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Towards Personalized Auditory Models:
Predicting Individual Sensorineural
Hearing-Loss Profiles From Recorded
Human Auditory Physiology
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Abstract

Over the past decades, different types of auditory models have been developed to study the functioning of normal and

impaired auditory processing. Several models can simulate frequency-dependent sensorineural hearing loss (SNHL) and can

in this way be used to develop personalized audio-signal processing for hearing aids. However, to determine individualized

SNHL profiles, we rely on indirect and noninvasive markers of cochlear and auditory-nerve (AN) damage. Our progressive

knowledge of the functional aspects of different SNHL subtypes stresses the importance of incorporating them into the

simulated SNHL profile, but has at the same time complicated the task of accomplishing this on the basis of noninvasive

markers. In particular, different auditory-evoked potential (AEP) types can show a different sensitivity to outer-hair-cell

(OHC), inner-hair-cell (IHC), or AN damage, but it is not clear which AEP-derived metric is best suited to develop per-

sonalized auditory models. This study investigates how simulated and recorded AEPs can be used to derive individual AN- or

OHC-damage patterns and personalize auditory processing models. First, we individualized the cochlear model parameters

using common methods of frequency-specific OHC-damage quantification, after which we simulated AEPs for different

degrees of AN damage. Using a classification technique, we determined the recorded AEP metric that best predicted the

simulated individualized cochlear synaptopathy profiles. We cross-validated our method using the data set at hand, but also

applied the trained classifier to recorded AEPs from a new cohort to illustrate the generalizability of the method.
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Auditory-evoked potentials (AEPs) are widely adopted

as markers of sensorineural hearing loss (SNHL) in

clinical and research settings. In research animals, audi-

tory brainstem response (ABR) or envelope-following

response (EFR) amplitudes can be used to quantify

auditory-nerve (AN) fiber damage, that is, cochlear syn-

aptopathy (CS; Furman et al., 2013; Kujawa &

Liberman, 2009; Sergeyenko et al., 2013; Shaheen

et al., 2015). However, applying the same AEP markers

for CS diagnosis in humans has yielded mixed success,

since AEP amplitudes can be affected by (a) other coex-

isting SNHL aspects such as outer-hair-cell (OHC)

damage (Chen et al., 2008; Don & Eggermont, 1978;

Garrett & Verhulst, 2019; Gorga et al., 1985; Herdman

& Stapells, 2003; Keshishzadeh et al., 2020;

Verhulst et al., 2016) and (b) subject-specific factors
such as age, gender, and head size (Hickox et al., 2017;
Mitchell et al., 1989; Trune et al., 1988). Moreover, the
sensitivity of AEPs to different degrees of OHC loss and
CS is unclear, and a direct quantification of AN fiber
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damage through histopathology is impossible in live
humans (Bharadwaj et al., 2014). These problems
hinder the study of the specific impact of OHC
damage and CS on recorded AEPs and render an
AEP-based quantification of AN fiber damage difficult
in listeners with mixed hearing pathologies. However,
this last step is crucial when developing personalized
models of auditory processing for use within numerical
closed-loop hearing restoration systems.

Even though several auditory models incorporate
sources of SNHL (e.g., Ewert & Dau, 2000; Ewert
et al., 2013; Heinz et al., 2001; Jepsen & Dau, 2011;
Jepsen et al., 2008; Rohdenburg et al., 2005; Verhulst
et al., 2018; Zilany & Bruce, 2006), methods to individ-
ualize the AN-damage pattern on the basis of recorded
AEP metrics are nonexistent. Here, we investigate the
potential of common AEP markers to individualize the
frequency-specific AN-damage profile of personalized
auditory models with or without other co-occurring
aspects of SNHL. Specifically, we present a combined
experimental-modeling method in which (a) individual
cochlear-gain-loss (CGL) parameters are extracted
from either the audiogram or distortion-product otoa-
coustic emissions (DPOAEs) and (b) a feature set of
recorded AEP metrics is compared to simulated AEP
metrics to derive periphery models with different CS
profiles. Using a classifier that was trained on simulated
AEPs for different SNHL profiles, we selected the indi-
vidual AN profile that best explained the recorded AEP
features from a test subject. We tested this method on 35
participants, which were separated into groups of young
normal-hearing (yNH), older normal-hearing (oNH),
and older hearing-impaired (oHI) listeners (Garrett
et al., 2020). Validation of our method to predict indi-
vidual AN-damage profile from recorded AEPs was per-
formed on data from a new cohort.

Before we describe the classification method in detail,
we summarize which AEP markers are promising to
include. Among the hitherto proposed AEP-derived
metrics of AN damage, the ABR wave-I is known to
degrade as a consequence of CS in subjects with intact
sensory hair cells (Kujawa & Liberman, 2009;
Parthasarathy & Kujawa, 2018); however, this metric
is highly variable in humans (Plack et al., 2016;
Stamper & Johnson, 2015) when the contribution of
between-subject variability sources such as head size or
tissue resistance are not considered (Prendergast et al.,
2018). Even though we can assume that any hearing def-
icit reflecting on the ABR wave-I would travel through
the auditory pathway to reflect on the ABR wave-V as
well, homeostatic gain changes between AN fibers and
inferior colliculus (IC) may affect the wave-V amplitude
(Chambers et al., 2016; Henry & Abrams, 2018; M€ohrle
et al., 2016; Schaette & McAlpine, 2011) and hence its
diagnostic power for CS diagnosis. Another AEP

marker, the EFR amplitude, which reflects the strength
of a phase-locked AEP response to an amplitude-
modulated (AM) stimulus, was shown to degrade as a
consequence of CS in mice histological studies
(Parthasarathy & Kujawa, 2018; Shaheen et al., 2015)
and as a consequence of age in human listeners
(Goossens et al., 2016; Vasilkov et al., 2021). EFRs
offer a more robust measure of the AN fiber population
than the ABR wave-I, when recorded in the same ani-
mals (Parthasarathy & Kujawa, 2018; Plack et al., 2016;
Shaheen et al., 2015). However, similar to the ABR
wave-V, EFR generators have latencies associated with
IC processing (Purcell et al., 2004), thus differences in
central auditory processing may reflect on the EFR mag-
nitude to mask individual synaptopathy differences
(Chambers et al., 2016; M€ohrle et al., 2016;
Parthasarathy et al., 2019a, 2019b). To address these
issues, relative EFR and ABR metrics were proposed
in several studies to cancel out subject-specific factors
and isolate the CS component of SNHL in listeners
with coexisting OHC-loss: ABR wave-I amplitude
growth as a function of stimulus intensity (Furman
et al., 2013), ABR wave-I–V latency difference (Coats
& Martin, 1977; Elberling & Parbo, 1987; Watson,
1996), the wave-V and I amplitude ratio (Gu et al.,
2012; Hickox & Liberman, 2014; Schaette &
McAlpine, 2011), EFR amplitude slope as a function
of modulation depth (Bharadwaj & Shinn-
Cunningham, 2014; Guest et al., 2018), the derived-
band EFR (Keshishzadeh et al., 2020), or the combined
use of the ABR wave-V and EFR (Vasilkov & Verhulst,
2019). Although these relative metrics are promising, it is
not known how OHC loss and CS differentially impact
AEPs. Recent modeling approaches have shown promise
to design EFR stimuli which are maximally sensitive to
CS in the presence of OHC damage (Vasilkov et al.,
2021), but conclusive histopathological evidence is to
date not available. To make use of the listed metrics to
build personalized hearing profiles for a broad popula-
tion with various SNHL etiologies, two requirements
need to be fulfilled. We need to (a) use AEP markers
that are maximally sensitive to the CS aspect of SNHL
and (b) combine them with a sensitive marker of OHC
deficits to individualize the OHC and CS aspects of
SNHL. We thus considered various AEP markers (a
total of 13) encompassing spectral magnitudes, time-
domain peaks, latencies and relative metrics, and combi-
nations thereof, to identify which markers best predict
the simulated individualized CS profiles and can be used
for reliable auditory profiling.

Experimental Design

ABR, EFR, and OHC-damage markers were derived
from recordings of two experimental setups in different
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locations. These recordings were used for development

and validation of the proposed method, respectively.

Participants

The dataset that was used to develop the auditory profil-

ing method included recordings from a total of 43 sub-

jects. They were recruited into three groups: 15 young

normal-hearing (yNH: 24.53� 2.26 years, 8 female),

16 older normal-hearing (oNH: 64.25� 1.88 years,

8 female) and 12 older hearing-impaired (oHI: 65.33�
1.87 years, 7 female) groups. Two oNH subjects were

omitted from our study due to nonidentifiable ABR

waveforms. The hearing thresholds of the participants

were assessed at 12 standard audiometric frequencies

between 0.125 and 10kHz (Auritec AT900, Hamburg,

Germany audiometer). AEP stimuli were presented

monaurally to the ear with the best 4 kHz threshold.

