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Abstract

Motivation: Marker genes, defined as genes that are expressed primarily in a single-cell type, can be identified from
the single-cell transcriptome; however, such data are not always available for the many uses of marker genes, such
as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because
their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many
tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern.

Results: To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published
information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The
algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or
removing genes from the list.

Availability and implementation: We implement this method as an R package markerpen, hosted on CRAN (https://
CRAN.R-project.org/package¼markerpen).

Contact: roeder@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell-type-specific (CTS) genes, also known as marker genes, are
genes that are highly expressed in one cell type, but lowly expressed
in other types. These genes, which define cellular identity, are key to
the analysis of RNA transcriptional data. Knowledge of marker
genes gives insights into the core set of genes whose expression is
shared among all cells of a given type, and will fill critical gaps in
our understanding of cell biology and possibly the cellular origins of
pathologies (Kelley et al., 2018). Marker genes are used to annotate
cell clusters (Kiselev et al., 2017), to study cellular composition of
bulk tissues (Kelley et al., 2018; Luecken and Theis, 2019; Oldham
et al., 2008; Xu et al., 2013), to estimate cell type fraction via decon-
volution (Abbas et al., 2009; Avila Cobos et al., 2018; Gaujoux and
Seoighe, 2012; Newman et al., 2015; Zhong et al., 2013) and to esti-
mate CTS expression directly from bulk tissue (Wang et al., 2020,
2021).

Because marker genes are defined by their strong differential ex-
pression among cell types, a common approach to identifying them
is to conduct statistical tests on CTS transcriptome data, typically
single-cell RNA sequencing (RNA-seq). Genes that have significant

expression differences between one specific cell type and all others
are regarded as marker genes for this type (Kiselev et al., 2017).
Despite the obvious appeal of this direct approach, the availability
of CTS transcriptome data is a great challenge for many studies. The
cost for single-cell sequencing is generally high, and in some cases,
viable cells are hard to obtain for tissues like human brain. Even if
public datasets are available, they might not correspond well with
the data in hand, being collected at a different developmental period
or a different functional portion of the organ. Furthermore, there is
a trade-off between sequencing depth and the number of cells that
can be analyzed, and for this reason, the resulting single-cell tran-
scriptome is quite noisy. An alternative way to obtain reference tran-
scriptome data is to use single-cell RNA-seq data from another
species (Zeisel et al., 2015); however, the quality of the obtained
marker genes based on data from a different species is questionable.
To this end, there is a need for a reliable statistical technique for
detecting marker genes that does not require well matched single-
cell RNA-seq data.

The objective of this inquiry is to develop a method for identify-
ing a set of marker genes that describe the expression of the cells
that constitute a tissue sample directly from the bulk transcriptome.
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We will take advantage of the conjecture that marker genes identify-
ing a common cell type are highly correlated in samples of bulk tran-
scriptome data, because their expression levels depend primarily on
the proportion of that cell class in each sample (Kelley et al., 2018;
Oldham et al., 2008). Motivated by this insight, we develop a new
algorithm called MarkerPen, short for marker gene detection via
penalized principal component analysis, to detect marker genes by
combining prior marker information with bulk transcriptome data.
MarkerPen is a semi-supervised algorithm that requires two pieces
of information: a list of potential marker genes, typically obtained
from the literature, past experience or available single-cell RNA-seq
data; and a bulk RNA-seq dataset, viewed as a mixture of pure cells.
The algorithm then exploits the bulk data to refine the published
marker genes by adding and removing genes from the list.

In summary, MarkerPen is motivated by the following two key
findings: (i) marker genes are statistically highly correlated under
mild and sensible assumptions; (ii) highly correlated genes can be
detected by estimating the leading eigenvectors of the correlation
matrix. We formulate the MarkerPen algorithm as a modified sparse
principal component analysis (sparse PCA, Jolliffe et al., 2003; Zou
et al., 2006; Zou and Xue, 2018), which simultaneously selects high-
ly correlated genes and encodes prior information about markers
into the model. Our simulation study and multiple data analyses of
human brain transcriptomes demonstrate the superior performance
of the proposed method.

