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Ciliates are swimming microorganisms in aquatic environments. Habitats where ciliates accumulate include 

nutrient-rich solid–liquid interfaces such as pond bottom walls and waterweed surfaces. The ciliates stay near the 
walls to survive. We investigated the dynamics of the near-wall behavior of ciliates. In experiments, the ciliates 
were made to slide on a flat wall of glass substrate. When encountering the wall, the wall-side cilia of the cells stop 
their motion and lose their propelling activity, which indicates that the ciliates have a mechano-sensing system for 
cilia beating. Based on the experimental results, we hypothesized that the ciliary thrust force that propels the cell 
body becomes asymmetric, and the asymmetry of the thrust force generates a head-down torque to keep the cell 
sliding on the wall. To prove this hypothesis, we performed numerical simulations by using a developed 
hydrodynamic model for swimming ciliates. The model revealed that the loss of cilia activity on the wall side 
physically induces a sliding motion, and the aspect ratio of the cell body and effective cilium area are critical 
functions for the sliding behavior on a wall. In addition, we investigated the stability of the sliding motion against 
an external flow. We found that ciliates slide upstream on a wall. Interestingly, the dynamics of this upstream 
sliding, called rheotaxis, were also explained by the identical physical conditions for no-flow sliding. Only two 
simple physical conditions are required to explain the dynamics of ciliate survival behavior. This review article is 
an extended version of the Japanese article, Fluid Dynamic Model Reveals a Mechano-sensing System Underlying 
the Behavior of Ciliates, published in SEIBUTSU BUTSURI Vol. 61, p.16-19 (2021). 
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Introduction 
 

Microorganisms are found everywhere on Earth, both in the ground and in water, and play an essential role in 
maintaining ecosystems [1–5]. They have survived in harsh natural environments by optimizing their biological functions 
and behavioral patterns. Understanding the principles of their behavior can enhance our knowledge of ecosystems and the 
survival strategies of microorganisms in evolution. 

 
Ciliates, one class of eukaryotic unicellular organisms, are essential for maintaining aquatic ecosystems. 
Quantifying their behaviors in water environments provides us with a detailed understanding of ecosystems. To 
identify the characteristic dynamics of ciliate behavior in nature, we performed microscopy observations and 
hydrodynamic simulations on swimming ciliates close to a wall and in a shear flow. As a result, mechano-sensing 
of cilia and an ellipsoidal cell shape dynamically described the survival behavior of ciliates efficiently. The physical 
approach revealed a survival strategy for swimming microorganisms. 

◀ Significance ▶ 
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Although unicellular organisms do not have a nervous system, they sometimes behave in a way that is efficient for 
survival as if they have a will. This seems mysterious. What determines the behavior of microorganisms? The answer is 
reactive behaviors against stimuli that they receive from the extracellular environment. The stimuli can include 
concentration gradients of chemical substances, temperature gradients, light, flows, and contact with objects. For instance, 
microorganisms move toward prey by sensing the chemicals emitted by nutrients, and photosynthetic microorganisms 
move toward light, known as chemotaxis and phototaxis, respectively [6–11]. To elucidate the response mechanisms to 
collision, contact and flow, we must focus on an initial physical stimulus. Specifically, since contact with a boundary and 
an external flow can directly affect the propelling speed and direction without biochemical sensing systems, it is necessary 
to consider the physical dynamics of microorganisms in response to kinetic effects. 

Among microorganisms, eukaryotic unicellular organisms are called protists. One class of protists, ciliates, live in ponds 
and swamps and are the main organisms inhabiting freshwater [12–16]. Ciliates are characterized by the presence of hair-
like organelles called cilia on their entire body surface. Ciliary beating propels these bodies freely in bulk water [17–21]. 
During life, ciliates accumulate close to oxygen–rich liquid–air interfaces, which is often seen in experimental cultures 
[22,23]. On the other hand, in nature, ciliates are also seen close to solid–liquid interfaces such as the bottoms of ponds 
and swamps and the surfaces of stones and water plants [24–28]. Many ciliates tend to accumulate close to these “walls” 
to obtain sedimented nutrients such as organic matter [29–32]. While the 
qualitative property of this wall preference has been clarified, the mechanism 
remains unclear. How do swimming ciliates such as Paramecium and 
Tetrahymena stay near a wall? (Fig. 1) 