Audiometric thresholds were below 20dB-HL at all mea-

sured frequencies in the yNH group and below 25dB-HL

for frequencies up to 4 kHz in the oNH group. The oHI

listeners had sloping high-frequency audiograms with

4-kHz thresholds above 25 dB-HL (Figure 1A). The

AEP recordings were conducted in an electrically and

acoustically shielded booth, while subjects were sitting

in a comfortable chair and watching silent movies.
The second experiment, which was used to validate

our method on a new cohort, had 19 yNH subjects, aged

between 18 and 25 years (21.6� 2.27 years, 12 female).

Volunteers with a history of hearing pathology or ear

surgery were excluded based on a recruitment question-

naire. Audiograms were measured in a double-wall

sound-attenuating booth, using an Interacoustics

Equinox Interacoustics audiometer. All participants

had audiometric thresholds below 25 dB-HL within the

measured frequency range, that is, 0.125 to 10 kHz, and

the best ear was determined on the basis of their audio-

gram and tympanogram. The experiment protocol

included AEP measurements with a maximum duration

of 3 hours, and we only considered one AEP metric for

validation purposes in the present study. AEP recordings

were conducted in a quiet room while subjects were

seated in a comfortable chair and watching muted

movies. To minimize the noise intrusion level, both

ears were covered with earmuffs and all electrical devices

other than the measurement equipment (Intelligent

Hearing Systems) were turned off and unplugged.
Participants of both experiments were informed

about the experimental procedure according to the eth-

ical guidelines at Oldenburg University (first experiment)

or Ghent University Hospital (UZ-Gent, second exper-

iment) and were paid for their participation. A written

informed consent was obtained from all participants.

Distortion Product Otoacoustic Emission

In the first experiment, distortion product otoacoustic

emissions (DPOAEs) were acquired and analyzed using
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Figure 1. Measured audiograms and DPOAE thresholds. A: Audiograms. B: DPOAE thresholds (DPTHs) of the participants in the first
experiment.
A: Audiograms. B: DPOAE thresholds (DPTHs) of the participants in the first experiment. DPOAE¼ distortion-product otoacoustic
emission; yNH¼ young normal-hearing; oNH¼ older normal-hearing; oHI¼ older hearing-impaired.
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a custom-made MATLAB software (Mauermann, 2013).
Stimuli were delivered through ER-2 earphones coupled
to the ER-10Bþ microphone system (Etymotic
Research) using a primary frequency sweeping proce-
dure at a fixed f2=f1 ratio of 1.2. The implemented
DPOAE paradigm continuously swept the primary fre-
quencies with a rate of 2 s/octave within a 1/3 octave
range around the geometric mean of f2 2 f0:8; 1; 2; 4g
kHz (Long et al., 2008). The L2 primary levels ranged
between 30 and 60 dB-SPL for the yNH and oNH
groups, using a 6-dB step. The level range was different
for the oHI group: 30 to 72 dB-SPL. L1 levels were deter-
mined according to the scissors paradigm (Kummer
et al., 1998). For a given f2 primary frequency, the
DP-component (LDP) growth function was plotted as a
function of L2 and a cubic curve was fit to the LDP data
points using a bootstrapping procedure to include the
standard deviation of the individual LDP data points in
the fit (Verhulst et al., 2016). The L2 level at which the
cubic curve crossed �25 dB-SPL was determined for
each bootstrap average to yield the DPOAE threshold
(DPTH) and its standard deviation at a given f2 (Boege
& Janssen, 2002). Derived experimental DPTHs of the
yNH, oNH, and oHI groups are shown in Figure 1B.
DPOAEs were not available for the subjects of the val-
idation experiment.

EEG Measurements

ABR and EFR stimuli were generated in MATLAB and
digitized with a sampling rate of 48 kHz for the first data
set. Afterwards, they were delivered monaurally through
a Fireface UCX external sound card (RME) and a TDT-
HB7 headphone driver connected to a shielded ER-2
earphone. The electroencephalogram (EEG) signals
were recorded with a sampling frequency of 16384Hz
via a 64-channel Biosemi EEG system using an
equidistantly-spaced electrode cap. All active electrodes
were placed in the cap using highly conductive gel. The
common-mode-sense (CMS) and driven-right-leg (DRL)
electrodes were attached to the fronto-central midline
and the tip of the nose, respectively. A comprehensive
explanation of the experimental configuration can
be found in Garrett and Verhulst (2019).

AEPs of the validation experiment were recorded
using the SmartEP continuous acquisition module
(SEPCAM) of the Universal Smart Box (Intelligent
Hearing System, Miami, FL, USA). EFR stimuli were
generated in MATLAB using a sampling rate of 20-kHz
and stored in a “.wav” format. AEP stimuli were pre-
sented monaurally through a shielded ER-2 earphone
(Etymotic Research) and AEPs were recorded at a sam-
pling frequency of 10 kHz via Ambu Neuroline 720 snap
electrodes connected to vertex, nasion, and both ear-
lobes. The electrodes were placed after a skin

preparation procedure using NuPrep gel. The skin-
electrode impedance was kept below 3kX during the
recordings.

EFR Stimuli

We recorded EFRs in response to a 400-ms-long stimuli
consisting of a 4-kHz pure-tone carrier and a 120-Hz
rectangular-wave modulator with 25% duty cycle (i.e.,
the RAM25 in Vasilkov et al., 2021). The stimulus wave-
form is visualized in the inset of Figure 2B and we con-
sidered a modulation depth of 95%. Stimuli were
presented 1,000 times (500 times in either positive or
negative polarity) and had a root-mean-square (RMS)
of 68.18 dB-SPL. The calibration of the stimulus was
performed to have the same peak-to-peak amplitude
as a 70-dB-SPL sinusoidal amplitude modulated
(SAM) 4-kHz pure-tone. The Cz channel recording
was re-referenced to the average of the ear-lobe electro-
des and 400-ms epochs were extracted relative to the
stimulus onset. The mean amplitude of each epoch was
subtracted to correct for the baseline-drift. See Vasilkov
et al. (2021) for further details on the frequency-domain
bootstrapping and noise-floor estimation method. The
noise-floor corrected spectral magnitudes (Mfk) at the
modulation frequency f1¼ 120Hz and four harmonics,
that is, f2 to f5, were summed up to yield the EFR.

RAM� EFR ¼
X5
k¼1

Mfk ; fk¼ 120� k (1)

Figure 2A depicts a typical NH RAM-EFR spectrum
and corresponding noise-floor. The arrows show the
derived peak-to-noise-floor magnitudes at the modula-
tion frequency and following harmonics. The energy of
EFR peak is reduced for the oHI subject shown in the
Panel B.

The RAM stimulus in the second experiment (i.e.,
the validation database) was a 110-Hz 95% modulated
4-kHz pure tone. The 500-ms stimulus was presented
1,000 times with alternating polarity (500 each)
and had a 70 dB-SPL level. The acquired AEPs were
initially saved in “.EEG.F” format on SEPCAM and
were afterwards converted to “.mat” format using the
custom-made “sep-cam2mat” MATLAB function for
offline analysis. EFRs recorded from the vertex elec-
trode were rereferenced to the ipsilateral earlobe elec-
trode and filtered between 30 and 1500Hz using an
800th order Blackman-window based finite-impulse-
response (FIR) filter. Epoching was applied to the
steady state part of the response, that is, 100 to 500ms
of the response relative to the stimulus onset. The base-
line drift was corrected by subtracting the mean of
each epoch, afterwards 200 epochs with the highest

4 Trends in Hearing



peak-to-trough values were rejected. The amplitudes of

the remained epochs did not exceed 100 mV. A

frequency-domain bootstrapping approach was adopted

to estimate the noise-floor and to remove it from the

averaged trials using the method proposed in Zhu

et al. (2013). To this end, we calculated the fast

Fourier Transform (FFT) of 800 epochs to generate

400 mean spectra by randomly sampling the 800

epochs with replacement (keeping an equal number of

polarities in the draw). Averaging the resampled spectra

yielded the i-th mean-EFR spectrum (EFRrawi
)

EFRrawi
¼ 2

n
Xij j; i ¼ 1; . . . ; 400 (2)

where Xi stands for the i-th averaged resampled spectra

and n is the number of FFT points (n¼ 10,000). To cal-

culate the spectral noise floor, we repeated the

resampling procedure 1,500 times, but used phase-
flipped odd epochs

NFj ¼ 2

n
Yj

�� ��; j ¼ 1; . . . ; 1500 (3)

