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Abstract
Meta-analysis of randomized controlled trials is generally considered the most reliable source of estimates of relative

treatment effects. However, in the last few years, there has been interest in using non-randomized studies to complement

evidence from randomized controlled trials. Several meta-analytical models have been proposed to this end. Such models

mainly focussed on estimating the average relative effects of interventions. In real-life clinical practice, when deciding on

how to treat a patient, it might be of great interest to have personalized predictions of absolute outcomes under several

available treatment options. This paper describes a general framework for developing models that combine individual

patient data from randomized controlled trials and non-randomized study when aiming to predict outcomes for a set

of competing medical interventions applied in real-world clinical settings. We also discuss methods for measuring the

models’ performance to identify the optimal model to use in each setting. We focus on the case of continuous outcomes

and illustrate our methods using a data set from rheumatoid arthritis, comprising patient-level data from three rando-

mized controlled trials and two registries from Switzerland and Britain.
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Introduction
Randomized clinical trials (RCTs) and meta-analyses (MAs) of clinical trials are usually thought to be the most reliable
source of evidence to evaluate the effects of medical interventions.1 However, RCTs are often carried out in specific set-
tings and apply strict inclusion and exclusion criteria, which leads to results that may not be generalizable to routine
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practice.2 This situation leads to the so-called efficacy-effectiveness gap,3,4 where ‘efficacy’ refers to the performance of a
medical intervention under experimental conditions, while ‘effectiveness’ relates to what is achieved in everyday clinical
practice.

In the last few years, there has been growing interest in utilizing ‘real-world’ data from non-randomized studies (NRSs),
to complement evidence from RCTs in medical decision-making, aiming to bridge the efficacy-effectiveness gap.5–8 The
increased interest in NRSs was accompanied by the development of various meta-analytical modelling approaches,9–12 and
by extending methods to network meta-analysis (NMA) and individual patient data (IPD) MA.13–15 So far, methods have
primarily focussed on estimating relative treatment effects. When making (shared) decisions16 on how to treat patients in
real-world settings, the prediction of (possibly several) outcomes under all competing treatments for individual patients or
specific groups of patients is of great interest. In this context, jointly synthesizing IPD from RCTs and non-randomized,
real-world studies in a prediction framework is promising. This idea was previously explored by Didden et al.,17 who aimed
to predict the average, population-level, real-world effectiveness of a treatment pre-launch (i.e. before a treatment becomes
available for clinical practice). However, to the best of our knowledge, there are no methods that combine patient-level data
from multiple studies, randomized and observational, to provide personalized predictions for various treatments for
patients treated in real-world settings.

We set out to fill this gap and propose a general prediction framework. We extend prediction modelling methods to an
NMA setting18 to synthesize evidence on multiple interventions, utilizing IPD from randomized and NRSs. We propose a
range of modelling approaches for predicting real-world outcomes and describe methods for selecting the optimal model to
use. We focus on two-stage models, where at the first stage each study is analysed separately, and at the second stage the
study-specific results are meta-analysed. Although one-stage approaches to IPD-MA and IPD-NMA are generally consid-
ered more flexible,19 a two-stage approach is often necessary for practice, due to data restrictions, e.g. when data reside on
different servers. We illustrate how to implement our framework, using a real example in rheumatoid arthritis (RA), com-
bining data from multiple trials and registries.

A clinical example in RA
We used IPD from three RCTs and two NRS (based on disease registries) on patients diagnosed with RA, a chronic inflam-
matory disease characterized by progressive damage of joints.20 Several drugs can be prescribed for the treatment of RA. In
this example, we focus on three: conventional synthetic disease-modifying anti-rheumatic drugs (DMARDs), combination
therapy with rituximab (RTX)+DMARDs, and a combination of tocilizumab (TCZ)+DMARDs. Note that RTX and TCZ
are also DMARDs, but they are biologic in contrast to conventional DMARDs such as methotrexate, which we refer to as
DMARDs. The outcome of interest was the Disease Activity Score 28 (DAS28),21 which is continuous and ranges from 0
to 10. A lower score indicates lower disease activity.