In addition to wall preference, another mysterious property of ciliates, 
rheotaxis, was reported over 100 years ago [17]. Rheotaxis is a well-known 
property of freshwater fish living in a river, which swim against currents [33–
38]. To avoid being swept away by a flow from a comfortable environment 
where the swimming organisms grow easily, they must resist the flow. 
Although the mechanisms between fish swimming and cell swimming are 
totally different in terms of fluid dynamics, both swimming organisms 
interestingly show the same resistive property against external flow. While 
the rheotaxis of mammalian sperm and bacterial cells was quantified by 
controlled experiments and mathematical simulations, the dynamics 
affecting the rheotaxis of ciliates have been unclear for 100 years. 

In this review, we introduce a mechanical model of microbial swimming 
and use it to explain the dynamics using the behaviors of ciliates, which 
occur close to a wall and in an external flow [39–42]. 
 
Behaviors of Ciliates 
 

Lifestyles and cell shapes of ciliates are diverse. The ciliate called Lacrymaria, which has an extendable neck and an 
oral apparatus on the distal end of the neck, extends the neck to 8 times longer than the cell body to catch a food source 
[43–45]. Euplotes have many foot-like structures termed cirrus, using which they walk on solid surfaces. They 
occasionally stop and create a flow parallel to the wall to feed on the food [46,47]. On the other hand, Vorticella does not 
move by adhering to solid surfaces with their stalk and feed by creating a feeding flow toward the surface. Stenter adheres 
and feeds similarly to Vorticella [48] but swims and searches for suitable sites for survival depending on the external 
environment [49,50]. In addition, the Spirostomum quickly contracts when it senses an extracellular stimulation. The flow 
induced by the contraction introduces other neighboring cells alert to the danger [51]. The cellular shapes of ciliates have 
diverse, not only the commonly seen oblate ellipsoid but conical, cylindrical, thin-film, string-like, branched, and even a 
well-developed pleated structure [52]. In this review, we focus on simple swimming ciliates with a cell shape like an 
oblate ellipsoid, such as Paramecium and Tetrahymena.  

When ciliates are swimming, cilia beatings on a cell body are synchronized, which is called metachronal wave. The 
metachronal wave generates more stable flow than a stroke of single cilium and reduces the energy expenditure required 
for beating [53,54]. For some ciliates, the ciliary beat frequency is heterogeneous on the cell body and correlates to ciliate 
swimming speed [19]. The cilia on ciliates beat in a direction slightly oblique to the cell's anterior-posterior axis [55]. 
Marumo et al. observed 3D helical swimming trajectories of Tetrahymena and confirmed the relationship between cilia 
beating pattern and the 3D trajectories experimentally [56].  

Regarding interaction of ciliates with a boundary, Ferracci et al. observed Tetrahymena being entrapped at liquid-air 
interfaces as well as solid-liquid interfaces [22]. Manabe et al. numerically showed the entrapment comes from two 
parameters of cell shape which are fore-and-aft asymmetricity and constriction [23]. When ciliates are confined in solid-
liquid boundaries, they show interesting responses. Paramecium in a narrow capillary tends to escape from the closed 

Figure 1  Snapshot of T. pyriformis 
sliding on a glass surface. Scale bar is 20 
µm. 
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edge of the capillary defined as a dead-end [57]. Paramecium in a narrow rectangular channel changes behaviors: ballistic 
motion, meandering and self-bending [20]. Tetrahymena between two flat plates with a small angle tends to escape from 
the narrow side of space by hydrodynamic effect [58]. Tetrahymena in a small water droplet swims in a circular trajectory 
along the boundary of the droplet [21]. Once released from the droplet to the bulk, they continue to swim circularly with 
the diameter and period which are the same when swimming in the droplet. 