In Equation 3, Yj is the j-th averaged resampled
spectra with phase-flipped odd epochs. Finally, we
subtracted the NF mean (NF), from each of the 400
bootstrapped mean-EFRs (EFRrawi

) to derive 400 NF-
corrected EFR spectra

EFRSpeci¼ EFRrawi
�NF; i ¼ 1; 2; . . . ; 400 (4)

The peaks of the EFRrawi
at the modulation frequen-

cy of stimulus (f1¼110Hz), and the next four harmonics
were identified if they were above the NF. We defined
the RAM-EFRi by summing the magnitudes of the

A

C D

B

Figure 2. Comparison of Exemplary NH and HI RAM-EFRs and ABRs. A: RAM-EFR of a yNH subject (yNH15) and the corresponding
noise-floor (NF). Arrows specified by Mf show the peak-to-noise floor magnitudes at the modulation frequency, that is, 120Hz and the
following harmonics. B: RAM-EFR of an oHI subject (oHI) and the corresponding NF. C: ABR of a yNH subject (yNH15). Arrows show the
extracted wave-I and V amplitudes and latencies. D: ABR of an oHI subject (oHI12). NH¼ normal hearing; EFR¼ envelope-following
response; HI¼ hearing-impaired; ABR¼ auditory brainstem response.
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identified peaks for each EFRSpeci . The RAM-EFR
metric mean and variability was defined by the mean
and standard deviation of RAM-EFRi over 400 samples.

Auditory Brainstem Responses. ABRs were recorded to 80-
ms-long alternating polarity clicks presented at 70 and
100 dB-peSPL. Stimuli were presented through the
setup explained in Garrett et al. (2019) and repeated
3,000 times with a rate of 10Hz using a uniformly dis-
tributed random interstimulus interval of 100ms�
10ms. Cz-channel recordings were rereferenced to the
contralateral earlobe electrode and filtered between 100
and 1500 Hz. Moreover, 25ms-long epochs, that is, �5
to 20-ms relative to the stimulus onset, were extracted
and corresponding mean values were subtracted to per-
form a baseline correction. Then, each positive polarity
epoch was averaged with the following negative epoch
and 100 paired-averages with the highest peak-to-trough
values were rejected. The remaining pair-averaged
epochs had amplitudes below 25 mV. To include ABR
variability in our analysis and to estimate the ABR noise
floor, we applied the bootstrapping approach of Zhu
et al. (2013), in the time domain. In addition, 2,000
and 4,500 epochs were drawn for the signal and noise-
floor estimation, respectively. Half of the noise-floor-
estimation epochs (i.e., 2,250 pair-averaged drawn
epochs with replacement) were multiplied by �1 before
final averaging. Finally, the estimated noise-floor mean
was subtracted from the 2,000 averaged epochs to yield
mean noie-floor-corrected ABR waveforms. ABR wave-
I and -V peak and trough amplitudes and corresponding
latencies were determined by visual inspection from the
mean ABR waveform and were confirmed by an

audiologist. Figure 2 (Panels C and D) compares ABR
waveforms of a yNH and oHI subject from the cohort
and indicates the identified ABR peaks and latencies. To
extract peak latencies and amplitudes from the boot-
strapped data, wave maxima and minima were detected
in 1, 1.8, 0.5, and 1.5ms intervals around the wave-I70,
wave-V70, wave-I100, wave-V100 peaks and troughs, iden-
tified from the mean ABR waveform. The interval
ranges were determined based on visual inspection.
ABR wave-I and V latencies were shifted by 1.16ms to
compensate for the delay introduced by the sound deliv-
ery system.

We used a total of 13 ABR and EFR markers in the
development phase and one EFR marker in the valida-
tion phase. Table 1 details the definition of each metric
and lists the corresponding abbreviations used in this
paper. The last column defines the variability metric
associated with each marker, which were obtained
from the earlier described bootstrapping procedure.
To determine the measurement variability of ABR
growth-slopes, we applied error propagation to account
for the standard deviations of two different measures
from the same listener, for example, ABR-70 and
ABR-100. In this case, the bootstrapped metrics were
drawn from the 95% confidence interval of a normal
distribution characterized by the mean of the metric
and its bootstrapped standard deviation. The bootstrap-
ping technique described in this section, provided a tool
to estimate the variability of AEP-derived metrics and to
incorporate them in the proposed classification
approach. Obtained standard deviations from boot-
strapping can be used to measure the CS-profiling pre-
diction robustness of the study participants.

Table 1. Extracted AEP-Metrics Definitions and Corresponding Standard Deviations.

Metric Symbol Definition Measure of variability

Rectangular-wave RAM-EFR Equation 1 rbootðRAM�EFRÞ
Amplitude-modulated EFR

ABR-70 wave-I amplitude w-I70 w-I70ðpeakÞ�w-I70ðtrough�afterÞ
ABR-100 wave-I amplitude w-I100 w-I100ðpeakÞ�w-I100ðtrough�afterÞ rbootðpeak�to�troughÞ
ABR-70 wave-V amplitude w-V70 w-V70ðpeakÞ�w-V70ðtrough�afterÞ
ABR-100 wave-V amplitude w-V100 w-V100ðpeakÞ�w-V100ðtrough�afterÞ
ABR-70 wave-I latency w-Ilat70 w-I70ðpeakÞlatency
ABR-100 wave-I latency w-Ilat100 w-I100ðpeakÞlatency rbootðlatencyÞ
ABR-70 wave-V latency w-Vlat70 w-V70ðpeakÞlatency
ABR-100 wave-V latency w-Vlat100 w-V100ðpeakÞlatency
ABR wave-I amplitude growth w-I-growth w�I100�w�I70

100�70
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
bootðw�I100Þþr2

bootðw�I70Þ
q

ABR wave-V amplitude growth w-V-growth w�V100�w�V70

100�70
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
bootðw�V100Þþr2

bootðw�V70Þ
q

ABR wave-I latency growth w-Ilat-growth jw�Ilat100�w�Ilat70j
100�70

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
bootðw�Ilat100Þþr2

bootðw�Ilat70Þ
q

ABR wave-V latency growth w-Vlat-growth jw�Vlat100�w�Vlat70j
100�70

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
bootðw�Vlat100Þþr2

bootðw�Vlat70Þ
q

Note. EFR¼ envelope-following response; ABR¼ auditory brainstem response. In the last column, r represents the standard deviation. rboot is the standard
deviation of the bootstrapped metric.
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Individualized Auditory Periphery Model

To simulate individualized SNHL profiles that would

match the histopathology of the study participants, we

used a computational model of the auditory periphery

(Osses & Verhulst, 2019; Verhulst et al., 2018). In the

first step, we personalized the cochlear model parameters

on the basis of OHC markers of SNHL (audiogram or

DPTH). Afterwards, we simulated AEPs for different

degrees of CS and compared the simulations to the

recordings to develop and test our auditory profiling

method. Figure 3 schematizes the auditory model

individualization.

Cochlear Model Individualization

Measured audiograms and DPTHs were used indepen-

dently to determine the individual CGL parameters (in

dB-HL) of the cochlear transmission-line (TL) model,

shown in pink in Figure 3. In our approach, CGL deter-

mines the double pole of the cochlear admittance

through the gain and tuning of the cochlear filters

(Verhulst et al., 2012). We thus model the consequence

of OHC damage or presbycusis without specifically

accounting for damage of the stereocilia or sensory cells.

From here on, mAudTH and sAudTH refer to mea-

sured and simulated audiometric thresholds, respective-

ly. Likewise, mDPTH and sDPTH stand for measured

and simulated DPOAE thresholds.

Audiogram-Based Cochlear Filter Pole-Setting. Here, we trans-

lated the frequency-specific audiometric dB-HL (Figure

1A) into cochlear filter gain loss. These values were

translated into double-pole values of the cochlear admit-

tance function across CF (see Verhulst et al., 2016).
Specifically, at a CF corresponding to a measured

audiometric frequency (CF ¼ faud), the power spectrum

of the NH basilar membrane (BM) impulse response,

HNHðfaudÞ, served as reference before the gain loss was

applied. Among a range of cochlear filter pole-values in

[0.036,0.302], the pole value, a�AðfaudÞ, that causes a rel-

ative gain-loss equal to mAudTHðfaudÞ, was assigned.