One RCT (REFLEX) compared RTX+DMARDs versus DMARDs and included 517 patients. The other two RCTs
(TOWARD and TOWARD2) compared TCZ+DMARDs versus DMARDs, and included 1216 and 791 patients, respect-
ively. In all three RCTs, DAS28 was at baseline and after 6 months. For the two NRS, we used the measurement of DAS28
at 6 month (or the closest available measurement, within ± 3 months) after the start of the new drug. The British Society for
Rheumatology Biologics Register in Rheumatoid Arthritis (BSRBR-RA) and the Swiss Clinical Quality Management in
Rheumatoid Arthritis (SCQM) registries provided observational data.22,23 These included 2057 and 1069 patients, respect-
ively. Established in 2001, BSRBR-RA is one of the largest studies looking at the long-term safety of new drugs prescribed
for RA. It was launched when anti-tumor necrosis factor (TNF) therapies became available.21 Similarly, SCQM is a Swiss
registry established in 1997 and allowed rheumatologists to follow their RA patients to improve outcomes.22 In addition to
baseline DAS28, nine patient-level covariates were available from both RCTs and NRS at baseline: gender, age, disease
duration, body mass index, baseline rheumatoid factor, number of previous DMARDs and anti-TNF agents, baseline health
assessment questionnaire disability index, and baseline erythrocyte sedimentation rate (ESR). We provide additional
details on the studies in Tables 1–3 of the Appendix. Figure 1 shows the network graph and overview of data sets.

Methods

Overview
Below, we propose a statistical framework to facilitate personalized medicine when IPD from NRS and RCTs are available.
This framework can be used to build a multivariable model that predicts (absolute) patient-level, real-world outcomes for a
range of different treatments for a given disease. We assume that the available data are IPD from a set of RCTs and NRS
that compare two or more treatments for the same disease. The final product of our analyses will be a model where the input
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is a vector of patient-level covariates (x), and the output is the predicted outcome under each treatment (t). In what follows,
we focus on the case of a continuous outcome and we limit our investigation to models with linear functions of the cov-
ariates. The model is as follows:

ypred(x, t) = α+ βTx + γTtAx+ δtA (1)

where A is a reference treatment and x is a vector of patient-level covariates that may impact the outcome, possibly inter-
acting with treatment. Without loss of generality, we assume all continuous covariates to be standardized, to facilitate
model fitting. Next, α is the predicted outcome under treatment A when x = 0; β encompasses the prognostic ability of
the covariates; γtA expresses the effect modification (i.e. treatment-covariate interactions) of treatment t versus A; and
δtA is the relative treatment effect t versus A for x = 0. We set γAA and δAA equal to zero. If a non-linear relationship is
suspected, we can expand Equation (1) to include fractional polynomials or cubic-spline terms. Such extensions are
straightforward within the framework described below but are beyond the scope of this paper.

We describe a range of meta-analytical two-stage approaches that can be used to estimate the parameters in the predic-
tion model of Equation (1). First, we analyse each study separately. Second, we meta-analyse the study-specific estimates,
to estimate all parameters needed for Equation (1).

We focus on Bayesian approaches because of their flexibility and ease of propagating uncertainty. We describe three
generic approaches for building prediction models that combine IPD from studies of variable design.

• Approach I: We only use the IPD from a single NRS, i.e. without using MA.
• Approach II: We combine the IPD from all studies (NRS and RCTs) using a two-stage NMA, considering three different

implementations. In approach IIa, we do not account for differences in study design. In approach IIb we employ shrink-
age methods. In approach IIc, we further calibrate24 the intercept and main effects of covariates to target a specific patient
group, using data from a single NRS that reflects this population.

• Approach III: We combine the IPD from NRS and RCTs using a two-stage NMA and adopt a weighting scheme to
account for different study designs (IIIa). Again, we allow for re-calibrating the intercept term and main effects of cov-
ariates to target a specific patient group (IIIb).

As an additional, simplified method, we combine all studies as in IIa but we do not include any treatment-covariate inter-
actions, i.e. we set γ = 0. We call this Approach IV. After describing the various approaches in detail, we discuss ways of
assessing their performance. Table 1 summarizes each approach, briefly describing the model and citing equations used.

Approach I: Analysis of a single study, reflecting the target population
Let us assume that our aim is to predict outcomes for a real-world population from which we have a representative sample, includ-
ing patient-level data (e.g. from a specific registry). We can build a prediction model using these data alone (e.g. the model of

Figure 1. Network graph for the rheumatoid arthritis example. Green lines show RCTs and red lines show NRS. There were three

two-armed RCTs; two of them compared TCZ+DMARDs vs DMARDs and one compared RTX+DMARDs vs DMARDs. There were

two NRS, which included all three drugs. Abbreviations: DMARDs: Conventional disease-modifying anti-rheumatic drugs; RTX:

rituximab; TCZ: tocilizumab; RCT: randomized controlled trial; NRS: non-randomized study.
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Equation (1)) and disregard all other sources of information. This approach is relatively common in the literature, although (a) usual
applications do not account for multiple interventions, and (b) these models are often based on IPD from a single RCT.

