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Abstract: Soil heavy metal pollution is frequent around areas with a high concentration of heavy
industry enterprises. The integration of geostatistical and chemometric methods has been used to
identify sources and the spatial patterns of soil heavy metals. Taking a county in southwestern China
as an example, two subregions were analyzed. Subregion R1 mainly contained nonferrous mining,
and subregion R2 was affected by smelting. Two factors (R1F1 and R1F2) associated with industry
in R1 were extracted through positive matrix factorization (PMF) to obtain contributions to the soil
As (64.62%), Cd (77.77%), Cu (53.10%), Pb (75.76%), Zn (59.59%), and Sb (32.66%); two factors (R2F1
and R2F2) also related to industry in R2 were extracted to obtain contributions to the As (53.35%),
Cd (32.99%), Cu (53.10%), Pb (56.08%), Zn (67.61%), and Sb (42.79%). Combined with PMF results,
cokriging (CK) was applied, and the z-score and root-mean square error were reduced by 11.04% on
average due to the homology of heavy metals. Furthermore, a prevention distance of approximately
1800 m for the industries of concern was proposed based on locally weighted regression (LWR). It is
concluded that it is necessary to define subregions for apportionment in area with different industries,
and CK and LWR analyses could be used to analyze prevention distance.

Keywords: heavy metals; industries of concern; source apportionment; spatial patterns; prevention distance

1. Introduction

With the rapid development of the global economy, industrialization is intensifying,
and cities are expanding. Heavy metals in industrial waste have affected the surrounding
soil, making it easier for heavy metal concentrations to reach high levels of toxicity [1].
Heavy metal pollutants do not degrade easily, have poor mobility, and easily accumulate.
Additionally, mining and smelting operations play a critical role in the accumulation of
heavy metals in local soils, especially in areas with resource-dependent economies. For
example, the mining of polymetallic ores provides not only the targeted metals but also vast
amounts of by-products, such as tin and copper associated with sulfide ore [2]. The areas
affected by mining are always seriously polluted by heavy metals, which are emitted from
the mining waste and tailings and are transported by runoff and human activities [1,3].
The concern is that the mining sites, tailings, and associated equipment could be pollution
sources for a long time [4]. In addition, emissions from smelting may be distributed widely
via atmospheric deposition, and this is especially true for metals such as As, Cd, and Pb,
which can form into oxides and condense into particulates at high temperature [5].

Identification and quantitation of the sources of pollutants in soils are critical for
risk assessments and the development of reclamation strategies. The apportionment of
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pollution sources began with atmospheric particulates, and the technical system consisted
of an emission inventory, mass diffusion model, and receptor model [6–9]. The main
objects of the apportionment for soil pollution sources are heavy metals and some organic
matter (e.g., polycyclic aromatic hydrocarbons, PAHs), which are always widespread and
do not easily degrade [10,11]. Receptor models have been the primary method because
of the uncertainty of emissions inventory information and the complexity of mass dif-
fusion models [9,12–14]. Currently, many studies have estimated the spatial patterns of
source factors extracted from receptor models to increase the credibility of pollution source
identification [13,15]. When using receptor models, few studies have paid attention to
spatial variations in the pollution sources, e.g., the areas that have a higher density of key
industries that emit pollution.

In China, investigations of the soil environment around enterprises in key industries
have been conducted [16]. Due to a literal misunderstanding, the key industries were
named as the industries concerned in these studies. At the beginning of the survey, risk
screening was carried out through attribute scores of large-scale areas [17,18], but the
soil environment around the industries of concern should be investigated before health
risk assessments of contaminated sites are conducted to provide suggestions about the
spatial patterns of the environmental protection and the priority pollutants on the county
level, which is also the target scale in this study. The study area is a remote region with
predominantly silver and copper mining in the early stage. However, after the 1840s,
it became a strategic area for tin, lead, and zinc mining and smelting. These mineral
resources have been gradually exhausted since the 1990s, but historic mining has been
inseparable from the local businesses and the livelihoods of the residents, so determination
of a sustainable development scheme for this region has become a critical issue. Most
environmental surveys and studies of this area have paid attention to the issues of soil
heavy metal pollution, which mainly originates from mining and smelting activities [19–21].
In addition to tin, multiple minerals occur in the study area, including copper, lead, and
zinc ores. Some of the mineral deposits are distributed within the tin mineralization zone,
while others are distributed outside of this zone. The characteristics of soil heavy metal
pollution in polymetallic mining area can help to distinguish the contribution of major
industrial pollution sources and give the protection distance of soil heavy metal pollution
of main industrial land in this area through its spatial distribution with enterprise land.