While the above studies focus on a behavior of a single cell, collective dynamics of ciliates suspension also has been 
investigated. Shallow suspensions of swimming microorganisms create collective convection driven by concentration of 
them and form spatial patterns in a petri dish. This phenomenon is called a bioconvection. The bioconvection has been 
observed in suspensions of Paramecium and Tetrahymena, which have been analyzed as a macroscopic phenomenon 
with a convection–diffusion equation [59–62]. 
 
Mathematical Model for Swimming Cells 
 

In 1952, Lighthill proposed a simple fluid model of 
microbial swimming assuming a steady Stokes flow [63]. The 
model, called the Squirmer model, has been developed by 
many researchers [64–68]. The superiority of this model lies 
in the fact that it divides the swimming types of 
microorganisms into three major patterns, independent of the 
species, according to the shape of the flow field generated by 
the microorganisms during swimming. This makes it possible 
to compare and discuss the swimming motions of 
microorganisms across species. Bacteria such as Escherichia 
coli and Bacillus subtilis have flagella directed toward the rear 
of their bodies and move like a screw boat (Fig. 2, left row). 
Pullers (Fig. 2 right row) such as Chlamydomonas or Euglena 
use flagella attached to the front of their bodies to move 
forward like hands doing a breaststroke. Neutral swimmers 
(Fig. 2 center row) such as Paramecium or Tetrahymena swim 
by beating cilia along their entire body surface. This simple 
model reproduces well the actual surrounding flow fields 
generated by microorganisms. It has often been used as a 
model to describe the long-range hydrodynamic interactions of microswimmers in multibody systems such as microbial 
suspensions [69–73]. We developed a squirmer model to evaluate the mechanical approach to ciliate swimming. 
 
Mathematical Model Could Not Reproduce the Behaviors of Actual Ciliates 
 

How does the squirmer model behave close to a boundary? When squirmers approach a solid boundary, a puller swims 
parallel to the boundary, but a pusher and a neutral swimmer swim away from the boundary due to repelling hydrodynamic 
interactions [74–78]. However, actual flagellar cells, which are described as pushers, glide on the wall [79–81]. In 
previous research, a complicated swimming model, with an elongated body shape and beating flagella, was required to 
reproduce the gliding of flagellar cells because short-range boundary interaction effects and a squirmer model are 
specialized for long-range hydrodynamic interactions. Namely, the wall interactions of microswimmers are not as simple 
as when swimming in bulk water. Ciliates, considered neutral swimmers, are known to accumulate close to walls as well, 
but the swimming motions of individual ciliates close to a wall have not been observed quantitatively. Therefore, we still 
did not know the differences between a neutral swimmer and a real ciliate, which should provide essential factors for the 
accumulation of ciliates. 

The next question concerns rheotaxis. How does a squirmer model behave in an external flow? Assuming a continuous 
flow at a low Reynolds number, the squirmer would be just swept away and its orientation not affected by the flow. To 
change the orientation toward flow, we should realistically consider a shear flow, which rotates the orientations, and being 
close to a wall, which originates a shear flow. Theoretically, a puller swims against a shear flow close to a wall due to 
hydrodynamic interaction [82,83]. Indeed, Chlamydomonas shows rheotaxis [84,85]. A pusher does not show rheotaxis, 
but some actual flagellar cells are known to swim upstream [86–93]. A detailed swimming model involving dynamic 
flagellum found that the rheotaxis of a pusher comes from a contact interaction between an elongated cell shape and a 
wall. While a neutral swimmer, as expected from the wall repulsion, cannot swim against a shear flow, actual ciliates 
show rheotaxis [17]. We believe the ciliate rheotaxis can be understood with the detailed swimming model as well as the 
flagellar cells. 