2 Materials and methods

2.1 Related work
The MarkerPen algorithm follows the path of two pioneering publi-
cations (Kelley et al., 2018; Xu et al., 2013), who noted that marker
genes tend to be highly correlated in bulk tissue. MarkerPen solves
the marker detection problem by making better use of bulk RNA-
seq data. The motivation for these methods is straightforward:
many tissues and subjects have been assessed for bulk tissue expres-
sion; the data tend to be of better quality; and collecting bulk data is
less costly. Although bulk data alone do not provide CTS transcrip-
tome information, they can be combined with prior knowledge of
marker genes to improve the quality of published markers. For ex-
ample, Xu et al. (2013) first obtained CTS genes in mouse brain as
potential markers for human brain, and then performed co-expres-
sion network analysis on human brain bulk data to select highly cor-
related genes of each type as the refined marker genes. This method
has shown good empirical results, but has the drawback that genes
can only be removed from the candidate list, but not added from the
complementary set. More recently, Kelley et al. (2018) applied a
similar approach to the human brain transcriptome. They first built
an unsupervised co-expression network for all genes, and then iden-
tified gene clusters that were maximally enriched with published
markers. Each gene was then assigned a fidelity score for each cell
type, as an indicator for the strength of association between the gene
and the cell type. These scores, however, were based on the aggrega-
tion of multiple datasets, and hence the selected marker sets may be
suboptimal for a specific study.

Both methods described above assume that marker genes tend to
be highly correlated, which is an intuitive assumption supported em-
pirically in numerous species (Bakken et al., 2016; Fertuzinhos
et al., 2014; Hawrylycz et al., 2015; Hilliard et al., 2012; Oldham
et al., 2008; Ponomarev et al., 2010), but lacks rigorous statistical
justification. To resolve this shortcoming, in Supplementary
Material (Supplementary Section S1) we explicitly study the statis-
tical properties of marker genes, and show that under weak assump-
tions the marker genes for the same cell type are highly correlated in
the bulk data. Given this fact, we are then able to utilize the correl-
ation structure to detect marker genes via the MarkerPen algorithm.

2.2 The MarkerPen algorithm
Because high mutual correlation is a necessary condition for marker
genes, the first step of marker gene selection is to find a subset from
the whole genome such that genes in this set are highly correlated

with each other. If the true correlation matrix R is available, then
such a goal can be achieved by computing PCA on R, as the eigen-
vectors of R, also known as factor loadings, indicate the contribu-
tion of each gene to form a gene group. In the case of a marker gene
group, the eigenvector contains a few strong signals and a large
number of small values, where the large coefficients correspond to
highly correlated genes (Supplementary Section S2, Supplementary
Fig. S1).

However, in practice, only the sample correlation matrix S is
given, and S can be of very high dimension. Theoretical results show
that conventional PCA may be inconsistent in high dimensions
(Johnstone and Lu, 2009; Jung and Marron, 2009), leading to in-
accurate factor loading estimates (Supplementary Section S2,
Supplementary Fig. S2). In such cases, the sparse PCA method is pre-
ferred, which directly estimates a sparse eigenvector, meaning that
most entries in this vector are zeros. Sparse PCA has many different
variants, and in this article we consider the Fantope projection and
selection algorithm (FPS, Vu et al., 2013), because it solves a convex
optimization problem that has a global convergence guarantee.
Similar to ordinary PCA, FPS takes the sample covariance or correl-
ation matrix S as the input, and outputs a p�d matrix C, where p is
the number of genes, d is the number of principal components
retrieved, and the ith column of C contains the factor loadings of the
ith component. Unlike PCA, FPS solves an optimization problem of
the forM

max
X

trðSXÞ � kjjXjj1s:t: 0 6X61 and trðXÞ ¼ d; (1)

where X is a p�p symmetric matrix, trðAÞ is the trace of a matrix
A, jjXjj1 ¼

P
i;j jXijj is the sum of absolute values of the elements in

X, k is a tuning parameter that controls the sparsity of eigenvectors,
and 06X616 means all eigenvalues of X are between 0 and 1. Let
X� be the solution to (1), and then the C matrix is obtained by com-
puting the first d eigenvectors of X�. It is worth noting that when
k¼0, FPS is mathematically equivalent to the ordinary PCA.