Specifically, the main objectives of this study are as follows: (i) to explore the relation-
ship between the soil heavy metals and the spatial distribution of the pollution sources from
industries of concern; (ii) to extract the factors of the soil heavy metals through positive
matrix factorization (PMF) to estimate the contributions of the industries of concern; and
(iii) to determine the spatial patterns of the heavy metals originating from certain factors
through cokriging (CK), which makes use of the homology of heavy metals to improve
the accuracy of the assessment, so as to determine the variations in the heavy metals with
distance from the nearest source through locally weighted regression (LWR).

2. Materials and Methods
2.1. Study Area and Investigation of Pollution Sources

The study area (102◦54′–103◦25′ E; 23◦01′–23◦36′ N) contained more than 400 key
enterprises and consists of five towns, with a total area of 992.05 km2, which are in a
supergiant tin polymetallic district located along the suture zone of the Indian and Eurasian
plates on the southwestern edge of the China sub-plate. This area has a subtropical
mountain monsoon climate, with an annual average temperature of 15.9 ◦C and an annual
rainfall of 1292.8 mm. The parent materials of the area are very complex, which is mainly
composed of limestone and minor dolomite, and the main soil types are yellow-brown and
red soils.

Using a combination of remote sensing and historical business information, a field
survey of the pollution sources related to the nonferrous metal industry was conducted,
and five types of sources were confirmed and vectorized, which provided their spatial
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positions and areas (Table S1). The results of the field survey revealed that 3000 ha of
land may have been the source of the soil pollution in subregion 1 (R1). Mining had led
to destruction of the landscape, and tailings (i.e., large particles that settle at the bottom
of the flotation tank), which are of lower economic value, were directly discarded in a
natural depression during a time when environmental protection was not of great concern.
Additionally, in subregion 2 (R2), 935 ha of land could be a potential source of soil pollution,
and this land was mainly covered by slag produced by lead and zinc smelting.

2.2. Sample Collection and Chemical Analysis

The collection and analysis of 230 samples were completed in 2018, and the database
used in this study also incorporated the results of geochemical surveys conducted in 2013
and 2015 (390 samples). In R1 and R2, 389 and 231 samples were collected and analyzed,
respectively. All surveys were conducted using the same sampling and geochemical
analysis methods, and the soil samples were collected according to the distribution of
the different land use (dry land, n = 412; paddy land, n = 123; garden plot, n = 85). Each
composite sample (1 kg) was composed of five subsamples collected at the central point and
four additional points within an area of 5 m2. The 3S technique was used for the sampling
conducted around the mining area, industrial plants, mining waste heaps, smelting slag
heaps, and tailings ponds. In addition, several samples were collected away from the
pollution sources to study the pollution from atmospheric deposition and surface runoff.
Moreover, the sampling density around the sources was four samples per square kilometer
(Figure 1).
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Figure 1. Land used for mining and smelting and the sampling sites in the study area.

Upon receipt, the samples were dried in a lyophilizer and sieved (2 mm mesh), and
then, the stones, litter, and roots were removed. The total major element contents (K, Ca,
Mn, and Fe) of the samples were analyzed using an X-ray fluorescence spectrometer (Niton
FXL analyzer, Thermo-Fisher Scientific, Waltham, MA, USA) [22]. Then, the samples were
digested in HNO3 and H2O2 using method 3050B (USEPA, 1996). The total As concentration
was analyzed using atomic fluorescence spectroscopy (AFS-9800, Haiguang Instrument
Co., Beijing, China), and the Cd concentration was analyzed using graphite furnace atomic
absorption spectrometry (contrAA700, Analytikjena, Jena, Germany). The other minor
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elements were measured using inductively coupled plasma optical emission spectrometry
(Optima 5300DV, PerkinElmer, Boston, MA, USA). The detection limits of As, Cd, Cu, Cr, Ni,
Pb, Sb, and Zn were 0.10, 0.05, 0.10, 0.10, 0.05, 0.10, 0.05, and 0.50 mg/kg, respectively. For
quality control, blanks control, sample replicates (20%), and standard reference materials
(GSS-5/GBW07405) were included in each batch of sample digestion and chemical analysis.
And the relative standard deviations were less than 5%.