Thereby, the CGL at CF ¼ faud is given by

CGLðfaudÞ¼ HNHðfaudÞ�Ha�
A
ðfaudÞ (5)

where Ha�
A
ðfaudÞ equals the power spectrum of the BM

impulse response at CF ¼ faud with a pole value of a�A
that causes a CGL equal to mAudTHðfaudÞ. This proce-
dure was repeated for all CF channels corresponding to

Figure 3. Auditory Model Individualization. The block diagram on the left depicts the different stages of the employed auditory periphery
model (Verhulst et al., 2018). Experimentally measured audiometric thresholds were inserted to the transmission-line cochlear model to
adjust BM admittance function poles. The box on top-right corner shows the nonuniform AN population distribution across the CF for
simulated different degrees of CS profiles. The profile without CS is shown in dark brown (indicated with N) and higher degrees of CS are
shown according to the color map. HSR¼ high-spontaneous-rate; MSR¼medium-spontaneous-rate; LSR¼ low-spontaneous-rate;
EFR¼ envelope-following response; FFT¼ fast Fourier Transform; CS¼ cochlear synaptopathy; AN¼ auditory nerve;
DPOAE¼ distortion-product otoacoustic emission.
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measured audiometric frequencies and individualized
cochlear filter pole-functions were obtained by interpo-
lating the pole values across CF (Verhulst et al., 2016).

We employed the predicted pole functions to simulate
individual audiograms and to evaluate the prediction
error. To this end, individualized AN excitation patterns
(ANEP) were simulated in response to 500-ms pure
tones presented at audiogram frequencies (faud) using
62 intensity levels (L) between �5 and 55 dB-SPL. We
defined ANEP as the RMS of the AN firing rate at each
CF 2 faud and determined on-CF peaks of the presented
level series as ANEPðfaud;LÞ. We simulated NH ANEPs
using NH pole-function at the threshold of audibility
in a frequency-specific manner (LNHðfaudÞ), that is, the
zero-phon curve of the equal-loudness-contour (ISO
226:1987). From this reference NH curve, we calculated
the simulated audiometric thresholds (sAudTH) of the
experiment participants as follows

LminðfaudÞ ¼ argmin
L2½�5;55�

ANEPðfaud;LNHðfaudÞÞ�ANEPðfaud;LÞ
� �

(6)

sAudTHðfaudÞ¼ LminðfaudÞ�LNHðfaudÞ (7)

Figure 4A shows grand-averaged mAudTHs and
sAudTHs across the yNH, oNH, and oHI groups. In
addition, Figure 4C compares the sAudTH (dashed
lines) and mAudTH (solid lines) of an example yNH
and oHI subject. Note that simulating CGLs greater
than 35 dB-HL is impossible in our cochlear model,
which has a maximal applicable cochlear mechanical
gain of 35 dB. In the last step, we estimated the absolute
prediction error as follows

erraudioðfaudioÞ¼ jmAudTHðfaudÞ�sAudTHðfaudÞj (8)

A B

D

E F

C

Figure 4. A Comparison Between the Measured and Simulated AudTHs and DPTHs. The average (solid) and standard deviation (shaded
area) of the measured (gray) and simulated (red) AudTHs and DPTHs are shown in Panels A and B, respectively. A comparison between
sAudTH and mAudTH of a yNH and oHI listener is shown in Panel C. Panel D compares the sDPTH (dotted) and mDPTH (solid) of the
same yNH and oHI listeners (Panel C). Frequency-specific group-averaged absolute prediction errors of AudTH and DPTH are shown in
Panels E and F, respectively (yNH: blue, oNH: black, oHI: orange). DPTH¼DPOAE threshold; yNH¼ young normal-hearing; oNH¼ older
normal-hearing; oHI¼ older hearing-impaired.
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Figure 4E compares the mean absolute errors on a
group-level basis. The elevated error of the oHI group
at high frequencies is due to the model limitation in sim-
ulating gain losses greater than 35 dB-HL.

DPTH-Based Cochlear Filter Pole Setting. Implementing
DPTH-based cochlear model individualization was com-
plicated by the fewer DPTHs we had available, that is,
four frequencies, compared to 12 AudTHs. Hence, a
simple interpolation to determine poles between the
measured frequencies, yielded large prediction errors.
In addition, the longitudinal filter coupling and associ-
ated gain propagation along the cochlear partition com-
plicated matters. To tackle these issues, we trained a
machine-learning algorithm to map DPTHs via cochlear
travelling waves to corresponding cochlear filter pole
functions across CF. Once trained, we need only a few
measured DPTHs to make a relatively accurate predic-
tion of individual pole values. Figure 5 illustrates the
complete procedure.

First, we constructed the training data (Figure 5A)
using 26 sets of random cochlear filter pole functions.
Each set contained 1001 CF-dependent poles and
random pole values lay between 0.036 and 0.302, cover-
ing the pole values associated with both NH and HI
profiles. In addition, three reference pole functions
were included as part of the training: NHpoles (NH
poles), flatmin with across-CF poles of 0.036 (maximally
intact cochlea) and flatmax, with across-CF poles of 0.302
(35 dB-HL across CF). We employed the generated pole
functions and simulated DP amplitudes (sLDP: the mag-
nitude of 2f1�f2) to train the mapping function. The
considered f2 primary frequencies, that is, 0.8, 1, 2,
and 4 kHz (f1¼ f2=1:2) corresponded to the recordings
we had available and L2 levels (�10 to 70 dB-SPL,
with a step of 5-dB). We simulated DPOAE input–
output (I/O) functions at each f2 frequency and
determined the sDPTH as the L2 level at which the
sLDP growth function crossed the L2 of �10 dB-SPL.
We chose a �10 dB-SPL threshold for our simulations,

A

B

C

Figure 5. Neural Network-Based Cochlear Model Individualization Using Measured and Simulated DPTHs. A: Random cochlear filter
poles are generated and corresponding DPTHs are simulated using TL model (sDPTH). B: The normalized sDPTH (sDPTHnorm) at four
frequencies are introduced to the neural network as input. The random pole values generated in (A) are served as training target for
sDPTHnorm. C: Measured DPTHs (mDPTHs) are fed into the trained neural network after pre-processing and individualized cochlear filter
pole functions are predicted. DPTH¼DPOAE threshold; DPOAE¼ distortion-product otoacoustic emission.
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given that the conventional experimental �25 dB-SPL
crossing point yielded inconclusive sDPTH, in particular
for pole values associated with greater CGLs. sDPTH
values for 26 sets of pole-functions at four primary fre-
quencies were fed into the neural network after normal-
ization (sDPTHnorm, Figure 5B) to train it to map
frequency-specific sDPTHnorm values (input) to CF-
dependent pole functions (output).

The architecture of the designed neural network is
shown in Figure 5B and consists of an input layer of
four neurons, two hidden layers of 150 neurons and an
output layer of 1001 neurons. A standard sigmoid acti-
vation function (i.e., between 0 and 1) was applied to the
hidden layers. A customized sigmoid activation function
(between 0.036 and 0.302) was employed in the output
layer to yield the desired range of the cochlear model
pole functions. An ADAM optimizer with a learning
rate of 0.001 was applied to minimize the mean-
square-error (MSE) of the learning algorithm. The
method was developed in Python using Keras library
and Tensorflow backend.

The trained neural network was employed to predict
individualized pole functions given DPTHs of the exper-
imental cohort (Figure 5C). Prior to the prediction,
mDPTHs needed to be preprocessed to determine a suit-
able experimental range of DPTHs for the mapping.
Among the 41 subjects, six subjects (yNH: three, oNH:
two, and oHI: one) without complete mDPTH values at
all measured frequencies were dropped. In each of the
three recruited groups, the 99% confidence interval
around the frequency-specific group means were speci-
fied and mDPTH values that either exceeded or fell
below of those intervals were set to extremum values.
Then, mDPTHs were mapped to the range of the
sDPTH associated with reference flatmin (sDPTHflatmin

)
and flatmax (sDPTHflatmax

) pole functions. Afterwards,
mapped mDPTHs (mDPTHmap) were normalized
(mDPTHnorm) and given to the trained neural network
to predict personalized pole-functions. To assess the pre-
diction error, the predicted pole functions (Polespred in
Figure 5C), were used to simulate individualized
sDPTHs that were compared to the individual
mDPTHs f2 primary frequencies. mDPTHs and
sDPTHs were referenced to the simulated DPTHs of a
model with NHpoles as follows

sDPTHrefðf2Þ¼ sDPTHðf2Þ�sDPTHNHðf2Þ (9)

mDPTHrefðf2Þ¼ mDPTHmapðf2Þ�sDPTHNHðf2Þ (10)

sDPTHNHðf2Þ refers to the frequency-specific sDPTH
values simulated using the model with NHpoles. Obtained
sDPTHref and mDPTHref from Equations 9 and 10 were
mapped back to the experimental range according to

Equations 11 and 12, and corresponding grand-
averages and standard deviations are shown in Figure
4B. More specifically, Figure 4C compares measured
and simulated DPTH-shifts for a yNH and oHI subject.

sDPTHshiftðf2Þ¼ sDPTHrefðf2Þ
max½mDPTHðf2Þ��min½mDPTHðf2Þ�
sDPTHflatmax

ðf2Þ�sDPTHflatmin
ðf2Þ

(11)

mDPTHshiftðf2Þ¼ mDPTHrefðf2Þ
max½mDPTHðf2ÞÞ��min½mDPTHðf2Þ�
sDPTHflatmax

ðf2Þ�sDPTHflatmin
ðf2Þ

(12)

Finally, the prediction error was calculated as in
Equation 13, and the absolute mean error for each
group is shown in Figure 4F.

errdpthðf2Þ¼ jmDPTHshiftðf2Þ�sDPTHshiftðf2Þj (13)

The developed machine-learning approach can be
used to personalize cochlear model parameters based
on an objective measure of OHC damage (DPTH) and
predict individual CS profiles. CS profiling can be com-
pared for either the DPTH or AudTH-based cochlear
model individualization method, and when no DPTHs
are available, the standard audiogram-based method can
be adopted.