Figure 2  Schematics of cell swimming patterns. Top 
and bottom row represent actual cells and 
hydrodynamic models, respectively [41]. 
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Ciliates Sliding on a Wall 
 

We investigated the dynamics under the swimming motion 
of ciliates near a wall by comparing an actual ciliate with a 
neutral swimmer. The model organisms Paramecium caudatum 
and Tetrahymena pyriformis were observed from the direction 
perpendicular to the wall, and it was found that they both slid 
along the wall (Fig. 3A, B) [39]. These experimental results are 
consistent with the fact that ciliates prefer staying close to walls. 
On the other hand, it is known from fluid simulations that a 
neutral swimmer receives the orientational torque generated by 
its own flow from the wall and bounces back, which clearly 
contradicts the experimental results. A normal neutral swimmer 
model is not sufficient to describe the wall preference or sliding 
dynamics. Therefore, to investigate more detailed wall 
interactions of ciliates, we performed microscopic observations 
of the swimming ciliates and a quantitative comparison between 
the actual ciliates and the model. To find the physical 
mechanism that causes the discrepancy between experiment 
and theory, we visualized the behavior of cilia beating near the 
wall and the flow around the cells. The cilia in contact with the 
wall lost their motility significantly (Fig. 3C). The flow field 
between the cell and the wall (the bottom area) was measured 
by using probe beads and particle image velocimetry (PIV). As 
a result, the cilia-induced flow in the bottom area was around 
90% slower than that in the top area [39]. In other words, the 
thrust force caused by the cilia wading through the fluid is 
suppressed in the bottom area. From the above experimental 
results, we can hypothesize that the thrust force around the cell 
becomes asymmetric, and torque is continuously applied to the 
cell body to direct the cell orientation to the wall (Fig. 3D). To 
verify whether this hypothesis is physically realistic, we 
incorporated this condition into the fluid model and performed 
numerical calculations. 
 
Two Physical Conditions to Describe the Sliding Motion 
 

A three-dimensional boundary element method (BEM) was 
used for the simulation [65]. In this model, the surface of a 
spherical or ellipsoidal body defined as a rigid body is divided 
into meshes, and the thrust force of ciliated swimmers is 
applied to the outside of the body surface (Fig. 4A). In this 
model, the ellipticity of the shape of the swimmer can be 
changed arbitrarily. The uniform thrust force on the swimmer 
surface in the spherical shape represents the flow field around 
the neutral swimmer. Namely, this model involves the 
hydrodynamic feature of the neutral swimmer. Under the 
assumption of Stokes flow, the overall flow field is calculated 
by superimposing the flow field converted from the thrust 
force by using the Oseen tensor. The hydrodynamic interaction 
from the wall is incorporated by using the mirror-image 
method [94]. 

To introduce the hypothesis obtained from the experiment, 
we defined a stop-beating area (SBA) on the wall to disturb the 
thrust force of the cilia contacting a wall (Fig. 4B); the thrust 
force in the SBA disappears, and the thrust force around the 
swimmer becomes asymmetric between the top and the bottom. 

Figure 3  Observations of sliding ciliates. A: 
Snapshots of sliding T. pyriformis. B: Snapshots of 
sliding P. caudatum. C: Multilayered visualized 
cilia. D: Schematic illustration of thrust force 
around ciliates encountering a wall [41]. 

Figure 4  Numerical simulation setup and results 
[41]. 
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The length of this region corresponds to the length of the cilia on the cell. Figure 4C shows numerical calculations for 
swimmers approaching a wall. The spherical swimmers, whose thrust force is symmetric, are repelled from the wall (Fig. 
4C, upper left). When the shape was changed to an oblate ellipsoid, which is more similar to an actual ciliate, the 
swimmers were repelled in the same way (Fig. 4C, upper right). When the SBA was added to reproduce the asymmetric 
thrust force, the spherical swimmer did not repel from the wall but remained stationary on the wall (Fig. 4C, lower left). 
In the case of the ellipsoid with an SBA, the swimmer finally slid along the wall, as in the experiment (Fig. 4C, lower 
right). This result confirms our experimental hypothesis and suggests that the sliding motion of ciliates depends on the 
cell shape. 