2.3. Methodology
2.3.1. Exploratory Analysis

Identification of soil heavy metal sources on the regional scale (i.e., up to 1000 km2,
almost the area of a county) using receptor models is difficult because of the heterogeneity
of the parent materials of the soil and the high variability of anthropogenic activities.
Thus, in this study, the entire region was partitioned using the spatial distribution of the
pollution sources based on the enterprise land survey and the collection of data on the
environmental factors. Moreover, this idea could help deal with the rotation ambiguity
(i.e., different results obtained via PMF may generate similar model fitting) by decreasing
the number of columns in the factor contribution matrix and the number of rows in the
factor profile matrix.

After this, correlation analysis was conducted on the concentrations of the elements
in the samples and the environmental factors. Because of the heavy rainfall in the study
area, surface runoff and soil water flow must affect the spatial distribution of soil heavy
metals, and water flow is closely related to topographic characteristics. Elevation (EL)
directly reflects topographic features, while humidity index (HI) quantifies topographic
control over basic hydrological processes. EL and HI were obtained via digital elevation
model (DEM) data processing. DEM data came from a geospatial data cloud platform
(https://www.gscloud.cn/, accessed on 8 July 2021), with a resolution of 30 m. The ELs of
the samples were obtained directly using a spatial overlay, while the HI was determined
from the topographic HI [23]:

HIi = ln(ai/tanβi), (1)

where HIi represents the humidity index at surface point i; ai represents the specific
catchment area, i.e., the contributing upslope area per unit width of the contour; and βi is
the gradient at point i.

The other environmental factors considered were distance (Dist) and direction (Dir)
from the nearest pollution source, which were estimated using the Near tool in ArcGIS
version 10.4.1 (Esri, Redlands, CA, USA).

2.3.2. Source Apportionment via PMF Model

Similar to principal component analysis, PMF is a typical analytical factoring technique,
which is based on the study of Paatero and Tapper [24,25]. In this study, the PMF 5.0
program was used to conduct the source apportionment of the soil heavy metals. The
receptor sites were defined as the matrix relationship of a two-dimensional factor analytic
with a residue matrix,

X = GF + E, (2)

or in the component form,

xij =
K

∑
k = 1

gik fkj + eij, (3)

where xij represents the measured sample concentration, gik represents the contribution of
the kth factor for the ith sample, fkj represents the composition of the jth element within
the kth factor, and eij is the residual error.

https://www.gscloud.cn/
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Matrix G and matrix F were approximated using the PMF model to minimize the
objective function Q under the constraint of non-negative contributions, which relies on
more physically significant assumptions than other factor analysis methods [25].

Q =
n

∑
i = 1

m

∑
j = 1

(
eij

uij
)

2
, (4)

where uij represents the uncertainty of the jth chemical element for sample i.

2.3.3. Spatial Pattern Analysis

Once contents of the heavy metals, which originated from industries of concern, were
confirmed approximately through the above-described processes, these data were used
to estimate the heavy metals of critical concern on a 200 m interval grid across the study
area. Multivariable CK was chosen because homologous heavy metals could help each
other to improve the accuracy through this method [26,27], and the estimation function
was as follows:

Z∗(x) =
n

∑
i = 1

Z(xi)Γi, (5)

where x1, · · · , xn represent the locations of the samples, and Z1(x), · · · , Zm(x) represent
the values of the multivariates at location x. Γi represents the weighted vector. To determine
Γi, an unbiased estimation was made with the smallest variance of error. Furthermore, by
introducing Lagrangian multipliers and determining the derivation of Γi, linear equations
were derived with semi-variogram and cross-variogram functions [28]. The semi-variogram
was obtained by fitting the models, including Matérn, spherical, exponential, and power
function models, while the cross-variogram functions were calculated as follows:

γij(h) =
1
2

[
γ+

ij (h)− γii(h)− γjj(h)
]
, (6)

where γii(h) represents semi-variogram of the ith variate Zi(x), γij(h) represents the cross-
variogram between the ith and jth variates, and γ+

ij (h) represents the semi-variogram of

Z+
ij (x), which is equivalent to Zi(x) + Zj(x).