Simulating CS Profiles

We employed the AudTH- and DPTH-based individu-
alized CGL models to simulate EFRs and ABRs for
different CS profiles. To introduce CS, the simulated
normal-hearing AN fiber populations, the N CS profile
in Figure 3, was reduced in a CF-specific manner. Five
additional CS profiles were simulated by proportionally
lowering the number of different AN types, starting
from low- and medium-spontaneous-rate (LSR and
MSR) fibers in profile A to the most severe AN loss in
E that only kept 7.69% of the high-spontaneous-rate
(HSR) fiber population. The table in Figure 3 details
the AN fiber numbers and types considered for each of
the six simulated CS profiles. IHC-related dysfunctions
were not considered in this study, given that low degrees
of CS do not cause IHC damage (Furman et al., 2013;
Kujawa & Liberman, 2009; Shaheen et al., 2015).
However, removing all AN fibers from an IHC in the
model would functionally correspond to IHC damage.
The CF dependence of the AN population was consid-
ered in two steps: (a) Following the CF-dependent AN
distribution observed in rhesus monkey (Keshishzadeh
et al., 2020; Valero et al., 2017), we applied a nonuni-
form NH AN fiber population. (b) CF-specific AN-
damage profiles were simulated. The former was

10 Trends in Hearing



achieved by mapping the counted CF-dependent AN
fibers population in the rhesus monkey (Valero et al.,
2017) to the human cochlea, using a distribution of
NHSR¼ 68%; NMSR¼ 16% and NLSR¼ 16% at each
CF (Liberman, 1978). Then, sloping high-frequency
AN-fiber loss was applied across CF with the assump-
tion that CS starts from the higher frequencies first (Wu
et al., 2020). We ran EFR/ABR simulations for different
AN fiber damage profiles, which were characterized by a
sloping loss of between 1 and 8 kHz. Above 8 kHz, we
applied a frequency-independent loss.

For every subject we simulated AEPs for each CS
profile, after we personalized the cochlear models using
either the AudTH-or DPTH-based method. The stimuli
adopted for these simulations were identical to those
adopted experimentally, but were digitized using a sam-
pling rate of 100 kHz, rather than 48 kHz. Simulated
instantaneous firing rates from the AN, cochlear nucleus
(CN), and IC model stages, namely, ABR wave-I, III,
and V, respectively, were added up to simulate EFRs
(Figure 3). RAM-EFR magnitudes were calculated
using Equation 1.

To simulate ABRs, 80-ms clicks were presented to the
model with a continuous sequence of 50 repetitions of
alternating polarities (100 in total) and a rate of 10Hz.
Sequential stimulus presentation was adopted to account
for the adaptation properties of AN fibers. Individual
ABR wave-I and V latencies and amplitudes were
extracted by averaging the peak-to-trough values of
the response to the last, that is, 50th, positive and neg-
ative clicks. The simulated ABR wave-I and V latencies
were, respectively, shifted by 1 and 3 ms to match laten-
cies of recorded ABRs. These values were determined to
match the measured yNH group-mean ABR wave-I and
V latencies (at 100 dB-peSPL) with the grand-average
individualized ABR simulations across the yNH group.
Given that simulated ABR latencies were not impacted
by CS, the applied latency shifts will not confound the
CS prediction.

Individual Synaptopathy Profile Predictions

In previous sections, cochlear model parameters of the
subjects were determined using either AudTH- or
DPTH-based methods and 13 personalized AEP-
derived metrics were simulated for six CS profiles of
each experiment participant. Here, we develop a classi-
fication approach, forward-backward classification, to
predict the simulated CS profile that best matches
recorded individual AEP metrics and determine the
AEP metric that gives the most accurate segregation of
simulated individualized CS profiles. This step was
implemented separately for either of the cochlear indi-
vidualization methods. After excluding eight subjects
from the cohort (six without complete DPTHs and two

with undetectable ABRs), we developed our individual
SNHL-profiling method on data from 35 subjects (yNH:
12, oNH: 12, and oHI: 11).

Before classification, we first normalized the 13 AEP
metrics (Table 1) derived from measured (M) and simu-
lated six CS profiles per individual (S). The normalized S
and M were calculated using Equations 14 and 15.

Snorm ¼ S�S

rS
(14)

S is the matrix of simulated AEP metrics and contains
210 rows (35 subjects with 6 CS profiles) and 13 columns,
the number of derived AEP metrics. S and rS refer to the
mean and standard deviation of S, respectively.

Mnorm ¼ M�S

rS
(15)

In Equation 15, M refers to the matrix of measured
AEP metrics with a dimension of 35� 13. We created
8,191 feature-sets using all possible combinations of 13

metrics (
X13
i¼1

13
i

� �
¼ 8191). Metrics combination was

performed separately for Mnorm and Snorm. The number
of metrics in each feature set varied between one and 13.
From here on, F refers to the constructed 8,191 feature
sets of AEP-derived metrics and Fi with i 2 f1; . . . ; 13g
indicates a subset of F that has

13
i

� �
feature sets and

each feature set contains a combination of i metrics. In
the following paragraphs, we explain the classification
approach for an exemplary feature set, fe, selected from
F. The train and test data sets required for classification
were constructed by choosing fe of all participants from
Snorm and Mnorm and we called them Strain and Mtest,
respectively. The proposed forward-backward classifica-
tion method, comprised of two identical k-nearest-neigh-
bor (kNN: k¼ 1, Euclidean distance) classifiers.
classifier (1) in forward classification was trained by
Strain in six classes with known class labels from the
model simulations (LS), that is, the six simulated CS
profiles previously described in Figure 3. Then, individ-
ual CS profiles were predicted by testing the trained clas-
sifier with the Mtest. Figure 6A visualizes the different
steps in forward classification. In this step, the evalua-
tion of classification performance is unfeasible, since the
actual CS degree of experiment participants are
unknown. To address this issue, we interchanged the
train-test data sets of the forward classification and
implemented a second classification approach, called
backward classification to assess the performance of
the classifier (1) based on a second classifier (Figure
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6B). In this regard, we took the output of forward clas-
sification, that is, the predicted CS degrees of experiment
participants (LM in Figure 6), and corresponding mea-
sured AEP metrics (Mtest) to train the classifier (2) of
Figure 6B. Afterwards, Strain, with known CS labels
(LS) from the simulated individualized CS profiles, was
used to test the trained classifier (2). The vector of pre-
dicted CS labels by classifier (2) (LSPred ) was compared to

LS and correspondig prediction accuracy was calculated
as follows

acc ¼
Xn

q¼1
½LSðqÞ ¼¼ LSPred

ðqÞ�
n

(16)

where n is equal to 210 (35 subjects with six CS profiles).
Thus, the backward classification offers the possibility to
calculate the accuracy of predicted CS profiles of study
participants based on model simulations. We then
repeated the forward-backward classification over all
possible combinations of the derived metrics, that is,
8,191 feature-sets and calculated the prediction accuracy
of each feature set according to Equation 16. In this
respect, the backward classification method gives the
insight that to which degree classifier (1) was accurate
in predicting CS degrees of experimental participants.
Our classification approach makes use of combined sim-
ulated and recorded data to predict CS profiles and can
test the accuracy of these methods, even though a direct

and actual validation of the CS histopathology still

remains hidden due to experimental difficulties.