In practice, there is abundant prior information about the mark-
er gene list in the literature, which provides useful knowledge about
the relationship between cell types and genes; however, such infor-
mation is not exploited by FPS, resulting in low utilization of the
available information. To fix this issue, the proposed MarkerPen al-
gorithm modifies the original FPS such that prior information about
markers can be combined with the collected bulk data. For simpli-
city, we first consider the detection of marker genes for one cell
type, in which case d¼1 and C ¼ c is a single factor loading vector.
Let G be the indices of published marker genes for a cell type C, and
then we solvE

max
X

trðSXÞ � kpG;wðXÞs:t: 06X61; X � 0; and trðXÞ ¼ 1; (2)

where pG;wðXÞ ¼
P

i;j
~pG;wðXijÞ is a penalty function defined as

~pG;wðXijÞ ¼ f

jXijj; i; j 2 G

w2jXijj; i 62 G; j 62 G

wjXijj; otherwise

;

and X � 0 means all elements of X are non-negative. Same as FPS,
the output c is the eigenvector of the solution X� associated with the
largest eigenvalue.

To see how MarkerPen modifies FPS to include prior informa-
tion, note that (2) contains one additional constraint X � 0, and the
penalty term pG;wðXÞ reduces to jjXjj1 as in FPS if w¼1. The added
condition X � 0 is based on the fact that marker genes are positively
correlated, implying c � 0, and hence X� � ccT also has non-nega-
tive entries. The extra tuning parameter w � 1 is used to put larger
sparsity penalty on genes that are not in the prior list G, so that
genes outside G are less likely to be selected as marker genes, unless
they show large signals. The optimization problem (2) can be solved
via the proximal-proximal-gradient method (Ryu and Yin, 2017),
with details in Supplementary Material (Supplementary Section S3).

Since the factor loading vector c quantifies the contribution of
each gene to form the gene group, we select genes that have
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coefficients greater than some small threshold e > 0, for example
e ¼ 0:001, and treat them as marker genes for cell type C. In our im-
plementation of the algorithm, w has a default value of 1.5, and k is
initialized to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
, where n is the sample size. The user can

then adjust k to achieve a desired output size of the marker gene set.
For multiple cell types C1;C2; . . ., we repeatedly apply the algorithm
above for each Ci, and compute all marker gene groups sequentially.
Of course, the order of the cell type sequence in computing has an
impact on the final marker gene list, but the impact is typically small
if the cell types are well separated (Supplementary Section S4,
Supplementary Fig. S3).

Finally, we comment that an important advantage of
MarkerPen, which is lacking in competing methods, is that it relies
on a principled denoising approach for high-dimensional data.
Specifically, most existing approaches rely directly on the pairwise
sample correlation coefficients between genes, which are known to
contain considerable noise in high dimensions. Instead, MarkerPen
capitalizes on the expected sparsity of the marker gene set, and
attempts to estimate the true correlation structure of genes. To this
end, MarkerPen is able to automatically filter out most weak correl-
ation coefficients, and as a result, the estimation of strong correl-
ation coefficients between marker genes is more statistically sound.

2.3 Data sources
In the next section, we validate the performance of MarkerPen using
a broad range of bulk and single-cell RNA-seq data, and here we
provide some basic information of each dataset. Below are the bulk
tissue data used in this article:

1. MSBB The Mount Sinai/JJ Peters VA Medical Center Brain

Bank cohort (Wang et al., 2018) contains RNA-seq data from

human temporal cortex, with 425 control samples and 425 sam-

ples from patients with Alzheimer’s disease (AD, Braak score

� 4). Only the control samples are used.

2. ROSMAP The Religious Orders Study and the Rush Memory

and Aging Project (De Jager et al., 2018; Mostafavi et al., 2018)

collects RNA-seq data from the human dorsolateral prefrontal

cortex (DLPFC), with 288 control samples and 348 AD samples.

Only the control samples are used.

3. Mayo RNAseq The Mayo Clinic RNA-seq dataset (Allen et al.,

2016, 2018) contains human temporal cortex RNA-seq data

with 28 control samples and 82 AD samples. Only the control

samples are used.