It must be emphasized that the auxiliary variables used in this study not only have
a significant correlation, but they also have the same origin as the heavy metals from the
mining and smelting sources, which increases the accuracy of the spatial prediction and
provides a good foundation for the subsequent analysis using the environmental factors. In
order to measure the error, the method of Zhang and Wang (2009) [29] and cross-validation
were used depending on the predictions and variances of the predictions derived from the
remaining observations. The predictive accuracy scores were calculated as follows:

zi =
Z(xi)− Ẑ−i(xi)

σ−i
, (7)

where Z(xi) represents the observation made at location xi for i = 1, · · · , n; and Ẑ−i(xi) is
the drop-one prediction based on all of the data Z

(
xj
)

for j 6= i. σ−i is the corresponding
standard deviation. Then, the mean of zi becomes the z-score for the first index for evaluat-
ing the error conditions. Another predictive score is the root mean square error (RMSE):

RMSE =

[
1
n

n

∑
i−1

(
Z(xi)− Ẑ−i(xi)

)2
]1/2

, (8)

The RMSE should be as low as possible value, while the z-score should be close to 0.
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Then, in this study, the heavy metals from the industries of concern were analyzed
based on the environmental factor, i.e., the distances to the nearest pollution sources. The
LWR method was used [30], and the target equation was minimized as follows:

∑ ω(i)(yi − θTx(i))
2
, (9)

where ω(i) = exp(− (x(i)−x)
2

2τ2 ), which is the weight based on the degree of proximity to

the predicted point. If the value of
∣∣∣x(i) − x

∣∣∣ is very small, ω(i) ≈ 1; while for a very large

value, ω(i) ≈ 0. τ indicates the rate of decrease with the degree of proximity. Finally, this
regression method was used to analyze the variations in the heavy metal contents with
distance from the nearest source, and two-dimensional fitting lines for the 95% confidence
interval were obtained.

3. Results
3.1. Descriptive Statistic and Analysis of Variance Analysis of Samples

The descriptive statistics of the topsoil heavy metals in the two subregions are pre-
sented in Table 1. Higher heavy metal concentrations were observed in R1, including higher
As (108.61%), Ni (123.47%), Cr (114.66%), Sb (164.03%), and Cu (116.80%) levels than those
in R2; while the Cd, Pb, and Zn concentrations in the two subregions were similar. The
coefficients of variation (CVs) of the two regions for As were significantly different than
those of the other heavy metals, which may indicate that As and Cu concentrations in the
two subregions have different spatial variabilities. Furthermore, the CVs of Cd, Pb, and Sb
were all high (>50%), indicating that extrinsic factors strongly affected the enrichment of
these heavy metals. Additionally, with the exceptions of Sb, Cr, and Ni, soil heavy metals
of the different land use greatly surpassed risk screening values [31,32], indicating that As,
Cd, Pb, Zn, and Cu may pose a threat to human and plants (Table S2). Specifically, 92.32%,
100%, 80.12%, 62.54%, and 82.67% of the dry land soil samples surpassed the risk screening
values for As, Cd, Pb, Zn, and Cu. For paddy land, As (97.14%), Cd (100%), Pb (72.14%), Zn
(45.23%), and Cu (87.55%) exceeded their corresponding risk screening values. In garden
plot samples, As (82.22%), Cd (100%), Pb (74.58%), Zn (49.34%), and Cu (70.52%) exceeded
risk screening values.

Table 1. Descriptive statistics of the soil heavy metals.