To enhance the predictive performance of the model, we can incorporate shrinkage in the model estimation. Shrinkage
methods are known to improve prediction accuracy,24,25 while it has been recently shown that they can be useful in a MA
setting, when aiming to estimate patient-level treatment effects.26 We are particularly interested in shrinking treatment-
covariate interactions because information on effect modification is important, as it may substantially affect decision making.

There are many different frequentist as well as Bayesian shrinkage methods we could use. For example, for Bayesian
shrinkage, we can penalize the coefficients of the effect modification (treatment-covariate interactions, i.e. γ parameters in
Equation (1)) using a Laplace prior distribution. When the scale parameter of the Laplace prior distribution is assigned its
own prior distribution, the model is often referred to as a Bayesian LASSO.27,28 The prior for effect modifiers of treatment
W versus the reference A is given by:

π(γWA∣λ) =
∏ncov
k=1

λ

2
e−λ∣γk,WA∣ (2)

where ncov denotes the total number of covariates, γk,WA is the regressor for effect modification of the k th covariate, and λ is
the shrinkage parameter that controls how much estimates are shrunk to zero. There are several ways to select the shrinkage
parameter, e.g. we can use k-fold cross validation or choose the value via Bayes factor.29 We hereby chose to treat it as
random and assign a non-informative hyperprior. Details on the hyperprior are given in the ‘Fitting the models’ section.
Of note, Bayesian LASSO does not strictly perform variable selection, since covariates are not shrunk all the way to zero.
As discussed above, we used penalization only for γ. Alternatively, we could also penalize prognostic factors, i.e. the β para-
meters as well. For further discussion on possible extensions of this model we refer the reader to the Discussion section.

Approach II: Design-naïve NMA
In this approach, we use all studies to fit a two-stage IPD NMAmodel.30 We disregard the information on study design, i.e.
we treat RCTs and NRS the same. Thus, we use all studies to inform parameters β, γtA, δtA in Equation (1). The α parameter
of this model, which denotes the predicted outcome for zero value of the covariates under the reference treatment A, will
only be informed by studies that included this treatment. This means that the choice of reference treatment is potentially
important (while the choice of reference is arbitrary in the standard NMA model.18) An obvious choice A is the treatment
that is given to most patients across the available data sets.

Let us assume that patient i was included in the study j, received treatment tij, and that for this patient the observed
outcome of interest was yij, measured on a continuous scale. Also, we assume that for this patient we have xij covariates.
Let us also assume that the study j had only two treatment arms,W and A (the reference). Under these definitions, the first
stage model is as follows:

yij ∼ N (mij, σ2j )

mij = aj + bTj xij + cTj,tijA xij + d j,tijA

σ2j , aj, bj, cj,WA, d j,WA ∼ (vague prior distributions)

(3)

where we set cj,AA = d j,AA = 0; mij denotes the expected outcome (linear predictor); σ2j is the study-specific variance of the
outcome; aj is the study-specific intercept; bj is the vector of study-specific regression coefficients for the main effects of
the covariates; cj,WA is the vector of coefficients for effect modification (i.e. treatment-covariate interaction) for study j and
treatment W relative to A; and d j,WA is the treatment effect at x = 0, for study j and treatment W relative to A. Prior dis-
tributions for these parameters are described in more detail in the ‘Fitting the models’ section. Thus, at the first stage of
the model we estimate θ̂j = (âj, b̂j, ĉj,WA, d̂ j,WA) and the corresponding variance-covariance matrix Ŝj.

These estimates contribute to the likelihood of the second stage of the MA, via a multivariate random-effects model:

θ̂j ∼ N (ξj , Ŝj)

ξj ∼ N ((α, β, γWA, δWA), Σ)

(α, β, γWA, δWA, Σ) ∼ (vague prior distributions)

(4)

where Σ is a between-study (i.e. random effects) variance-covariance matrix. Note that when using the IPD NMA model,
we are typically interested in estimating relative effects (i.e. γ, δ), while α is usually set to be study-specific and is
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considered a nuisance parameter. Here, however, we want to predict absolute outcomes; thus, we also require estimates of
α, β. The estimation of Σ might be difficult, especially for a few studies or many covariates. In this case, we may simplify
the model by assuming α, β, and γWA to be common (fixed), i.e. independent of the study.

