced lethal lung injury is dependent on IL-2
levels during CD8 T cell differentiation

As previously shown, CC10-OVA mice adoptively transferred
with 5x10° activated OT-I CTL die within 6 days due to severe
lung injury, while transfer of a lower amount of OT-l cells
(1x10%) decreases mortality (Figure 1) [32,36]. As the mice
receiving 1x10% OT-I cells still had significant mortality with only
40% surviving, we wanted to develop a model where lung
injury was induced but the majority of mice survived. This
would allow us to dissect the mechanisms promoting and
controlling CTL-mediated injury in the lung. CD8 T cell effector
function and cytotoxicity have previously been shown to be
highly dependent on the amount of IL-2 available during
differentiation [37—40]. We found that decreasing the amount of
IL-2 in the OT-l cultures from 25U/ml (high IL-2) by half to
12.5U/ml (low IL-2) at the time of culture expansion on Day 3,
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significantly altered the lethality of the transferred OT-I.
Transfer of 5x10° OT-I cells cultured with low IL-2 resulted in
significantly decreased mortality compared to the 5x10° OT-I
cultured under high IL-2 conditions and transfer of 1x10° OT-I
cultured with low dose IL-2 did not induce death in any of the
mice. The lethality of CTL in this model was not only dependent
on the number of cells transferred but the level of IL-2 given to
the CTL at the time of culture expansion.

Acute lung inflammation mediated by activated
antigen-specific CD8* T cells recruits bystander T cells

While the CC10-OVA mice injected with 1x10° low dose IL-2
OT-I cells survived, an acute inflammatory response was still
evident in the lungs. There was an increase in the frequency of
T cells, neutrophils, and transferred OT-I T cells in the BAL and
lungs of CC10-OVA mice compared to B6 controls (Figure 1B,
1C). The immune response in the lungs of the CC10-OVA mice
was also marked by an increase in endogenous (Thy1.2) CD8*
and CD4* T cells (Figure 1B). The lungs of the CC10-OVA
mice compared to controls had moderate perivascular and
peribronchial inflammatory cell infiltration on day 4 (Figure 1D).
By Day 30 the inflammation had completely resolved (data not
shown). These data suggested neutrophils and lymphocytes
recruited to the lung were playing a role in the injury induced by
CD8* T cells. CD4*

T cells are required for the resolution of acute lung
inflammation

To test the hypothesis that lymphocytes recruited to the lung
were contributing to the inflammatory response in the CC10-
OVA mice, we bred the CC10-OVA mice to B6.RAG™ to
generate B6.CC10-OVA.RAG* (Thy1.2) and B6.RAG™
(littermate control, Thy1.2) mice. The requirement for bystander
lymphocytes to induce CD8-mediated lung injury was
investigated by transferring 1x10° activated OT-l. Thy1.1 T
cells (low IL-2) into CC10-OVA.RAG” mice or controls as
outlined in Figure 2. All of the CC10-OVA.RAG" (No Sp >
CC10.0VA.RAG™) mice died after OT-I transfer but none of the
control mice (No Sp > B6.RAG™) (Figure 2B). We expected that
the inflammation may be less in the absence of other
lymphocytes but instead the bystander lymphocytes recruited
to the lung were protective. One explanation for this finding
was that uncontrolled homeostatic proliferation contributed to
death. Previous work by Surh and colleagues suggested that
50x10¢ whole splenocytes diminish homeostatic proliferation in
RAG”" mice [41]. To prevent homeostatic proliferation and
determine the role of bystander Iymphocytes, 50x108
splenocytes from B6 (Thy1.2) mice were transferred two days
prior to transfer of activated OT-l. Thy1.1 T cells, see timeline
(Figure 2A). All CC10-OVA.Rag” mice given bulk B6 lymph
node/spleen cells (Sp > CC10.0VA.RAG™) survived for 30
days (Figure 2B). Perivascular and peribronchial inflammatory
cell infiltrates were found in the lungs similar to that seen in
CC10-OVA mice (Figure 2C). The BAL also had increased
numbers of total cells, CD3* T cells and neutrophils compared
to controls (Figure 2D). The cell counts were highest at Day 4
and decreased to the level of controls by Day 10. These data
were consistent with the day 10 lung pathology where few
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infiltrates remain. Complete resolution was found by Day 30
(Figure 2C). Lungs or airways from control B6.Rag” mice on
day 4 and day 30 did not have any significant cellular infiltration
(Figure 2C, 2D).