4. BrainVar The BrainVar dataset (Werling et al., 2020) consists of

176 samples from the human DLPFC across development, from

6 post-conception weeks to young adulthood. To be comparable

with other datasets we exclude pre-natal brains and focus on

subjects that are at least 6 months old (epoch 3), finally with a

sample size of 45.

5. CMC The human brain RNA-seq data collected by the

CommonMind Consortium (Fromer et al., 2016) contain 258

adult schizophrenia subjects and 279 adult control subjects, and

only the control samples are used. As the original dataset spans a

broad range of ages, we further split the control group into two

subsets, resulting in groups with ages less than or equal to 70

(sample size 164) and greater than 70 (sample size 115).

We also use single-cell and single-nucleus RNA-seq datasets:

1. Mathys et al. (2019) provides single-nucleus transcriptomes

from DLPFC of 48 subjects with varying degrees of AD path-

ology. Only the data from 17 control subjects are used.

2. Darmanis et al. (2015) obtains single-cell RNA-seq data of

human cortical tissues from eight adults and four embryonic

samples. Only the adult data are used.

3. Li et al. (2018) collects single-nucleus RNA-seq data from

DLPFC of three adult brains.

4. Zeisel et al. (2015) provides mouse cerebral cortex single-cell

RNA-seq data.

3 Results

3.1 Quality of selected markers
In this section, we demonstrate the quality of marker genes selected
by MarkerPen from three different angles.

First, as explained in Section 2.1, we expect to see that marker
genes for the same cell type are highly correlated in the bulk data.
Therefore, the quality of selected marker genes can be visually
examined by the correlation matrix. We study human brain bulk tis-
sue RNA-seq data, and use the MSBB dataset for illustration. To
apply the MarkerPen algorithm, the prior marker gene list is
obtained from existing literature, including 184 marker genes for
astrocytes, 130 genes for oligodendrocytes, 319 genes for neurons
(all three from Cahoy et al., 2008), 100 genes for microglia
(Hickman et al., 2013) and 237 genes for endothelial cells (Butler
et al., 2016). Figure 1A shows the sample correlation matrix of the
published marker genes in the MSBB bulk data. It can be seen that
the correlation matrix roughly forms five blocks, but the boundary
between the blocks is not very clear as much noise exists.

Then we apply the MarkerPen algorithm to refine the given
marker gene list. For each cell type, we restrict the search range to
the union of the published marker genes and the top 500 genes that
have the highest fidelity scores given by Kelley et al. (2018).
Figure 1C demonstrates the sample correlation matrix of the refined
genes, in which 50 genes are selected for each cell type for visualiza-
tion purpose. The details of the marker gene refinement procedure
are given in Supplementary Section S5 (Supplementary Table S1,
Supplementary Figs S4, S5). It is clear that after the refinement,
genes in the same block have much stronger mutual correlation,
whereas genes in different blocks are only weakly correlated.
Moreover, it is interesting to find that marker genes for microglia
can be clearly detected, although microglia only account for a small
proportion of all cells in the brain. This implies that the low abun-
dance of a cell type in the samples does not harm the algorithm, as
long as there exist genes that are highly expressed in that type and
lowly expressed elsewhere. To summarize, genes refined by
MarkerPen have a correlation structure that better fits the property
of marker genes.

Second, by definition, marker genes should be largely expressed
in one cell type but weakly expressed in others. Therefore, it is help-
ful to examine the expression level of selected marker genes in puri-
fied single-cell data. We use the single-nucleus transcriptome data
from Mathys et al. (2019) to demonstrate this idea. For each cell
type, we randomly select 100 samples (50 for endothelial due to the
limited number in the dataset), and plot the logarithm-scale expres-
sion matrix on published and refined marker genes in Figure 1B and
D, respectively. In Figure 1B, we can observe that many genes in the
published list behave like noise, as they show very low expression
level in virtually all cell types. In contrast, this defect has been great-
ly reduced in Figure 1D, where most noise genes have been removed
by MarkerPen. Moreover, a statistical test is conducted to formally
validate the improvement. For each cell, we compute the difference
between the mean value of marker gene expressions and the mean
value of non-marker gene expressions, both at logarithmic scales,
and call this value the ‘marker strength’ for brevity. The marker
strength for the published list in Figure 1B has a median of 1.275,
and that for the refined list in Figure 1D has a median of 2.049. The
paired Wilcoxon signed rank test rejects the null hypothesis that the
distribution of marker strength has no change, with P-value <
2:2� 10�16 and a sample size of n¼450. These findings further jus-
tify the MarkerPen selection algorithm.