Furthermore, a typical assumption in NMA is that the between-study variance (τ2) of the random effects is the same
across treatment contrasts.18 Then, the second stage model can be written as follows:

θ̂j ∼ N ((α, β, γWA, θ(δ)j,WA), Ŝj)

θ(δ)j,WA ∼ N (δWA, τ2)

(α, β, γWA, δWA, τ2) ∼ (vague prior distributions)

(5)

For multi-arm studies and for studies that do not include reference treatment A, the models need adaptation; we provide
details in Section 2 of the Appendix.

Again, it may be difficult to estimate heterogeneity (τ2) of the treatment effect δ when only a few studies are available.
This is the case for the RA example described in the ‘A clinical example in RA’ section. One solution would be to use
external information to create an informative prior distribution for τ2. For example, for the case of binary outcomes,
Turner et al.31 proposed empirical distributions that can be used in Bayesian MAs. A further simplification would be to
assume common δ:

θ̂j ∼ N ((α, β, γWA, δWA), Ŝj)

(α, β, γWA, δWA) ∼ (vague prior distributions)
(6)

We call Approach IIa the combination of Equation (3) and Equation (5) or (6) to estimate the parameters of Equation (1).
Approach IIb is an extension of IIa, where we use the shrinkage method (i.e. Bayesian LASSO) at the first stage.

Lastly, we can further extend Approach IIb by calibrating the intercept and main effects of covariates to target a specific
real-world population. A motivation for this is that data sampled from the patient population of interest might be the best
source of evidence for predicting the reference treatment outcome. Conversely, estimates of the intercept term obtained
from RCTs might be less representative for the target population because RCT patients are selected and because RCTs
are performed in highly controlled settings.

In detail, we use Approach I to estimate α, β using only data obtained from a study that reflects the target population, and
Approach IIb, using all data to estimate γ, δ. We then use Equation (1) to make predictions for individual patients. We call
this Approach IIc. To summarize, in Approach IIc we use study-specific estimates of α, β and pooled relative effects, i.e. γ,
δ. Note that we fit the full model within each study separately, and then pool all parameters (including all main effects and
interactions) in the second stage of the model across studies. Table 1 summarizes all the different flavours of Approach II.

Approach III: Design-adjusted analysis
For Approach III, when aggregating parameters at the second stage, we use a weighting scheme for studies of a different
design.15 Specifically, we weight the first-stage estimates of relative treatment effects from Approach IIb according to the
corresponding study’s design.

In this approach, the variance of the estimates of treatment effects and effect modification obtained from NRS j (i.e. the
variance of ĉj,WA, d̂ j,WA) is inflated after dividing by a factor wj, with 0 < wj < 1. By doing so, we effectively decrease the
impact of NRS in the estimation of all relative treatment effects. Setting wj0 corresponds to completely disregarding esti-
mates of relative treatment effects obtained from NRS.

This approach’s motivation is that RCTs are usually thought to be the most reliable sources of information for relative
treatment effects because randomization helps us avoid issues related to confounding. Moreover, since we aim to predict
outcomes for real-world populations, estimates for the model’s intercept (α) and the main effects of the covariates (β) are
aggregated only using NRS. The second stage model is as follows:

(ĉj,WA, d̂ j,WA) ∼
N (γWA, δWA),

Ŝj

wj

( )
, if study j is an NRS

N ((γWA, δWA), Ŝj), if study j is an RCT

⎧⎪⎨
⎪⎩

(γWA, δWA) ∼ (vague prior distributions)

(7)
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and

(âj, b̂j) ∼ N ((α, β), Ŝj), if study j is a NRS

(α, β) ∼ (vague prior distributions)
(8)

For choosing the weights we can consider e.g. study quality, or how similar is the healthcare system of an NRS from a specific
country as compared to that of a target population;15 in practice, a range of values can be used, and model performance mea-
sures can be assessed (see next section) to decide on the optimal weights. See also the Discussion section for some additional
considerations regarding weights. We call this Approach IIIa. Finally, instead of aggregating NRS to estimate study intercept
and main effects, we can calibrate to target a population as in Approach IIc. We call this approach IIIb.