Results

We applied forward-backward classification for each of

the cochlear model individualization methods (AudTH

and DPTH) and calculated the prediction accuracy of all

feature-sets in F. For each cochlear profiling method, first,

we determined the feature-set in each Fi (i 2 f1; . . . ; 13g)
that had the highest classification accuracy. Fi consisted of

feature sets with i AEP-derived metrics. Then, the predic-

tion variability was estimated using forward-backward

classification by including the standard deviations of

selected feature-sets. Finally, we report individually pre-

dicted CS profiles belonging to those feature sets.

Combination of AEP-Derived Metrics

To determine the best combination of metrics for CS

profiling, the forward-backward classification was per-

formed on the mean AEP-derived metrics of experiment

participants and corresponding classification accuracy

was reported as accmean. Thus, we calculated accmean

values of the predictions for 8,191 feature sets in F and

determined the feature set that yielded the highest

accmean among all feature-sets in Fi, with i combined

metrics (i 2 f1; . . . ; 13g). Accordingly, 13 feature sets

were selected among 8,191 in F. Tables 2 and 3 list

those feature sets and corresponding accmean values for

A

B

Figure 6. The Forward-Backward Classification Method. A: Forward classification: Classifier (1) is trained with individualized simulated
AEP-derived metrics (Strain) for six CS profiles (LS) and tested with measured AEP-derived metrics (Mtest). The predicted labels (LM) for the
study participants are entered to block (B). The backward-classification in (B) trains classifier (2) using measured AEP-derived metrics, that
is, MðtestÞ, and labels predicted by the forward classification, that is, LM. Classifier (2) is tested by Strain and corresponding labels (LS) are
used to assess the classifier performance. CS¼ cochlear synaptopathy.

12 Trends in Hearing



AudTH and DPTH-based methods, respectively. The
RAM-EFR metric yielded the highest accmean values
for both cochlear model individualization methods.
The obtained 83.81% accmean of DPTH-based method
was higher than that of the AudTH-based method
(68.57%), suggesting that methods which assess OHC
damage more directly (i.e., DPTH vs. AudTH) yield a
better classification accuracy in predicting simulated
individualized CS profiles.

Prediction Variability

The impact of subject-specific factors and measurement
noise reflect on inter- and within-subject variability of
the AEP recordings and can have an impact on the accu-
racy of the classification method. To measure this effect,
the forward-backward classification was repeated, this
time by extracting metrics from the bootstrapped aver-
age trials, rather than from the mean of trials.
This resulted in distributions for each specific metric
and each subject, with standard deviations as given by
the last column of Table 1. Then, 100 samples were ran-
domly drawn from the distribution of each metric. Thus,
for every feature-set in Tables 2 and 3, the corresponding
metrics samples were combined to yield 100 variations of
each feature-set. Afterwards, the CS profile prediction

was repeated 100 times with each feature-set for each

subject, and prediction accuracy was assessed in every

repetition. Lastly, the standard deviation of the calculat-

ed accuracies (accSD) was determined over the 100 repe-

titions of each feature-set and listed in the last column of

Tables 2 and 3.
For the best predictor metric (RAM-EFR), accSD

values of 2.95% and 2.66% were obtained for the

AudTH- and DPTH-based methods, respectively. The

lowest accSD was obtained when combining the RAM-

EFR with the w-Vlat100 metric in both cochlear model

individualization methods (AudTH: 1.73% and DPTH:

1.34%). However, the respective accmean values were

considerably lower than those of the RAM-EFR by

itself, particularly in DPTH-based method. To assess

the performance of the RAM-EFR based CS profile pre-

diction in subgroups, we show confusion tables in

Figure 7 for AudTH- and DPTH-based cochlear

model individualization methods. The diagonals of

each table reflect how often the classifier assigned a CS

profile (LSPred : predicted class) that matched with that of

in simulated individualized CS profiles (LS: true class).

Off-diagonal values show the number of instances that

LSPred and LSPred were not identical. Detailed prediction

accuracy values of each subgroup are summarized in the

Table 2. Combination of Metrics With the Highest Mean Accuracy (accmean) Values in Each Fi, With i Combined Metrics. The reported
results are based on AudTH-based cochlear model individualization method.

acc (%)

Involved

metrics

Involved

subjects Best combination of metrics accmean accsd

1 35 RAM-EFR 68.57 2.95

2 35 RAM-EFR, w-Vlat100 64.76 1.73

3 35 RAM-EFR, w-Ilat100; w-l100 53.33 7.86

4 35 RAM-EFR, w-Vlat100; w-llat100; w-l100 51.90 9.28

5 35 RAM-EFR, w-Vlat100; w-llat100; w-l100; w-V70 52.86 8.69

6 35 RAM-EFR, w-llat100; w-l100; w-V70; w-l70, w-V-growth 51.43 6.97

7 35 RAM-EFR, w-Vlat-growth, w-V-growth,

w-Vlat100; w-l70; w-V70; w-V100

45.24 6.79

8 35 RAM-EFR, w-Vlat-growth, w-V-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-V100

45.24 6.59

9 35 RAM-EFR, w-V-growth, w-l-growth,

w-llat100; w-Vlat100; w-l70; w-V70; w-l100; w-V100

36.19 7.11

10 35 RAM-EFR, w-V-growth, w-l-growth, w-Vlat-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-l100; w-V100

32.86 6.67

11 35 RAM-EFR, w-V-growth, w-l-growth, w-Vlat-growth, w-llat-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-l100; w-V100

27.62 6.49

12 35 RAM-EFR, w-V-growth, w-l-growth, w-Vlat-growth, w-llat-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-l100; w-V100; w-llat70

18.10 6.65

13 35 RAM-EFR, w-V-growth, w-l-growth, w-Vlat-growth, w-llat-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-l100; w-V100; w-llat70; w-llat100

17.14 6.75

Note. EFR¼ envelope-following response. The standard deviations of obtained accuracies are shown in accsd column.
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Table 3. Combination of Metrics With the Highest Mean Accuracy (accmean) Values in Each Fi, With i Combined Metrics. The reported
results are based on DPTH-based cochlear model individualization method.

Involved

metrics

Involved

subjects Best combination of metrics
acc (%)

accmean accsd

1 35 RAM-EFR 83.81 2.66

2 35 RAM-EFR, w-Vlat100 58.57 1.34

3 35 RAM-EFR, w-llat100; w-l100 54.29 8.34

4 35 RAM-EFR, w-Vlat100; w-llat100; w-l100 61.90 8.22

5 35 RAM-EFR, w-Vlat100; w-llat100; w-l100; w-V70 58.10 8.90

6 35 RAM-EFR, w-Vlat100; w-llat100; w-l100; w-V70, w-l-growth 48.10 7.40

7 35 RAM-EFR, w-Vlat100; w-llat100; w-V100; w-V70, w-V-growth, w-l70 40.95 6.96

8 35 RAM-EFR, w-Vlat100; w-llat100; w-V100; w-V70, w-l-growth, w-l70; w-V100 35.71 7.12

9 35 RAM-EFR, w-l-growth, w-V-growth, w-Vlat-growth, w-llat70; w-l70;
w-V70; w-l100; w-V100

34.29 7.30

10 35 RAM-EFR, w-l-growth, w-V-growth, w-Vlat-growth, w-llat70; w-Vlat70;
w-Vlat100; w-l70; w-l100; w-V100

29.52 6.53

11 35 RAM-EFR, w-l-growth, w-V-growth, w-Vlat-growth, w-Vlat70;
w-llat100; w-Vlat100; w-l70; w-l100; w-V70; w-V100

17.14 6.13

12 35 RAM-EFR, w-l-growth, w-V-growth, w-Vlat-growth, w-llat-growth, w-llat70;
w-Vlat70; w-Vlat100; w-llat100; w-l70; w-V70; w-l100

16.67 2.63

13 35 RAM-EFR, w-V-growth, w-l-growth, w-Vlat-growth, w-llat-growth,

w-Vlat100; w-Vlat70; w-l70; w-V70; w-l100; w-V100; w-llat70; w-llat100

16.67 2.93

Note. EFR¼ envelope-following response. The standard deviations of obtained accuracies are shown in accsd column.

Figure 7. Confusion Tables at Subgroup and Group-Levels for Both AudTH and DPTH-Based Cochlear Model Individualization Methods.
The tables summarize the accuracy of classifier (2) in Figure 6B for subgroups as well as all groups together. AudTH¼ audiometric
thresholds; DPTH¼DPOAE threshold.
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tables in Figure 7. The highest and lowest prediction
accuracy values relate to the yNH and oHI group,
respectively for both AudTH- and DPTH-based meth-
ods. Comparing the cochlear model individualization
methods, it is seen that the DPTH-based approach out-
performs the AudTH-based method on both group- and
subgroup levels.