Subregion Element Minimum Maximum Mean SD CV(%)

Subregion 1
(R1) (n = 389)

As (mg kg−1) 94.8 633.9 233.14 92.87 39.83
Cd (mg kg−1) 1.33 11.24 2.77 1.4 50.51
Pb (mg kg−1) 30.4 1236.4 322.46 183.5 56.91
Zn (mg kg−1) 176.3 1134.5 503.72 139.06 27.61
Ni (mg kg−1) 30.76 294.63 113.66 46.7 41.09
Cr (mg kg−1) 14.86 463.4 154.57 70.68 45.73
Sb (mg kg−1) 2.31 48.4 9.9 6.5 65.66
Cu (mg kg−1) 119.42 897.05 277.29 119.62 43.14

pH 5.42 8.06 6.52 1.3 19.94

Subregion 1
(R1) (n = 231)

As (mg kg−1) 18.8 538.2 214.65 131.41 61.22
Cd (mg kg−1) 0.92 9.3 3.04 1.77 58.32
Pb (mg kg−1) 161.34 1353.3 333.31 198.14 59.45
Zn (mg kg−1) 348.7 1018.7 528.8 153.79 29.08
Ni (mg kg−1) 32.41 220.9 92.05 40.58 44.08
Cr (mg kg−1) 47.1 356.9 134.81 66.12 49.05
Sb (mg kg−1) 0.27 19.18 6.04 5.08 84.19
Cu (mg kg−1) 28.32 715.57 237.41 178.23 75.07

pH 5.13 7.92 6.32 1.1 17.41
SD, standard deviation; CV, coefficient of variation.
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An overview of the exploratory analysis dealing with the correlations between the
elements and the environmental factors in R1 and R2 are presented in Tables S3 and S4.
The Pearson’s correlation coefficients between the soil heavy metals, major elements (K,
Ca, Mn, and Fe), and environmental factors (Dist, HI, and EL) for the samples from the
two subregions were calculated (Table S3). In R1, the correlations between As, Cd, Pb,
Zn, and Cu were all significant (p < 0.01) moderately or strong positive (Table S5), and Sb
was moderately correlated with As and Cd. Dist exhibited low negative correlations with
Pb, Zn, and Cu. The other correlations between the environmental factors and soil heavy
metals were negligible. In R2, Pb was strongly positively correlated with Zn, while As was
strongly positively correlated with Cd, Cu, and Sb. Similarly, Dist was slightly negatively
correlated with Pb, Zn, and Cd, while the other correlations were negligible. In both R1
and R2, the major elements K, Mn, and Fe all exhibited at least moderate correlations, but
Ca performed differently, which may be due to the different geological environments. Next,
analysis of variance (ANOVA) [33] was applied to examine the differences in the soil heavy
metal contents in different directions from the nearest pollution sources (Table S4). The
ANOVA results revealed that the number of differences between the means (p < 0.05) was
always larger toward the south. For example, in R1, all of the means of the heavy metal
contents in the samples whose nearest sources were located to the south were larger than
those whose nearest sources were located to the west, and significant differences were
identified for six heavy metals. Generally, samples with pollution sources located to the
south always had positive significant differences compared with the other directions.

3.2. Source Identification

The receptor data for the two subregions, including eight heavy metals and four major
elements, were used as the input data for the PMF. Originally, various trials with different
numbers of factors were conducted, and the results revealed that a small number of factors
(i.e., three or four factors) resulted in poor fitting, while six factors were excessive because
the samples were mainly located within reach of the pollution sources, which was also
indicated by the loss function’s Q value. Thus, the results for the two subregions using
five factors both provided a reasonable interpretation with good fitting (i.e., R2 for heavy
metals ≥ 0.50) and consistency with the field survey. As was previously mentioned, the
model dealt with the rotational ambiguity by exploring different values of the rotational
parameter Fpeak (between −1 and +1, step = 0.1), and −0.5 was adopted for R1, while no
change was adopted for R2. The contributions are presented in Figure 2.

3.2.1. Factors Related to the Industries of Particular Concern

The industries of particular concern in this study were nonferrous metal mining and
smelting, which were also the focus of the field survey. The factors were categorized into
two groups: related to industries of concern and others (Figure 2). The main categorization
rule was the pollution characteristics of the soil heavy metals, including As, Cd, Cu, Pb,
Zn, and Sb, which have been reported in previous studies [19–21]. In R1, factor 1 (R1F1)
mainly explained the Pb (69.55%) and Zn (44.02%), and it also made moderate contributions
(approximately 20%) to Cr, Ni, As, Cd, and Cu, indicating that it may be a key contamination
source for the study area. Factor 2 (R1F2) exhibited the same characteristics and made large
contributions to Cd (61.92%), As (47.82%), Cu (36.77%), and Sb (27.92%). Furthermore,
R1F2 was determined to be robust because it was almost unaffected by the rotations in
many trials. In R2, R2F1 predominantly contributed to the Pb (41.84%) and Zn (39.46%),
but it also contributed to the (24.91%) and As (22.12%). R2F2 contributed to the As, Cd,
Pb, Zn, and Ni, with at least 28% contributions for each metal, which demonstrates that it
was very likely a contamination source related to smelting. Therefore, the above factors
contributed greatly to the As, Cd, Cu, Pb, Zn, and Sb, which were the main pollutants in
the study area. The specific judgment will be discussed in the next section.
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3.2.2. Other Factors