Given the increase in CD4* T cells in the B6.CC10-OVA
mice, we investigated whether CD4* T cells were playing a role
in the inflammatory response. CC10-OVA.RAG"- mice received
either bulk lymphocytes (combined lymph node/spleen) or
CD4-depleted lymphocytes two days prior to i.v. injection of
OT-l. Thy1.1 T cells. All CC10-OVA.RAG™ mice given CD4-
depleted splenocytes died within 8 days, while the majority of
the mice given bulk splenocytes survived (Figure 3A). These
data suggest that bystander CD4* T cells are necessary for
resolution of acute lung inflammation in our model.

Neutrophils are not required for CD8* T cells to induce
lethal lung injury

To determine the mechanism by which the CD4* T cells may
be regulating the inflammation in the lung we evaluated the
BAL on Day 4 at the peak of inflammation and before mortality
increased. In the absence of CD4* T cells there was a
significant increase in the percentage of OT-I T cells and a
trend toward increased neutrophils (Figure 3B). As expected in
the absence of CD4* T cells there were more Thy1.2 * CD8* T
cells than Thy1.2 * CD8 T cells (Figure 3B). While the
percentage of neutrophils was not significantly increased it was
still possible that neutrophils were contributing to the lethal lung
injury by persisting in the CC10-OVA.RAG" mice given OT-I T
cells alone or CD4-depleted lymphocytes. CD4* Treg have
previously been found to regulate neutrophil apoptosis in a
mouse model of LPS induced acute lung injury [42]. To test this
possibility we depleted neutrophils using anti-Ly6G (1A8)
antibody, known to specifically deplete neutrophils and not
monocytes [43—45]. In Figure 4A, we found that injection of
anti-Ly6G was sufficient to deplete neutrophils, defined as
Gr1t and also CD11b*Ly6G* (data not shown), in the lungs
and spleen compared to the isotype control antibody (2A3).
However, neutrophil depletion in the CC10-OVA.RAG” mice
given OT-I T cells did not protect the mice from death (Figure
4B). Neutrophils were not required for CD8-mediated lethal
lung injury in our model.

CD4*CD25*Foxp3* T cells in the lungs are ICOSHi

In B6.CC10-OVA mice we had found a significant increase in
CD4* T cells in the lungs and BAL after transfer of activated
OT-I T cells (Figure 1A, 1B). Previous work in this model has
found a role for CD4*'Foxp3* Tregs in regulating the
inflammatory response in the lung [36]. We also confirmed that
the percentage and number of CD4*Foxp3* Treg cells was
significantly higher in B6.CC10-OVA mice compared to control
B6 mice (Figure 5A and data not shown). Since our previous
work has shown a role for ICOS in CD4* Th2 effector function
and migration to the lungs and others have found that ICOS
expression regulates Treg function, we compared ICOS
expression to CD25 expression on Treg in the lung
[29,30,46,47]. We found that the frequency and absolute
numbers of ICOS HCD25" Tregs were significantly higher in
the lungs of CC10-OVA mice than wild-type mice (Figure 5 B,
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Figure 1. Acute lung inflammation induced by antigen-specific CD8* T cells cultured with low dose IL-2 resolves. CC10-
OVA. Thy1.2 transgenic mice or controls (B6.Thy1.2) were injected i.v. with the indicated numbers of activated OT-I. Thy1.1 T cells
expanded with either high dose IL-2 (25U/ml) or low dose IL-2 (12.5U/ml). (A) Survival was dependent on the number of OT-I
transferred and the dose of IL-2 given during culture. (B) The percentage of neutrophils (gated by size and Gr1t), CD3*Thy1.2* and
OT-Il. Thy1.1* T cells were measured in the BAL. (C) The numbers of cells in the lungs were measured on Day 4 after transfer of
OT-I T cells. (D) Lung histology 4 days after transfer demonstrates peribronchial and perivascular mononuclear infiltrates in CC10-
OVA mice compared to B6 mice; 7 um sections were stained with H and E, magnification, 10X. Unpaired t tests were used to
determine significance between controls (B6) and CC10-OVA mice, *p<0.05, **p<0.01, ***p<0.0001.