Approach IV: Design-naïve NMA without effect modifiers
For Approach IV, we fit the similar design-naïve NMA, but without including effect modifiers (i.e. setting γ = 0). This may
serve as a sensitivity analysis, and by comparing its results with the previous methods we might obtain insights on the
extent of heterogeneity of treatment effects. The linear predictor is now

mij = aj + bTj xij + dj,tijA (9)

and the multivariate MA is

θ̂j ∼ N (ψ j, Ŝj)

ψ j ∼ N ((α, β, δWA), Σ)

(α, β, δWA, Σ) ∼ (vague prior distributions)

(10)

where θ̂j = (aj, bj, dj,tijA)

Assessing the performance of the prediction models
A common practice to measure a prediction model’s performance for a continuous outcome is through mean squared error
(MSE) and bias:

MSE = 1

N

∑
i,j

(ŷij − yij)
2, Bias = 1

N

∑
i,j

(ŷij − yij) (11)

where N is the total number of patients in a given study of interest, ŷij is the predicted outcome using equation (1) and yij is
the observed outcome. Values close to zero indicate good performance. Note that since the focus is on predicting real-world
outcomes, metrics should be evaluated on NRS data.

We can also calculate the coefficient of determination (R-squared) to evaluate a model’s performance for a given study
of interest. We do that by using only yij and ŷij from each model:

R2 = 1− SSres
SStot

(12)

where SStot =
∑

i,j (yij − �y)2 is the total sum of squares, �y is the average observed outcome, and SSres =
∑

i,j (ŷij − yij)
2 is

the residual sum of squares. We can also fit a regression line to inspect the agreement between observed and predicted
patient outcomes, i.e.

yij = η0 +
∑K
k=1

ηk ŷijI (tij = k) (13)

where K is the total number of treatments and I(tij = k) is an indicator function that equals 1 if the treatment assigned to a
patient i in study j was k, and 0 otherwise. This ‘calibration line’ compares the observed (yij) with the predicted outcome
(ŷij) across different treatment groups. Having η0 close to 0 and η1, …, ηK values close to 1 indicate good performance of
the prediction models.

The performance measures in equations (11), (12), and (13) inform us of our models’ overall predictive ability.
However, when deciding on how to treat, we are mainly interested in selecting the best treatment for each patient.
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Thus, a prediction model that would be useful for deciding between competing treatments should also be well calibrated in
terms of estimated treatment benefit. To achieve this, we reshape the calibration line using the predicted benefit (i.e. the
difference between predicted outcomes under different treatments). For networks with treatments 1, 2, 3, … for each of
the competing models we fit the line

yij =κ0 + κ1ŷij,1 + κ2(ŷij,2 − ŷij,1)I (tij = 2)

+ κ3(ŷij,3 − ŷij,1)I(tij = 3)+ . . .
(14)

where ŷij,1, ŷij,2, ŷij,3,… are the predicted outcomes of a patient under treatments 1, 2, 3,… respectively, under this model.
Similarly, having κ0 close to 0 and κ1, κ2, κ3, … values close to 1 indicate good performance of the prediction models.

Cross validation
For each competing model, we can calculate the performance metrics discussed above using internal as well as an internal–
external cross validation.32,33

For internal validation, we use all available data to develop the models. Then, given that we aim to predict real-world
outcomes, we use the NRS to test all models, i.e. to compare predictions with observations using the measures described in
the previous section. To correct for optimism,24 we can calculate optimism-corrected performance using bootstrapping as
discussed by Steyerberg.24 More details on this procedure are given in Section 2.2 of the Appendix. An internal validation
procedure will inform us on which model performs best for each specific setting, provided we stratify the procedure by
study.

For internal-external cross-validation, we exclude one NRS from the analysis and use the rest of the data to train the
models. We then use the left-out NRS to make predictions and compare them with observations. Finally, we cycle
through all available NRS. To follow this approach, we need data from multiple NRS to be available. If this is not the
case, we may split the single NRS data in a meaningful non-random way, e.g. by clinic, region, or any other clustering
variable in our data set. This internal-external validation procedure can potentially provide insights on which model
might perform better in new settings.

The internal–external cross-validation via leave-one-study-out cannot be combined with Approach I, as this analysis
only uses a single study to train the model. In this case, we can instead use all NRS except the left-out one to develop
the model. For instance, for the RA case study, we only used the British registry to train the model and the Swiss registry
to make predictions, and vice versa. Moreover, for Approach IIc and IIIb, when using internal-external cross-validation, we
use all NRS except the left-out to estimate intercept and main effects of covariates, i.e. we do not use RCTs.

Implementation details
Below we provide some details on implementing the described models in the RA example.