First of all, R1F3 and R2F3 deserve more attention because they are both very conspicu-
ous, with large contributions to the major elements (K, Mn, Fe, and Ca). It is almost certain
that R1F3 and R2F3 come from the weathering of local minerals. They also make moderate
contributions to some of the heavy metals due to the high background values in the study
area. In addition, some of the samples were collected from farmland and gardens, so R1F4
and R2F4 could be related to agricultural activity. The chemical plants, which were part of
the industry chains of the local mining and smelting, may be related to R1F5 and R2F5.

3.3. Spatial Pattern of Key Heavy Metals Related to Industries of Concern

In this section, only the heavy metals originating from factors related to the industries
of particular concern, i.e., nonferrous industry, are discussed. Based on their contents, the
spatial distributions of the affected areas were estimated on a 200 m interval grid. The
CK method was used to build models for auto-variograms and cross-variograms, which
were found to have exponential forms in this study (Figure S1). Then, based on the spatial
distributions of the heavy metals (Figure 3), the variation trends of the heavy metals with
distance from the nearest source were analyzed, and two-dimensional fitting lines for the
95% confidence interval were obtained (Figure 4).
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In order to determine the effective auxiliary variables for CK analysis of each heavy
metal, the error conditions were tested through numerous trials (Table 2), and the variogram
models were constructed to identify the homogeneous characteristics (Figure S1). As can be
seen from Table 2, all RMSEs of the CK results are less than those of Universal Kriging (UK).
The z-scores of the CK results are closer to 0 except for the CK for Cu. Figure 3 shows that
the heavy metal concentrations around the study area all severely exceed the background
levels (Table S5) due to the presence of nonferrous industry enterprises. However, the
spatial distribution patterns of these elements were different. Before estimating the spatial
distribution, the area with a small sampling density was excluded. The results revealed that
the spatial patterns of the effects of the pollution sources were different in R1 and R2. In R1,
the soil Cu and Sb contents were high, while the As, Cd, Pb, and Zn all exhibited spatial
patterns consistent with the pollution sources in the two subregions. Soil As pollution was
high in the entire area, and the high-value areas were consistent with the source distribution,
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especially in the region with clusters of smelters in the north. The excess degree of Cd was
the highest, and the value in the highest value area exceeds the background value by more
than 40 times. Heavy Pb and Zn pollution were observed in both R1 and R2, with values
approximately 10 times higher than the background values. Heavy Cu and Sb pollution
were observed in R1 but were not detected in R2.
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Figure 4 shows the variations in the heavy metals with distance from the nearest
source, and the contents decrease with increasing distance. In Figure 4a, the trend flattens
from 1800 m to 2500 m. However, the decreasing trends of the other heavy metals did not
flatten, and the changing nodes are denoted by red crosses in Figure 4. When the distance
is greater than the distance of the change node, the heavy metal contents decreased more
slowly, and the uncertainty increased. The changing nodes of As and Cd were both located
at approximately 1800 m, while those of Cu, Pb, Zn, and Sb were all located between 1000 m
and 1500 m.
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Table 2. Cross-validation results for cokriging and universal kriging.