doi: 10.1371/journal.pone.0072955.g001
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Figure 2. Bystander lymphocytes are required to resolve lung injury mediated by OT-l. CC10-OVA.RAG" or B6.RAG™" mice
were given 1x10% OT-| activated in vitro with low dose IL-2 on Day 0. On Day -2, some animals received 5x107 lymph node (LN) and
spleen cells from B6 wild-type mice. Mice were sacrificed and lungs and BAL were analyzed at different time-points as indicated. (A)
Experimental plan is outlined. (B) CC10-OVA.RAG” mice that received only OT-I T cells died within 7 days (No sp > CC10-
OVA.RAG”). CC10-OVA.RAG™" mice that received LN/spleen cells 2 days prior to transfer of OT-l survived (Sp > CC10-
OVA.RAG™). Control mice were not affected (No Sp > B6.RAG™). (C) Lung tissue was harvested from CC10-OVA.RAG" given LN/
spleen cells prior to OT-I transfer and B6.RAG™ mice on days 4 and 30 after transfer of OT-I T cells. Sections (7 um) were stained
with H and E. Original magnification: 10X. (D) BAL from CC10-OVA.RAG™" mice given LN/spleen cells prior to OT-I transfer and
controls was harvested and analyzed on days 4, 6, and 10 after adoptive transfer of 1x10% OT-I T cells. Results are the mean +
SEM, CC10-OVA. RAG™ mice (n=3), B6.RAG™ (n=3) at each time-point.

doi: 10.1371/journal.pone.0072955.g002

C and data not shown). Further, the majority of Treg from found between the two groups. Thus, ICOS expression may be
CC10-OVA mice (~80%) expressed high levels of ICOS (Figure induced on Tregs in response to homeostatic proliferation
5C, D). In contrast, control B6 mice had on average ~40%
ICOS" Treg and Treg were either ICOSY or CD25" (Figure
5C,D). These data suggest that in response to inflammation in
the lung Treg are activated and as a consequence upregulate lung injury
ICOS along with CD25. Interestingly, when we evaluated ICOS ) . .

expression on CD4*Foxp3* Treg after transfer into B6.RAG™ ) Since ICOS was h'?“'y expressed on Tregs du.rllng the
controls or CC10-OVA.RAG* mice given activated OT-| inflammatory response in the lungs, we tested the ability of T
(schema in Figure 2), no difference in ICOS expression was cells from ICOS™ mice to inhibit lethal lung injury. Bulk

irrespective of inflammatory signals.

ICOS”- lymphocytes do not protect from CD8-mediated
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Figure 3. CD4* T cells are required to prevent lethal lung injury. CC10-OVA. RAG” mice were injected with LN/spleen cells or
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dependent on CD4* T cells. (B) Day 4 after OT-l transfer, frequency of BAL cells was measured in B6.RAG” compared to

CC10.0VA.RAG™ with or without CD4 depletion of LN/spleen cells.