Standardization of covariates
To use penalized estimation in the analysis of study j we need to standardize variables. This is necessary to ensure that
penalization is equally applied to all regressors.25 Standardizing means transforming each covariate in each study by sub-
tracting the study-specific mean from the covariate and dividing the result with the covariate’s study-specific standard devi-
ation. However, standardizing makes it difficult to MA results from multiple studies coherently, given that in each study the
covariates are transformed differently. Thus, before aggregating the first stage results at the second stage, we need to revert
coefficients to their natural scale. The mathematical details of how to do this are provided in Section 2.3 of the Appendix.

Imputation of missing data
Gelman et al.34 recommended the following approach to handle missing data in Bayesian analyses via Markov Chain
Monte Carlo (MCMC): (a) create m multiply imputed data sets; (b) analyse each imputed data set separately; (c)
combine the m posterior draws, i.e. by mixing the corresponding draws.

We use R package mice35 to impute the missing covariates to create m = 20 multiply imputed data sets.36 When imput-
ing we used information from covariates, treatment, covariate-treatment interactions, and outcomes, but we did not impute
the missing outcomes for model development. Imputation was done in each study separately using the method of predictive
mean matching.
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Fitting the models
All analyses were carried out in R37 using rjags.38 For all models, DMARDs were the reference treatment. When fitting
the first stage models, we used 20 imputed data sets and ran 3 chains of 10,000 iterations each, with 1000 burn-in. For the
second stage models, we ran 3 chains of 200,000 iterations with 20,000 burn-in. We assessed convergence using the
Gelman and Rubin diagnostics.39

For all models, we used a vague prior distribution for the standard deviation of continuous outcomes
(σj ∼ Uniform(0, 5)). For regression parameters of stage one (i.e. α, β, γWA, and δWA), we used a
Normal(0, σ2 = 1000) distribution. When applying Bayesian LASSO in stage one, a vague prior distribution was
placed on the scale parameter for Laplace prior (λ−1 ∼ Uniform(0, 5)). We tested the sensitivity of results to the selection
of prior distribution on λ. For Approach III, we used weights 0.25 and 0.5.

For calculating optimism-corrected performance, 200 bootstrap samples were drawn. The R codes used for fitting all
models are available at https://github.com/MikeJSeo/phd/tree/master/ra.

Results
The parameter estimates from the first-stage analysis for each study are shown in Tables 4, 5, 6, and 7 in the Appendix.
There were some important differences between RCTs and NRS, especially in the case of the Swiss registry. Τhe estimated
intercept term for this study was much smaller than for the RCTs, probably owing to the fact that the Swiss registry had the
lowest average DAS28 score; see Table 3 in the Appendix. Moreover, the average relative treatment effects of the biologic
treatments versus DMARDs estimated in the registries were smaller than in the RCTs. These differences might raise con-
cerns about the direct applicability of the RCT findings in patients found in real-world settings. We might hypothesize that
these differences were due to residual confounding, model misspecification (e.g. omission of non-linear or interaction
terms), or due to the more general ‘efficacy-effectiveness gap’ described in the Introduction.

Furthermore, there was only very weak evidence of heterogeneous treatment effects (i.e. effect modification) across all
studies. Results from the second-stage analysis are shown in Table 8 of the Appendix. As expected, given the first stage
results, methods that gave more weight to the RCTs in the estimation of relative effects provided larger effects. Next, we
assessed all models’ performance using the measures described in the ‘Assessing the performance of the prediction models’
section and following the two cross-validation approaches described in the ‘Cross validation’ section.

We first discuss the results from the internal validation. In Table 2, we give results in terms of MSE and Bias, and in
Table 3 results for the calibration lines and R-squared value. Figures 1 and 2 in the Appendix show the calibration plots.
Overall, we saw that for most approaches the bias was rather small in clinical terms. MSE was around 1.5 for all models; to
bring it to the same scale as the outcome we can calculate the root of MSE, i.e. 1.22, deemed to be small-to-moderate in
clinical terms. R-squared was moderate (around 0.30 for all approaches). Moreover, we see that most models had similar
performance. For the Swiss registry, Approach I performed slightly better for most measures of performance. For the
British registry, approach IIIa was overall the best, especially in measures of calibration. However, differences with
other methods, including Approach I, were not very pronounced. This showed that, when predicting real-world outcomes,
utilizing data from multiple studies and using advanced analysis methods brought no benefit to the Swiss and small benefits
to the British registry.