Finally, considering that the transcriptome data from Mathys
et al. (2019) and the MSBB bulk data may not fully match, it is
more appropriate to study the purified cells from the same subjects
as in the bulk data. However in practice, this is not always possible.
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Instead, we use the bMIND algorithm (Wang et al., 2021) to esti-
mate CTS gene expression for each subject in the bulk data. The out-
put of bMIND can be viewed as the average of denoised single-cell
data for the subjects in the bulk data. In Figure 2 we plot the esti-
mated CTS gene expression matrix on three types of markers: the
published marker genes, the markers selected by MarkerPen, and
the bMIND markers that are directly selected from the estimated
CTS gene expression. Supplementary Figure S7 in Supplementary
Material shows that the bMIND markers are indeed meaningful,
and the estimated CTS gene expression can be used as a good substi-
tute to the ground truth when the latter is unavailable. Since the

bMIND algorithm is independent of MarkerPen and utilizes richer
information, in our evaluation we treat the bMIND markers as the
reference and look to see if other markers match the good properties
exhibited in the bMIND set.

The first row of Figure 2 demonstrates the results for the MSBB
dataset, from which we can find that published markers contain a
lot of noise, whereas the MarkerPen output is very similar to that of
bMIND. Also included in Figure 2 are the results for two additional
bulk datasets, the ROSMAP and Mayo RNAseq data, both of which
give similar results that validate the quality of MarkerPen genes. It is
also worth noting that the three bulk datasets show very different

Fig. 1. Correlation and expression patterns of published and MarkerPen-refined gene lists. (A) Sample correlation matrix of published marker genes in the MSBB bulk data

highlights the weak correlation among cell-type marker genes. (B) Gene expression of single-nucleus reference data from Mathys et al. (2019) on published marker genes does

not exhibit the expected pattern of marker genes. (C) Sample correlation matrix of refined marker genes output by MarkerPen highlights much tighter correlation among cell-

type marker genes. (D) Expression of genes identified by MarkerPen using bulk data shows the expected pattern of marker genes in single-nucleus reference data

Fig. 2. CTS gene expression of the MSBB, ROSMAP and Mayo RNAseq datasets for three types of marker genes: the published markers, the refined list selected by MarkerPen

and the bMIND markers. The heatmaps show the relative expression level, defined by the ratio of estimated CTS gene expression to the gene-wise average gene expression, in

the logarithmic scale. Within each heatmap, one column stands for one subject. Ast¼astrocytes, Oli¼oligodendrocytes, Mic¼microglia and Neu¼neurons. The MarkerPen

markers mimic the desired block diagonal pattern observed for bMIND marker genes
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correlation structures for a fixed set of genes (Supplementary Fig.
S6), implying that it is preferable to adaptively select marker genes
specific to each bulk dataset.

3.2 Performance in downstream analysis
As marker genes are essential tools for many downstream analyses
such as cell type fraction deconvolution, in this section we use simu-
lation experiments to evaluate the performance of our algorithm in
such tasks. Cell type fraction deconvolution is a problem commonly
seen in bulk RNA-seq data analysis. Because the deconvolution re-
sult depends on the selection of marker genes, the quality of the
selected markers can be measured by the estimation error of cell
type fractions. We design a simulation experiment to compare
MarkerPen with two supervised marker gene selection algorithms,
with experiment setting described in Supplementary Material
(Supplementary Section S7, Supplementary Figs S8, S9, S10).

In practice, deconvolution can be conducted with or without sin-
gle-cell reference samples, and the quality of reference samples may
also vary. To reflect these different scenarios, we design three mod-
els for simulating the observed data:

1. Matched reference case Reference samples and the bulk data are

simulated from the same signature matrix.