doi: 10.1371/journal.pone.0072955.g003

splenocytes from ICOS” mice or wild-type B6 mice were
transferred into CC10-OVA.RAG™ mice prior to the transfer of
activated OT-I T cells as outlined in Figure 2. The majority of
mice that received ICOS” splenocytes died within 8 days and
all ICOS recipients were dead by 30 days (Figure 6A). On day
4 after OT-I transfer, the lungs from mice given WT or ICOS"-
cells prior to OT-I transfer had similar numbers of total cells
and there were no significant differences in the percentages of
neutrophils (Figure 6B and data not shown). In addition, there
were no differences in the frequency or number of CD4*,
CD4*Foxp3*, or OT-I. Thy1.1* T cells between the two groups.
There was a significant difference in the frequency of non-OT-
I.CD8 * Thy1.2* T cells in the absence of ICOS but the absolute
numbers of these cells was not different. There were also no
differences in the frequency of IFNy or TNFa producing OT-I T
cells or CD8'Thy1.2 cells. To determine if the defect in the
mice receiving ICOS™ splenocytes was specifically due to a
defect in Tregs, we transferred 5x10° or 1x10® CD4*CD25*

PLOS ONE | www.plosone.org

Tregs from wild-type mice along with ICOS” splenocytes.
Transfer of 1x10° wild-type Tregs but not 5x10° wild-type Tregs
was sufficient to prevent death and resolve the acute lung
inflammation with the majority of mice alive at 30 days (Figure
6A). These data suggested that ICOS™ Tregs were defective in
regulating CD8-mediated lung immunopathology.

ICOS™ Tregs have defects in IL-10 production and
proliferation

To further investigate the effect of ICOS deficiency on Tregs,
we compared expression of the regulatory cytokines IL-10,
IL-35, and TGF-B1 in unstimulated and stimulated ICOS** Treg
to ICOS” Treg. Treg have been found to utilize IL-10 and TGF-
1 to suppress dendritic cell and T cell function and high ICOS
expression has been associated with IL-10 producing Treg
[29,48]. IL-35, a novel heterodimeric cytokine comprised of the
IL-12a (p35) and EBV-induced gene product (EBI-3) subunits,
has also been associated with high ICOS expressing Treg in a

August 2013 | Volume 8 | Issue 8 | €72955



A
Lung Spleen
- |sotype
o, == Anti-Ly6G
L]
g 1
)
-
1 3
+ “"‘
- -
-
B T T |. T O e T "I.-
0 1Dﬁ 103 10 105 0 10 103 10 10
Gr1 Gr1

ICOS+ T Cells Promote Resolution of Lung Injury

120

—8—Anti-Ly6G

100
=l Isotype

=]
o

Survival (%)
[=2]
o

0 5 10
Days after OT- T cell transfer

Figure 4. Neutrophils are not required for lethal lung injury. CC10-OVA.RAG™" mice were injected with anti-Ly6G antibody or
isotype control antibody i.p. two days prior to transfer of OT-I T cells and on days 3 and 5 after OT-I transfer. (A) Anti-Ly6G antibody
(dotted line) specifically depleted neutrophils (Gr1t) cells in both the lung and spleen as demonstrated by the absence of the Gr1Hi
peak by histogram compared to isotype control treated mice (solid line). Gray histogram is negative control for Gr1 staining. (B) No
difference in mortality between anti-Ly6G treated animals and isotype control treated animals was found.

doi: 10.1371/journal.pone.0072955.g004

mouse model of airway hyperresponsiveness [49]. When
stimulated in vitro, ICOS* CD4*CD25* T cells expressed
significantly less //10 than ICOS** CD4*CD25* T cells (Figure
7A). However, no significant differences were observed in
expression of the subunits of IL-35, Ebi3 or lI12a, or Tgfb1,
suggesting ICOS* Treg have no defect in IL-35 or TGF-B1
expression (Figure 7A). In addition, ICOS” CD4*CD25* T cells
secreted significantly less IL-10 than ICOS** Treg (Figure 7B).
No differences were observed in ex vivo cytokine expression
levels between ICOS** and ICOS” CD4*CD25* T cells (Figure
7A).