Next, we discuss results from the internal–external validation. This procedure gave us some insight into the models’
expected performance when applied in new settings. Results are summarized in Tables 4, 5, and Figures 2, 3. Overall, cali-
bration lines’ intercepts were far from zero for most models, and R-squared values were quite low, indicating low perform-
ance. Removing Swiss registry data from the training set and using it for validation resulted in models IIa, IIb, and IIIb
performing best. Likewise, when we left the British registry out, we saw that model IIb and IV performed best
Approaches IIb and IV gave almost the same results and were overall the best for both registries. They had the lowest
overall MSE, relatively higher R-squared value and lower bias for all treatment arms and were slightly better calibrated
for both the absolute outcome and treatment benefit compared to the other models. This showed that utilizing information
from RCTs can help us better predict real-world outcomes compared to using only data from NRS. It also showed that in
this data set there was little evidence of an effect modification. Thus, if we aim to make predictions about patients in a new
setting (e.g. another country), for which no data are currently available, we would recommend Approaches IIb or IV. See
also the Discussion section on additional considerations regarding generalizability.

Figure 4 summarizes the MSE and bias results for both internal and internal-external validation. In Table 9 of the
Appendix we show results after correcting for optimism. We saw that Approach I had slightly larger optimism, as com-
pared to other methods. However, these optimism-corrected results did not materially change the conclusion drawn
from the main analyses. This is because optimism was generally quite small for all models. This was expected, since
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Figure 2. Calibration plot from internal–external validation, for the Swiss registry as the external data set. Black line is line of perfect
calibration. Red line is the slope for DMARDs; green line is for RTX+DMARDs; blue line is for TCZ+DMARDs. Each dot represents

one patient. Abbreviations: DMARDs: Disease-modifying anti-rheumatic drugs; RTX: rituximab; TCZ: tocilizumab.

Figure 3. Calibration plot from internal-external validation, for the British registry as the external data set. Black line is line of perfect

calibration. Red line is slope for DMARDs; green line is for RTX+DMARDs; the blue line is for TCZ+DMARDs. Each dot represents

one patient. Abbreviations: DMARDs: Disease-modifying anti-rheumatic drugs; RTX: rituximab; TCZ: tocilizumab.
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the sample size was big, the outcome was (approximately) continuous, and we only used few predictors. Finally, results did
not materially change when using different prior distributions for λ.

Discussion
This paper presents a general framework for developing methods to predict real-world outcomes for a range of different
treatment options. We focussed on continuous outcomes and proposed various prediction modelling approaches and
methods for assessing their performance. Our models were based on two-stage IPD NMA and utilized both randomized
and observational data.

We used a data set of patients with RA obtained from three RCTs and two registries to illustrate our methods. For this
example, we developed six meta-analytical models and a simpler model (i.e. Approach I). The latter only utilized data from
a single registry at a time. After fitting each model, we assessed its internal and internal–external performance while adjust-
ing for optimism. In these validations, we compared observed outcomes versus predictions for all registry patients and cal-
culated bias, MSE, and R-squared. We also fitted calibration lines, both for the overall outcome as well as for treatment
benefit.

For our example, internal validation showed that Approach I was among the best performing approaches for both the
Swiss and the British registry. Thus, for this particular example, the incorporation of RCT data and advanced
meta-analytical modelling brought small benefit in terms of predictive ability for patients found in these two registries.
Conversely, the internal–external cross-validation procedure identified Approaches IIb and IV as the best-performing
ones. This suggested that these two might be the best for patients found in a completely new setting among all developed
models. However, we should keep in mind that to establish the generalizability of a model, we would need data from mul-
tiple real-world settings to be available. In case of important heterogeneity (i.e. when there are great differences across
different real-world settings), it will be tough to make predictions about patients found in new settings. This is one
general limitation of all proposed methods.

Another important limitation of our approach is the need for IPD from multiple sources. IPD is generally hard to obtain
at the MA level. However, new initiatives have been recently launched, such as YODA (https://yoda.yale.edu/), Vivli
(https://vivli.org/), and Clinical Study Data Request (https://www.clinicalstudydatarequestcom/), aiming to promote
large-scale IPD sharing. Moreover, our approach requires a connected network of interventions. In practical applications,
the available NRSs may not include all interventions of interest (despite forming a closed network). In such cases, although
we can still use some of the described methods to make predictions for outcomes under the missing treatments, there is no
way to assess the goodness of these predictions for these particular settings. Another limitation is that we only discussed the

Figure 4. Bar plot summarizing MSE and bias calculated through an internal (top row) and internal–external (bottom row) validation,

for the Swiss and British registry (SCQM and BSRBR-RA respectively). For internal–external validation, the labelled study is used as the

target data set. Abbreviations: MSE: Mean squared error; DMARDs: Disease-modifying anti-rheumatic drugs; RTX: rituximab; TCZ:

tocilizumab.
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case of comparative studies, i.e. studies that included more than one treatment. A generalization of the methods to include
single-arm studies might be of interest in a follow-up project.