2. Noisy reference case The bulk data use a perturbed version of

the signature matrix: some percentage of the genes, ranging

from 5% to 30%, are set to noise. This indicates that some genes

may be markers in the reference data, but they play no role in

the bulk data.

3. No reference case No reference samples are simulated.

For model 1 and model 2, both the bulk data and the reference
samples are available, and we use a supervised method, dtangle
(Hunt et al., 2019), to accomplish the deconvolution. For model 3,
only the bulk data and the marker gene list are available, so we
apply a semi-supervised algorithm for deconvolution, the digital
sorting algorithm (DSA, Zhong et al., 2013). The choice of deconvo-
lution algorithms is beyond the scope of this article, as the main pur-
pose of this section is to evaluate the effect of marker gene selection
for a fixed deconvolution method. In practice any deconvolution al-
gorithm that needs marker genes can be used in place of the methods
investigated here.

In our experiments, we use the mouse brain single-cell RNA-seq
data from Zeisel et al. (2015) to generate simulation data. We select
seven major cell types (astrocytes, oligodendrocytes, microglia,
endothelial, interneurons, S1 pyramidal neurons and CA1 pyramidal
neurons) from the whole single-cell data, and restrict to 2452 genes
that are known to be associated with the cell types (Supplementary
Table S1 of Zeisel et al., 2015). Following the steps in
Supplementary Section S7, we simulate the signature matrix, refer-
ence samples, fraction matrix and the bulk data according to a sto-
chastic model. In each simulation run, the prior marker gene list is
formed by randomly selecting 50 genes from each cell type block of
the signature matrix. Of course, due to the possible perturbation of
the signature matrix, some of the claimed marker genes will be noise
in the bulk data, and hence provide little information about the cell
type. This treatment is used to mimic the quality of marker genes in
reality, and a selection method should be able to filter out the artifi-
cially noisy genes.

We repeat the procedure above 30 times, so that in every simula-
tion run, the generated data are different but follow the same sto-
chastic model. We compute the deconvolution estimation errors in
each simulation run, and summarize their distribution density curves
in Figure 3.

In Figure 3, each panel represents one model for the reference
sample. It is clear that when the reference sample and bulk data are
matched, all marker gene selection methods behave equally well,
compared with the last row that stands for no selection. However,
when the noise level increases, selection methods purely based on
the reference sample become much worse, whereas the proposed
MarkerPen is quite robust and accurate. When no reference sample

is available, reference-based selection methods do not apply, but
MarkerPen still shows improvement via semi-supervised marker
gene selection. These findings highlight the power of MarkerPen in
refining published marker genes.

3.3 Robustness
In Section 3.2, we have studied the accuracy of MarkerPen in down-
stream deconvolution tasks. Then a natural question is how robust
MarkerPen is across different datasets. To answer this question, we
experiment on the combination of four bulk datasets and three sin-
gle-cell and single-nucleus reference datasets, and study the variation
of their deconvolution results. Descriptions of these datasets are
given in Section 2.3. The rationale of the experiment is that the pro-
portions of cell types should not vary too much across datasets, so
the most robust marker gene selection method should minimize the
variations.

For each pair of datasets, we estimate the cell type fractions for
each observation, using three marker gene selection methods: the
proposed MarkerPen, the supervised method based on single-cell or
single-nucleus reference data, and a fixed set of marker genes given
by the BRETIGEA R package (McKenzie et al., 2018). Figure 4A
shows the estimated fractions averaged over all observations in the
dataset. It is easy to see that the supervised algorithm and
BRETIGEA generate significantly different results under three refer-
ence datasets, whereas MarkerPen is much more consistent and ro-
bust. We then compute a metric to measure the variation of
estimated fractions across different reference datasets (fraction vari-
ation, Supplementary Section S8), and show the values in Figure 4B.
The first four panels give the comparison in each bulk dataset, and
the last panel shows the result over all datasets. In all settings
MarkerPen is much more robust to the choice of single-cell reference
data compared with others.