CS Profile Prediction Based on Individualized
Classifiers

Table 4 lists the predicted individual CS profiles from
the RAM-EFR metric (best prediction accuracy) for
both AudTH- and DPTH-based cochlear individualiza-
tion methods. The reported profiles are the output of the
forward classification step, that is, LM shown in Figure
6. Considering the AudTH and DPTH columns of Table
4, lower degrees of AN damage were predicted for the
yNH group than for the oNH and oHI groups. In addi-
tion, the range of predicted CS profiles in the yNH
group shows that yNH listeners might also suffer from
different degrees of CS. The oHI group, which was
assumed to suffer from mixed OHC damage and CS
pathologies, were predicted to have the highest degree
of CS among the cohort.

Thus far, the reported individualized CS profiles for
RAM-EFR were predicted by training a single classifier
with simulated individualized CS profiles of the whole
experimental cohort. This has drawbacks for individual
profiling in a clinical context, because it would be ideal if
the profiling could be performed using only recordings
from the tested individual. Hence, to establish more
accurate predictions of the individual CS degrees, we
took one step further and designed individualized clas-
sifiers, which were trained and tested with the RAM-
EFR metric of the same listener. If RAMs stands for
the six simulated CS profiles of a nominal subject and
RAMm for the measured RAM-EFR metric, we first
normalized RAMs and RAMm values by the RAMs

and rRAMs
(mean and standard deviation of RAMs).

Then we trained and tested the classifier, with the
same characteristics as classifiers (1) and (2), using nor-
malized RAMs and RAMm values, respectively. This
procedure was repeated for all listeners in the cohort
and for both AudTH and DPTH-based cochlear model
pole-setting methods. The predicted individualized CS
profiles were listed in Table 4 (columns: AudTHind and
DPTHind). Considering either of the AudTH- or DPTH-
based methods, designing individualized classifiers
revealed only minor differences in the predicted CS pro-
files of individual listeners compared to those predicted
by a single classifier trained with simulated individual-
ized RAM-EFRs. However, the CS profiles reported in
AudTHind and DPTHind columns might be more reliable
than the group-based predictions, since the former were

predicted by individualized classifiers that were trained
on the basis of personalized cochlear simulations.

To provide a demonstration of the implemented
method, and to show to which extent the model simu-
lations imitate the experimental measurements, we com-
pare simulated and measured AEPs of a yNH subject in
Figure 8. Panel A depicts simulated RAM-EFR spectra
for the different considered CS profiles. Based on the
experimental RAM-EFR (Panel D) and forward classi-
fication, we predicted that this subject had a “N” CS
profile, that is, no AN damage. The CGL parameters
of the individualized model were adjusted based on
DPTHs of the same yNH listener. Panels B and C

Table 4. Predicted Individuals CS Profiles Obtained From AudTH
and DPTH-Based Cochlear Individualization Methods, Based on
RAM-EFR Metric.

Group No. AudTH AudTHind DPTH DPTHind

1 C B B B

2 A A A B

5 N N N N

7 N N N N

yNH 8 N N N N

9 N N N N

10 N N N A

11 A B B B

12 N N N A

13 A A A A

14 N N N N

15 N N N N

1 D D C D

3 E E E E

4 D E D D

6 D D D D

oNH 7 C D D D

8 E E E E

9 N A N A

10 B B B B

11 C D D D

12 N N N N

13 E E E E

14 C D C C

1 E E E E

2 E D E D

3 E E E E

4 E E E E

5 E D E E

oHI 7 E D E E

8 E E E E

9 E E E E

10 E E E E

11 E E E E

12 E E E E

Columns AudTHind and DPTHind list the predicted CS profiles by designing

individualized classifiers based on RAM-EFR metric.
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depict the simulated personalized ABR waveforms for

the predicted “N” CS degree. Experimental ABR wave-

forms to 70 and 100 dB-peSPL clicks are shown in

Panels (E) and (F), respectively. Details regarding the

value of extracted metrics from the measurements and

simulations are provided in a table at the bottom of

Figure 8. Even though our classifier did not consider

ABR metrics, the applied personalized OHC and AN

profiles predicted w� Ilat100; w� I70; w� V70 and

w� I100 markers that fell the standard deviation of the

corresponding recorded values. The remaining simulated

ABR metrics, that is, w� Ilat70; w� Vlat100, and

w� V100, only minimally deviated from the range of

respective measurements, showing that our method

accurately predicts AEP features to stimuli which were

not included in the classifier.

Method Validation

To validate the proposed method and its generalizability

to other cohorts and other measurement equipment,

we applied the developed classifier in backward classifi-

cation step to RAM-EFRs recorded in a second exper-

iment. Figure 9 schematizes the implementation of the

validation method. Considering the different experimen-

tal setup and recording location of the second experi-

ment, the measured RAM-EFRs of both experiments

were scaled between zero and one, prior to classification.

D

A B

E

C

F

Figure 8. A Comparison Between Simulated and Measured AEPs for a yNH Subject (yNH15). This subject was predicted to have a
normal (N) CS profile, that is, without CS. A: Simulated RAM-EFR spectra for six CS profiles. The sum of the drawn arrows yields the
RAM-EFR magnitude metric. B: Simulated ABR wave-I to 70 and 100 dB-peSPL clicks. Waveforms were shifted by 1ms to match the
experimental data. C: Simulated ABR wave-V to 70 and 100 dB-peSPL clicks. Waveforms were shifted by 3ms to match the experimental
data. The specified arrows in (B) and (C) indicate the extracted metrics. D: Measured RAM-EFR of the same listener (yNH15). Shown
arrows, indicate the peak-to-noisefloor values. Akin to (A), the measured RAM-EFR metric was calculated by summing the arrow
amplitudes. E: Measured ABR waveform to 70 dB-peSPL clicks. F: Measured ABR waveform to 100 dB-peSPL clicks. Arrows in (E) and (F)
determine the extracted metrics. The shown simulated waveforms were predicted based on the DPTH-based cochlear individualization
method. The table shows the exact value of EFR and ABR metrics derived from recordings and predicted CS-profile, “N,” of the same
listener. EFR¼ envelope-following response; ABR¼ auditory brainstem response; CS¼ cochlear synaptopathy.
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Given that only yNH listeners participated in the second

experiment, we employed the smallest RAM-EFR mag-

nitude recorded from oHI listeners (as part of another

study) recorded with the same setup as the second exper-

iment to scale the RAM-EFRs. The scaled RAM-EFRs

of the first experiment were used to train the classifier (1)

in Figure 6 and afterwards, the trained classifier was

tested with the scaled RAM-EFRs of the second exper-

iment. The predicted CS profiles are illustrated as a bar-

plot in Figure 9. Moreover, 84.21% of the 19 yNH par-

ticipants of the second experiment were classified as N,

that is, without CS, and the rest were predicted to have

mild CS. These predictions show that a classifier

designed on our cohort can be applied to other cohorts

to predict individual CS degrees based on the RAM-

EFR. In line with expectations, the classifier predicted

that most yNH subjects were synaptopathy free.

Discussion

By combining experimental ABR and EFR measure-

ments with a modeling approach, we were able to devel-

op a classifier that can assign one out of six CS profiles

to listeners with mixed SNHL pathologies. The classifier

considered 8,191 feature sets, of which our forward-

backward classification method identified that the

RAM-EFR metric yielded the best performance in

both AudTH- and DPTH-based cochlear individualiza-

tion methods. We tested both a group and individually

based method and showed that our method can gener-

alize to other cohorts and measurement setups. Taken

together, we have high hopes that this method can find

its way to clinical hearing diagnostics, since a single AEP

metric is required to yield a CS-profile prediction, given
the audiogram or at least four DPTHs.

Implications for RAM-EFR-Based Synaptopathy
Profiling Prediction

On the one hand, predicting the CS degree from AEP
metrics is controversial in listeners with coexisting OHC
deficits and on the other, validation of the predicted CS
profiles with temporal bone histology is impossible in
humans. Without these means, models of the human
auditory periphery and AEP generators can provide a
tool to bridge this experimental gap. The similarity
between predicted AEP degradations for a known CS
profile and experimental AEP degradations can be
used to predict the CS profile of individuals. In a previ-
ous study, we tested the potential of the derived-band
EFR as a CS predictor in NH listeners using a fuzzy
c-means clustering method and validated our CS predic-
tions using an another AEP-derived metric (wave-V
amplitude growth slope) recorded from the same listen-
er. We evaluated the method based on the percent of
subjects that were predicted and validated to have the
same CS profile, that is, 61% (Keshishzadeh & Verhulst,
2019). However, the performance of this method is easily
impacted by the characteristics of the adopted predictor
and validation metrics, for example, different generator
sources, degree of sensitivity to subtypes of SNHL, and
tonotopic susceptibility.