While ICOS has been previously linked to IL-10 expression,
ICOS expression has also been associated with differences in
Treg proliferation and survival. Chen, et al. identified two sub-
populations of murine Treg: an ICOS" hyperproliferative subset
and an ICOS' death-prone subset [50]. These results
suggested ICOS”- Tregs may have defects in proliferation and
survival. We compared the proliferative capacity and
susceptibility to death in vitro of CD4*Foxp3* Tregs from ICOS
** to ICOS” mice. We found a slight decrease in proliferative
capacity with ICOS” Tregs (Figure 7C). This defect was
specific to ICOS” CD4*Foxp3* Treg and was not observed in
ICOS" CD4*Foxp3- conventional T cells (data not shown).
There was no defect in survival of CD4*Foxp3* Treg from
ICOS” mice compared to wild-type (Figure 7D). Taken
together, these results suggest that ICOS expression is
important for the proliferation potential, but not survival, of
Treg.

No defect of ICOS”- CD4*CD25* Treg in vivo when
directly compared with wild-type Treg

While our data suggested that ICOS” CD4*CD25* Tregs
have a defect in vivo and in vitro, one possibility for our in vivo
findings was that ICOS” mice have less Tregs than wild-type

PLOS ONE | www.plosone.org

mice [28,51]. In our experiments with transferring bulk lymph
node and splenocytes, we estimated that 5x10° Treg were
being transferred. However, in Figure 6, we found that ICOS**
5x10% CD4*CD25* Treg were not sufficient to protect the mice
receiving ICOS” lymphocytes while 1x108 Treg did protect. To
directly compare equal numbers of ICOS** and ICOS™ Treg in
vivo in our model in the absence of other CD4* Treg, 1x10°
CD4*CD25* Treg from ICOS** or ICOS mice were transferred
along with CD4-depleted lymphocytes from wild-type mice into
CC10-OVA.RAG™ mice 2 days prior to the transfer of activated
OT-l. These mice were compared to mice that received only
CD4-depleted splenocytes. As found in Figure 3, CD4-depleted
splenocytes were not protective from lethal lung injury (Figure
8). Contrary to expectations, we did not find a difference in
survival between mice that received ICOS** or ICOS” Treg.
There were no differences in the time to maximum weight loss
or the overall weight loss in the animals that survived in either
group (data not shown). These data suggest that ICOS*
CD4*CD25* Treg can protect from lethal lung injury when
sufficient numbers are transferred.

Discussion

In a model of lung rejection, we have found that mice given a
low dose of activated antigen-specific CD8" T cells have
reproducible lung inflammation that requires bystander
lymphocytes to express ICOS for resolution of lung
inflammation. In the absence of exogenous lymphocytes,
CC10-OVA.RAG™" mice succumbed to lethal lung rejection from
activated OT-I T cells. CD4* T cells were required for resolution
and ICOS” lymphocytes were not sufficient to protect the
CC10.0VA.RAG™ mice from the lethal lung injury. Wild-type
Tregs were sufficient to rescue this defect. Tregs from ICOS™
mice had defects in proliferation and IL-10 expression and
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doi: 10.1371/journal.pone.0072955.g006

protein in vitro. However, adoptive transfer of ICOS* Tregs
directly compared to the same number of ICOS** Tregs found
no differences in the ability to protect from lethal lung injury.
Our data suggest ICOS regulates the development of Tregs,
but ICOS is not required for Treg effector function in our model.