4 Conclusion and discussion

We have presented the MarkerPen algorithm for identifying cell-
type-specific marker genes from bulk tissue data. Unlike most mark-
er gene detection methods that heavily rely on single-cell reference
samples, MarkerPen is a semi-supervised method that only requires
the bulk data and a prior marker gene list. This feature makes the al-
gorithm especially useful when tissue level data are not well matched
with available single-cell data. More importantly, using well selected
marker genes corrects the bias and error of downstream analyses of
bulk tissue samples. Furthermore, MarkerPen interfaces nicely with
other marker gene selection algorithms. For example, supervised
methods applied to single-cell RNA-seq data can provide the prior
gene list for MarkerPen.

A promising application of MarkerPen is to study the evolution
of marker genes over developmental stages. Preliminary studies of
the CMC data reveal that some marker genes identified from
younger subjects are less correlated in older brains (Supplementary
Section S10, Supplementary Fig. S12). The BrainVar data, which in-
clude brains sampled over all developmental stages, would provide
an ideal dataset to further investigate how marker genes change over
time; however, it will be more challenging to compare marker genes
of mature brains with those of fetal brains. We leave this topic for
future explorations.

The use of single-cell RNA-seq has increased. However, there
are drawbacks to single-cell data, including its noisy nature and the
limited number of subjects from whom cell are harvested for study.
By contrast, bulk transcriptome data are less noisy, and they can
readily be sampled from many subjects at a reasonable cost. With
larger sample sizes, bulk tissue samples can be much more inform-
ative for downstream analyses, such as eQTL mapping. With the
help of good marker genes, many deconvolution methods can pro-
vide accurate estimates of cell type fractions (Gaujoux and Seoighe,
2013; Hunt et al., 2019; Newman et al., 2015; 2019; Zhong et al.,
2013). Furthermore, cell type fractions are input of methods such as
MIND (Wang et al., 2020) and bMIND (Wang et al., 2021) to esti-
mate CTS expression profiles from bulk tissue samples, permitting
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cell-type analysis for features such as eQTLs. The performance of
these algorithms is highly dependent on the selection of good marker
genes, hence MarkerPen can play a critical role in the analysis of
CTS expression.

There are two limitations to the current version of MarkerPen.
First, although MarkerPen is based on the eigen decomposition of cor-
relation matrices, its computational complexity is greater than ordinary
principal component analysis. In practice, one might need to limit the
search range of genes to a few thousand. Despite this restriction, the al-
gorithm has been implemented in the markerpen R package with core
part written in efficient Cþþ code. Another challenge for MarkerPen is

to detect cell types that are similar, such as neuron subtypes. These sub-
types do not induce a strict block structure in the correlation matrix,
making it harder to identify subtype-level marker genes.

MarkerPen can be extended in several directions. For instance, the
current algorithm that selects marker genes performs the calculation on
one cell type at a time. It may achieve better performance, however, by
jointly selecting mutually exclusive marker genes for multiple cell types.
Another promising direction would be to extend MarkerPen to analyz-
ing unannotated single-cell RNA-seq data. It might be useful in select-
ing marker genes for clustering unlabeled cells.

Fig. 3. Impact of marker gene selection algorithm on deconvolution estimation error, displayed via density curves. The vertical axis displays different marker gene selection meth-

ods: MarkerPen, the proposed method; P-value and Ratio, selection methods based on reference samples and implemented in the dtangle R package; Published, using all published

marker genes without selection. Panels display varying levels of reference data quality, from a perfect match to 30% contamination and finally no reference data at all

Fig. 4. Evaluation of the stability of deconvolution results using a variety of reference data. (A) Estimated cell type fractions on different bulk datasets using three single-cell/nu-

cleus reference datasets and three marker gene selection methods. Deconvolution is conducted using the dtangle package. Neu¼neurons, Ast¼astrocytes,

Oli¼oligodendrocytes, Mic¼microglia, End¼endothelial. (B) Comparison of the variation in estimated fractions due to different reference data for three marker gene selection

methods. This metric quantifies the variation of fraction estimates across different single-cell and single-nucleus reference data. Variation is minimized for MarkerPen and

maximized for the supervised method, which relies heavily on the reference data. In both (A) and (B), bars represent mean values averaged over samples, and error bars show

the 99% confidence intervals for the mean values
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