Title 1 As Cd Cu

entry 1 CK with Cd
and Cu UK CK with As UK CK with Sb UK

z-score 7.57 × 10−4 1.74 × 10−3 6.77 × 10−3 7.09 × 10−3 5.25 × 10−3 4.54 × 10−3

RMSE (mg/kg) 79.74 83.38 0.95 1.01 50.51 53.55

entry 2
Pb Zn Sb

CK with Zn UK CK with Pb UK UK with Cu UK

z-score 1.05 × 10−2 1.08 × 10−2 1.30 × 10−2 1.35 × 10−2 −1.25 × 10−3 −1.46 × 10−3

RMSE (mg/kg) 90.42 102.19 113.18 127.22 1.39 1.48

4. Discussion

This integrated approach provides a method of apportioning the contributions of
industries of concern to soil heavy metals and of estimating the spatial patterns. The
information obtained can be used to develop suggestions for the prevention and control of
pollution around polluted industrial land. Several studies have been performed on source
apportionment and geostatistics [34–36], focusing on clarifying the sources. However, this
study emphasizes the characteristics of the soil pollution around industries of concern by
extracting certain factors via PMF and estimating the spatial distributions using CK with
the homology of the elements.

In the field survey and soil sampling, the object of the study is the soil within a distance
of 5 km around the industries of concern. With regard to the public information about the
protective distance of the soil environment from polluting enterprises [37], it is suggested
that the scope of influence of nonferrous industries is within 5 km, and some studies [38,39]
have also collected samples within 4 km or 5 km. Through exploratory analysis, it was
found that the soil pollution to the north of the pollution sources is more serious, which
can be explained by the fact that the dominant wind is from the south. In addition, the Dist
exhibited a low correlation with Pb, Zn, and Cu, and the correlation with the other heavy
metals is negligible. Therefore, further research is needed to determine the trend based on
a receptor model and regression analysis.

Apportionment of soil pollution sources, which clarifies all of the potential sources,
requires uniform sampling of the entire area [40–42], but in this study, only the sources
related to mining and smelting are considered. Therefore, we provide a brief discussion of
the other factors, which mainly depend on the characteristics of the major elements and the
land-use types of the sampling locations. As was previously stated, the main migration
pathways in R1 were likely dry and wet deposition from mining and concentration and
surface runoff from the tailings. Furthermore, the pollution related to the tailings left
over from historical mining is very serious, and leaching tests in the study area have
demonstrated that the pollution derived from the tailings contains large amounts of As,
Zn, and Pb. Therefore, R1F1 may be associated with the tailings. R1F2 made considerable
contributions to all of the heavy metals, so it may be related to dry and wet deposition
from mining and concentration. In R2, R2F1 was dominated by Pb and Zn, so it clearly
originated from the emissions from smelters based on the survey. In addition, R2F1 is also
associated with the accumulation of Cd and As, which is attributed to the atmospheric
deposition of emissions from smelters. This conclusion is consistent with the results of
previous studies [43,44]. In addition, the receptor model can be regarded as a tool for
extracting factors of concern, which helps to illustrate the variation trends of the spatial
patterns described below.

While some reports provided the spatial patterns based on the factors’ contributions, in
this study, the contents of heavy metals related to industries of concern were extracted based
on a receptor model, and the similar characteristics of some of the heavy metals (e.g., As
and Cd have similar profiles related to the nonferrous industry) were taken advantage of
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to improve the accuracy of the spatial estimation through CK. The spatial variation trends
of the heavy metals around polluting enterprises were studied [38,45,46], and the problem
of contingency cannot be avoided. Based on statistical analysis, when the variation in the
studied objects is large, the more samples are used, and the clearer the trend will be. The
spatial patterns obtained via PMF and CK exhibit clear trends in the heavy metal contents
with distance from the nearest sources. Then, the trends flattened, or change nodes of the
trendlines occurred due to weakening of certain sources’ influences as the homologous
nature of the other sources increased. In addition, the uncertainty increased significantly,
which may be due to the weakened influences or the decreased sampling density. The
above data show that 1800 m may be a satisfactory pollution protective distance in the
study area. The LWR method has the ability to process a large amount of data, so it is
considered to be a better tool based on trials using many regression methods.

5. Conclusions

In this study, geostatistical and chemometric methods were combined to identify pol-
lution sources and estimate the spatial patterns of the soil heavy metals around industries
of concern. It was found that at the county level, subregions should be defined before the
apportionment of the sources due to the large spatial variations in the polluting enterprises.
The main factors related to the industries of concern were extracted using the characteristics
of the key heavy metals, which have been reported. The contents of the heavy metals from
the main factors can help each other improve the estimation accuracy of the CK due to
their homology. The trendlines of the variations with distance from the nearest sources can
be used to determine a pollution protective distance around the industries of concern, but
additional research is required.
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