Our work extends previous work in this model demonstrating
that the balance between effector T cells (Teff) and Treg
regulate protection from lethal lung injury in B6.CC10-OVA
mice [36]. In addition, to differences in the numbers of Teff
promoting lethal lung inflammation we found that modulating
IL-2 levels during CTL differentiation affected the lethality of
CTL in inducing lung injury. These data are consistent with
studies demonstrating the role of IL-2 in augmenting CD8
effector function and cytotoxicity through increasing the

PLOS ONE | www.plosone.org

10

transcription factor, eomesodermin (Eomes), and repressing
BCL6 [39]. Thus the quantity of CTL and the quality of their
effector functions determine the outcome of injury. As
previously reported, the quantity of Tregs transferred affected
their ability to prevent lethal lung inflammation [36]. Therapies
that expand Tregs while downregulating the activation and
trafficking of Teff may prevent acute rejection.

Our findings support the role of ICOS in Treg development,
but do not confirm a role for ICOS in natural Treg effector
function. This is despite the fact that Tregs from B6.CC10-OVA
mice with lung rejection expressed high levels of ICOS and
ICOS** Treg, when present in sufficient numbers, were able to
prevent death in mice that received ICOS-deficient bystander
lymphocytes. These data suggested that ICOS would be
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doi: 10.1371/journal.pone.0072955.g007

essential for Tregs to suppress lethal lung injury and were
consistent with previous studies using ICOS™ mice [48,51]. In
contrast to expectations, we found that mice that received
equal numbers of ICOS” Tregs compared to wild-type Tregs
did not succumb to lethal lung injury. Our data suggest that the
deficiency found with bystander ICOS” lymphocytes may be
related to a defect in Treg development and the numbers of
Treg, rather than a defect in their effector function in vivo in this
model. This would be consistent with findings in a previous
study that ICOS™ mice could develop functional CD4* Treg in a
model of tolerance [52].

Alternatively, bystander ICOS” lymphocytes may be
contributing to the lung injury. There was a significant increase
in the frequency of CD8'Thy1.2* T cells in mice that received
ICOS lymphocytes compared to mice that received wild-type
lymphocytes, but there was no difference in the absolute
number of these cells. Further, no differences were detected in

PLOS ONE | www.plosone.org 11

the frequency of ICOS*CD8*Thy1.2* T cells producing TNFa,
the major cytokine produced by these cells, or IFNy, which only
a few of these cells produced. There were very low numbers of
dual producers. In addition, at the peak of inflammation, no
differences were found in the expansion of the OT-I T cells in
mice that received ICOS" lymphocytes compared to mice that
received wild-type lymphocytes. Thus, we did not find
conclusive evidence of augmented responses in vivo from the
bystander ICOS-deficient T cells or the transferred CTL to
suggest ICOS™* lymphocytes were contributing to the lung
injury. Another possibility is that Tregs function via other
lymphocytes which are defective in ICOS” mice, which has
been suggested by others [52]. However, we found that ICOS**
Tregs were effective in controlling inflammation in the presence
of ICOS” lymphocytes which would make this possibility less
likely. More studies are needed to determine the contribution of
ICOS™ lymphocytes to the lung injury in our model.
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The differences between ICOS"* and ICOS'" Tregs have
been of interest in the literature and several groups have
shown in both humans and mice differences in cytokine
production and proliferation between these two subsets of
Tregs [29,30,48,53]. Human ICOS* Tregs produced higher
levels of IL-10 and TGF than Tregs with low ICOS expression
ex vivo and similar results were found in a mouse model of
contact hypersensitivity [29,30]. Recent work has also
associated IL-35 production with high ICOS expression on wild-
type Treg [49]. In addition, ICOS expression was associated
with a higher proliferative and survival capacity of Treg in vitro
[50]. We investigated whether ICOS deficiency would affect
cytokine expression, proliferation and survival of Treg in vitro.
Consistent with previous studies we found that ICOS* Treg
had decreased IL-10 mRNA and protein after in vitro
stimulation compared to ICOS** Treg [51,53,54]. However, we
did not find evidence of a likely defect in IL-35. In addition, we
found a minimal defect in proliferation in vitro for ICOS” Treg
compared to ICOS** Treg and no defects in survival. These
data suggest that high ICOS expression may distinguish a
subset of Tregs in wild-type mice, but ICOS is not necessary
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