An additional limitation is that the proposed linear model (with only two-way interactions between treatment and cov-
ariate) might be too simple to predict accurately in the real-world. If a non-linear relationship is suspected, we could con-
sider models that include fractional polynomials or cubic splines. Alternative approaches include tree-based methods.40–42

However, we did not explore them in detail.
In Approach III, we used fixed weighting factorswj. We arbitrarily used values of 0.25 and 0.5 for these factors. Sensitivity

analysis showed that using different values did not alter much the performance of the model. Alternatively, we could have
used flexible weighting, e.g. by assigning a prior distribution to wj, treating the weight as a random variable.15 This is similar
to the ‘power prior’ approach.43,44 We fitted a model that used a modification of the power prior approach, called normalized
power prior45,46 in the RA data set. In this model, the parameter estimates fromNRS are down-weighted according to whether
they agree with the RCT estimates. In the case of a large disagreement, there is more down-weighting. We found that the
weighting factors decreased all the way down to zero for the RA data set, negating all information from the NRS. For
large sample data sets the RCTs and NRS are likely to disagree (i.e. large discrepancies between the mean and variance
of RCTs and NRS), which will lead to pronounced down-weighting.47 Thus, we did not show models based on the
power prior in this paper; however, this might be an interesting area for future development. Also, we could assign
weights to different model parameters, e.g. the intercept term, if deemed appropriate; we did not pursue this further in this
paper. Another limitation of our methods is that it may often be difficult to use calibration measures (i.e. calibration intercept
and slope for predicted outcome and predicted benefit) to compare the performance between competing models. It is possible
that some models yield accurate outcome predictions (i.e. prognosis) but not of treatment benefit, and vice versa. Selecting an
appropriate model will then strongly depend on the context in which the model should be used.

Moreover, we could have explored approaches where penalization also applies to prognostic factors and not only to
effect modifiers, and also other penalization methods. Also, we only discussed two-stage meta-analytical approaches;
however, making these methods one-stage is straightforward. Another interesting idea suggested by one of our anonymous
reviewers would be to include study design as yet another predictor in the second-stage model. However, it would be dif-
ficult to implement in our data set, which only includes two NRS; we leave this idea for future research.

In this paper, we used a simple regression adjustment for estimating treatment effects from the observational studies.
Alternative methods such as propensity score matching48 or inverse probability of treatment weighting (IPTW) could
be used when the assumptions behind the regression adjustment seem implausible. We explored the use of IPTW and pre-
liminary results showed a similar performance to the models based on regression adjustment. Thus, we decided to leave this
for future work. Note, however, that no method for causal inference guarantees unbiased estimation of treatment effects
from the observational studies. In our framework, when these estimates are biased, models that use this information
(such as Approach IIa or IIb) are expected to perform worse, and thus not be selected at the end as the final model.
Also, note that all methods for causal inference are limited by unmeasured confounding.

Furthermore, in practical applications, we often face the problem of ‘systematically missing’ predictors, i.e. when a pre-
dictor is missing for all individuals within particular studies in an IPD MA. There have been methods proposed for imput-
ing such predictors, based on the missing at random assumption.49 There is also an R package micemd,50 which
implements some of these imputation methods. This however requires all data to be on the same server; in our experience,
this cannot always be achieved, especially when data from different studies are owned by different for-profit companies. In
such cases, researchers may only get access to data via the companies’ private servers, without being able to merge data sets
from different studies.

Finally, we note that our methods need to be extended to cover the case of binary and time-to-event outcomes. This
might be challenging, especially when assessing the predictive performance of different approaches using calibration
for treatment benefit. For example, the so-called c-statistic for benefit was recently proposed51 and might be used to
this end; however, future research is needed to investigate this.

To summarize, this is the first paper to propose and compare two-stage meta-analytical IPD models for predicting the
real-world effectiveness of interventions to the best of our knowledge. The gain in predictive performance from combining
RCTs and NRS was modest in our clinical example. Nevertheless, the illustration of different modelling approaches and the
considerations regarding different cross-validation methods that we provide may be valuable to inform future studies
aiming to predict real-world outcomes of competing interventions.
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