Why does the cell shape make a difference? The reason can be explained by examining the three separated torques 
applied to the sphere and ellipsoid swimmers. First, the torque is due to the repulsive flow from the wall (Figure 5, left 
row). Second, the torque is generated by the asymmetric thrust force (Figure 5 center row). Third, the torque is due to the 
elastic collision from the wall (Figure 5 right row). The first and second torques act in opposite directions. The third 
torque of the collision depends on the cell shape. In the case of a spherical swimmer, the collision force vector passes 
through the center of mass, so no torque is generated. When all the torque elements are combined, the swimming 
orientation will either be in the direction of vertically heading to the wall or away from the wall. On the other hand, an 
ellipsoidal swimmer generates a torque because the collision force vector does not pass through the center of mass. Thus, 
the third torque is added, which allows the ellipsoidal swimmer to maintain a balanced orientation and to slide on a wall. 
This balanced state is independent of the angle of incidence to a wall. Surprisingly, there are only two parameters for the 
sliding motion of the ciliates: the aspect ratio of the ellipsoid shape and relative length of cilia to the cell body, i.e., the 
size of the region where the thrust force disappears. The behavior of the swimmers in contact with the wall is roughly 
classified into Leaving, Sliding, and Stopping (Fig. 6A), and the phase diagram for the above two parameters shows that 
the swimmers exhibit sliding motion as the aspect ratio increases (Fig. 6B) [40]. The parameters of actual ciliates observed 
in the experiment for P. caudatum and T. pyriformis are included in the sliding region of the phase diagram, which 
supports the generality of the mechanism. 
 

 

 
Rheotaxis: Ciliate Slides Upstream on a Wall Under an External Flow 
 

We consider the swimming motion of ciliates under a shear flow close to a wall. As mentioned above, without an 
external flow, T. pyriformis slides on a wall. We observed T. pyriformis under a regulated shear flow with a microfluidic 
channel and a pressure controller. As the shear rate increased from zero, the cell orientations were gradually aligned to a 
flow direction and slid upstream on a wall. We found out that T. pyriformis showed rheotaxis only close to a wall. When 
T. pyriformis were swimming far from a wall or the shear rate was larger than a certain value, they were just swept away 
downstream. Using a light-sheet microscope, we visualized the cilia of ciliates on a wall under a shear flow. The cilia 
activity was asymmetric as well as under no-flow conditions. Therefore, the dynamics of the ciliate rheotaxis near a wall 
can be discussed in the same manner as the sliding motion without flow. 

We performed numerical simulations of the swimming ciliates under a shear flow with the model in the former section 
[42]. As expected from the previous result, the swimmers without the SBA repelled from the wall and were swept away 
downstream. In the case of swimmers involved with the SBA as an asymmetric cilia activity, they could stay on the wall 
in the flow, but after a while the behaviors changed dependently on the cell shape. The spherical swimmer was swept 

Figure 5  Schematics of torques involved in a 
ciliary swimmer contacting a wall [41]. 

Figure 6  Diagram of reactive motions of a 
ciliary swimmer [41]. 
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downstream because the swimmer body was rotated by the shear flow, and the swimmer could not maintain the swimming 
orientation to the wall. The ellipsoidal swimmer slid upstream on the wall. Even if the ellipsoidal swimmer started to 
swim downstream, the swimming direction was oriented upstream, and it moved against the flow. The dynamics under 
this rheotaxis reproduced in the simulation were explained by considering the 3-dimensional torques. We found that only 
identical physical factors to explain the sliding motion were required for rheotaxis. 
 
Future Works 
 

The sliding motion of ciliates on walls and near-wall rheotaxis are induced by two simple physical factors: the 
asymmetry of the thrust force by beating cilia and the ellipsoid shape of the cell. We have not yet been able to identify 
the cause of the ciliated beating stopping on contact with the wall. Whether the movement is mechanically impeded, 
whether the cilia themselves act as stress sensors, or whether there are other causes is an issue that we will pursue in the 
future. Here, the seemingly complex behaviors of microorganisms were based on simple physical mechanisms. We 
believe this result was obtained due to collaboration between physical and biological approaches, which will illuminate 
unclear dynamics of interesting behaviors. 
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