The interdisciplinary approach we took in this study
tackled this validation issue by proposing a forward-
backward classification approach and applying the
trained classifier to AEPs from a new cohort to test its
generalizability. Moreover, we were able to determine
the most accurate AEP-derived metric for CS degree

Figure 9. Implementation of the Validation Method. Measured RAM-EFRs (M) with predicted labels in Figure 6 (LM) are scaled between
zero and one to train a kNN classifier. The trained classifier is tested with scaled RAM-EFRs recorded from the second cohort comprised
of yNH listeners. The bar-plot shows the predicted CS profiles for the second cohort listeners. The CS profiles labels in the bar-plot are
similar to those defined in Figure 3. EFR¼ envelope-following response; CS¼ cochlear synaptopathy.
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prediction, given a range of 13 possible AEP-derived
metrics. Among the considered AEP-based metrics and
combinations thereof, we found that the RAM-EFR
magnitude showed the best performance in segregating
simulated individual CS profiles. At the same time,
RAM-EFR metric was involved in all feature sets that
yielded the highest accmean among feature sets that had
equal number of combined metrics (Tables 2 and 3). This
finding is consistent with the outcome of Parthasarathy
and Kujawa (2018) and Vasilkov et al. (2021), showing
that EFRs to SAM or RAM are sensitive to CS.
Moreover, the combined modeling and experimental
study of Vasilkov et al. (2021) showed that the adopted
RAM-EFR marker (RAM with a 25% duty cycle) is
minimally impacted by OHC damage. The sharp enve-
lope combined with the long silence intervals between
stimulus peaks generates more synchronized AN fiber
responses compared to conventional SAM stimulus to
yield a stronger EFR with extended dynamic range
across subjects. Finally, the RAM-EFR is a more sensi-
tive marker of CS than ABR (Parthasarathy & Kujawa,
2018). Taken together, our results indicate that the
RAM-EFR magnitude is an appropriate AEP-based
metric to predict individual CS degree of listeners in
the presence of OHC-loss.

The Effect of Cochlear Model Individualization
Method on Predicting Cochlear Synaptopathy Profiles

In this study, we determined the CGL model parameters
using either measured audiometric or DPOAE thresh-
olds and assessed the classifier performance of each
method in the backward classification step. Comparing
the resulting accmean values for each cochlear individual-
ization method can infer which of the two methods
yielded the most accurate AEP simulations for a given
CS profile. The accmean values of RAM-EFR metric
showed that setting cochlear filter pole functions on
the basis of measured DPTHs outperforms the AudTH
method for all experimental groups (Figure 7, Tables 2
and 3). This outcome is consistent with literature studies
showing that OAEs are a more sensitive measure of
noise-induced cochlear dysfunction in humans
(Engdahl et al., 1996; Konopka et al., 2005; Marshall
et al., 2009; Seixas et al., 2005). Moreover, OAEs are
not influenced by inner-hair-cell/AN damage
(Trautwein, 2002), whereas behaviorally measured
audiometric thresholds, particularly extended high-
frequency thresholds, could be affected by extreme
neural degeneration (Bramhall et al., 2019; Liberman
et al., 2016; Lobarinas et al., 2013). Consequently,
given the varied susceptibility of AudTHs and
DPOAEs to different aspects of SNHL, it was expected
that we would obtain nonidentical predictions of CS
profiles for a nominal subject (Table 4). Comparing

the AudTH and DPTH columns in Table 4, we found

a mismatch between individually predicted CS profiles

for 14.28% of subjects (yNH: two, oNH: three). The

mismatch degree increased to 20% (yNH: three, oNH:

two and oHI: two) when the individual CS profiles were

predicted using personalized classifiers (AudTHind and

DPTHind columns).
It is noteworthy that the DPTH-based cochlear indi-

vidualization was implemented using DPTHs from only

four frequencies (0.8–4 kHz), whereas the AudTH-based
method considered audiometric thresholds measured at

12 frequencies (0.125–10 kHz). This difference may have

resulted in less accurate CGL model parameters for the

DPTH-based method, despite a better performance of

forward-backward classification. In future implementa-

tions of this method, we intend to incorporate more fre-

quencies in the DPTH measurements, especially at

higher frequency regions. Employing DP-grams instead

of DPTHs is another option, as these require a shorter

measurement time. In both cases, we suggest to include

lower stimulus levels as well, given that noise-induced

OHC deficits can be identified earlier at lower stimulus

levels (Bramhall et al., 2019).

Method Limitations

The proposed method for AEP-based CS profiling relies

on the interactive use of recordings and model simula-

tions. Hence, shortcomings in either aspect could have

caused performance limitations of the method. The fol-

lowing sub-sections summarize a number of these

limitations:

Experimental Limitations

(a) ABRs in humans are recorded using vertex electrodes

placed on the scalp, which yields smaller and more var-

iable wave-I amplitudes than when they are recorded in

animals using subdermal electrodes. The measured ABR

w� I70 amplitude in our measurement produced a mean

standard deviation of 0.198lV across the cohort, which

is fairly large with respect to the mean amplitude of

0.146lV (yNH: 0.1964� 0.1436 lV, oNH: 0.1304�
0.203 lV, oHI: 0.1071� 0.243 lV). Compared to

w� I70; w� I100 amplitudes showed less variability,

that is, 0.2503� 0.2056 lV. Variability of the w� I100
was considerably lower only for yNH group (0.350�
0.143 lV). Per subgroup, variability increased for older

groups (oNH: 0.205� 0.247 lV, oHI: 0.180� 0.235 lV).
Given these variabilities, adding the w� I100 metric to

the second feature set (RAM-EFR, w� Vlat100), sudden-

ly increased the accSD (Tables 2 and 3). (b) Although

adopting relative ABR metrics, such as growth functions

might factor out individual differences, the standard

deviation of the derived relative metric is influenced by
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the propagated error of the absolute metric. (c) ABRs to
clicks presented at 100 dB-peSPL should yield higher
wave-I and V amplitudes, than when the stimulus was
presented at 70 dB-peSPL. Nevertheless, the opposite
was observed in a few subjects.

Model Limitations

(a) The adopted computational model of the auditory
periphery allows for OHC deficit simulation on a CF-
dependent basis, but not for CGLs above 35 dB, since
the maximum possible BM filter gain is 35 dB in the
model (Verhulst et al., 2018). This constraint led to ele-
vated absolute prediction errors for high-frequency
audiometric thresholds in the oHI (above 4 kHz) and
oNH (above 8 kHz) groups (Figure 4E). The increased
absolute errors were mainly observed for the audiomet-
ric threshold predictions, since DPTHs were only mea-
sured for frequencies up to 4 kHz. Thus, the
individualized hard-coded OHC-loss component for
the oHI group might lead to similar and less accurate
CS profile prediction for oHI participants with audio-
metric losses greater than 35 dB-HL. (b) In the adopted
method, we hard-coded the CGL using the individual
hearing thresholds and related the remaining AEP alter-
ations to CS. An alternative way would be to run the
model iteratively and simultaneously optimize both
CGL and CS profile parameters on the basis of the
experimental data to obtain the best OHC-loss and CS
profiles. However, we did not further explore this route
due to the high computational cost of running the
adopted TL cochlear model in an iterative optimization
procedure.

Conclusion

In this study, we proposed an integrated modeling and
experimental approach to build personalized auditory
models and predict the AN-damage profile of listeners
with mixed SNHL profiles. To develop individualized
cochlear models, we implemented two different methods
on the basis of measured AudTHs and DPTHs. Next, we
developed a classification-based approach to predict
individual CS profiles and determined which AEP
metric (or combinations thereof) yielded the highest pre-
diction accuracy. Afterwards, we evaluated the imple-
mented CGL and CS-profile individualization methods
on the development data set as well as on a new cohort.
Our study suggests that a DPTH-based cochlear model
individualization approach combined with a RAM-EFR
recording predicts individual CS profiles most accurately
among the 8,191 possible combinations of 13 AEP
markers. In addition, we tested the applicability of the
proposed method by applying the trained classifier to the
recorded RAM-EFRs of a new cohort of yNH listeners.

The classifier predicted that these listeners mostly had

mild forms of CS, which supports that our method is

generalizable to other recording setups and cohorts.

Training the classifier again on larger cohorts may fur-

ther increase the generalizability of the method. We hope

that this method, or variations thereof, can be used in a

clinical diagnostic context, as the number of needed AEP

recordings to yield an individual CS-profile is small (i.e.,

10–15min). Individualized models of SNHL are an

important step for the development of hearing aid algo-

rithms that compensate for both the OHC- and AN-

damage aspects of SNHL.
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