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Abstract

During sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to

the mosquito salivary glands where they can be transmitted the next time blood feeding

occurs. The time required for sporogony, known as the extrinsic incubation period (EIP), is

an important determinant of malaria transmission intensity. The EIP is typically estimated as

the time for a given percentile, x, of infected mosquitoes to develop salivary gland sporozo-

ites (the infectious parasite life stage), which is denoted by EIPx. Many mechanisms, how-

ever, affect the observed sporozoite prevalence including the human-to-mosquito

transmission probability and possibly differences in mosquito mortality according to infection

status. To account for these various mechanisms, we present a mechanistic mathematical

model, which explicitly models key processes at the parasite, mosquito and observational

scales. Fitting this model to experimental data, we find greater variation in the EIP than pre-

viously thought: we estimated the range between EIP10 and EIP90 (at 27˚C) as 4.5 days

compared to 0.9 days using existing statistical methods. This pattern holds over the range

of study temperatures included in the dataset. Increasing temperature from 21˚C to 34˚C

decreased the EIP50 from 16.1 to 8.8 days. Our work highlights the importance of mechanis-

tic modelling of sporogony to (1) improve estimates of malaria transmission under different

environmental conditions or disease control programs and (2) evaluate novel interventions

that target the mosquito life stages of the parasite.

Author summary

Anopheles mosquitoes become infected with malaria-causing parasites when blood feed-

ing on an infectious host. The parasites then reproduce via a number of life stages, which

begin in the mosquito gut and end in the salivary glands, where the newly formed infec-

tious parasites can be transmitted to another host the next time a mosquito blood feeds.

This delay in the mosquito becoming infectious, known as the extrinsic incubation period

(EIP), is long relative to mosquito life expectancy. Consequently, the EIP is important in

determining whether a mosquito is able to transmit malaria. The EIP is typically estimated
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by fitting a statistical model to parasite data from the dissection of numerous mosquitoes.

The large variability in development times and parasite numbers that exists between para-

sites, mosquitoes and environments means that estimating the EIP is difficult. Here, we

introduce a mathematical model of the population dynamics of the mosquito life stages of

the parasite, which mimics key characteristics of the biology. We show that the model’s

parameters can be fit so that its predictions correspond with experimental observations.

Our work is a step towards a realistic model of within-mosquito parasite dynamics, which

can be applied to help understand heterogeneity in malaria transmission.

Introduction

Malaria remains a leading cause of morbidity and mortality worldwide, with an extremely

inequitable distribution: over 400,000 people, primarily children under the age of five in sub-

Saharan Africa, die annually due to malaria [1]. The widespread use of vector control tools

that kill adult Anopheles mosquitoes is largely responsible for a historical decline in malaria

incidence [2]; a result foretold by early mathematical models, which predicted the sensitivity

of malaria transmission to adult mosquito survival [3,4]. For a newly infected mosquito to

become infectious, it must survive the extrinsic incubation period (EIP). Since the EIP is long

relative to mosquito life expectancy, only older mosquitoes can pass on infection meaning

malaria transmission responds acutely to changes in survival [3,5].

The EIP is defined as the duration of sporogony: the obligate reproduction of malaria-caus-

ing Plasmodium parasites (henceforth parasites) within the mosquito [6]. First, female mosqui-

toes feed on an infectious host. A proportion of these mosquitoes, as determined by the

human-to-mosquito transmission probability [5], ingest male and female Plasmodium game-

tocytes within the red blood cells (RBCs) of the blood-meal [7]. The change of parasite host

(from human to mosquito) involves certain environmental changes, including a decrease in

temperature, which collectively trigger gametogenesis and the parasites to emerge from the

RBCs [8,9]. Fertilisation occurs within the mosquito midgut, where gametes fuse into a single

zygote, which differentiates into a motile ookinete [10]. Within a few days, ookinetes migrate

across the mosquito midgut epithelial wall, and the parasites that survive the mosquito innate

immune response [11] go on to form immobile oocysts beneath the midgut basal lamina [12].

The number of oocysts remains relatively constant as they grow in size and their genome

mitotically replicates [12]. Oocysts then burst with each releasing hundreds of infectious spo-

rozoites, which migrate to the mosquito salivary glands, completing the EIP [6,13].

The EIP and human-to-mosquito transmission probability are typically estimated in the

laboratory using experimentally introduced infections. Laboratory reared mosquitoes are fed

on infectious blood through a membrane feeder, and the parasites are allowed to develop

before the mosquitoes are dissected to determine the presence and number of oocysts or spo-

rozoites [13,14]. Since a mosquito can be dissected only once, it is not possible to observe para-

sites dynamics within a single mosquito (but see [15] for a novel approach to estimate this).

Numerous dissections are therefore used to reconstruct the temporal dynamics of sporogony

in the population at large [6].

Historically, the EIP has been recorded as the time from blood feeding until the first mos-

quito is observed with any salivary gland sporozoites [16,17]. Parasite development rates are,

however, highly heterogenous due to differences in mosquito nutrition [18,19] and environ-

mental temperature [14,20], and considerable variation remains even after accounting for

these factors [14,18]. Mosquito and parasite genetic differences may also contribute to
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variation [16], but even in genetically identical cells reaction rates are noisy [21]. Given this

variation, any single measure–especially one based on a single mosquito, which has historically

been the case–does not adequately represent the EIP. Instead, more recent studies attempt to

characterise the variability in the EIP, which is reported as the time for given percentiles of

infected mosquitoes to display sporozoites [16]. A rigorous framework for characterising the

distribution of the EIP is yet to be defined.

Not all mosquitoes fed infectious blood will develop observable oocysts or sporozoites. The

human-to-mosquito transmission probability depends on many factors including differences

in blood meal size, gametocyte density [7,22,23], the mosquito immune response [11,24] and

midgut microbiota [25,26] amongst others. To estimate the EIP percentiles, it is necessary to

determine the number of infected mosquitoes within the sample as a proportion of all infected

individuals. To do this, it is assumed that the maximum observed oocyst- or sporozoite- preva-

lence is the actual proportion of mosquitoes with viable infection [16]. Focussing on raw tem-

poral changes in observed prevalence without an underlying mechanistic model may,

however, overlook key processes. In the laboratory, malaria infections may alter mosquito sur-

vival in infected mosquitoes [27], meaning the observed maximum prevalence may not repre-

sent the true proportion of infected mosquitoes. What’s more, certain variables can impact

multiple mechanisms simultaneously [28], requiring a finer-scale understanding of the constit-

uent processes.

Temperature, for example, can modulate the parasite development rate [14,20], survival of

laboratory mosquitoes [14] and mosquito immune response [29], causing differences in vector

competence [30]. To date, the relationship between temperature and the EIP has been mod-

elled using a degree-day model, which parameterises the total amount of heat required to com-

plete sporogony [31], or existing functions (quadratic or Brière) [32,33]. Parameterisations of

both these methods rely on a point estimate of the EIP and do not model the constituent pro-

cesses that produce these observations. Mechanistic models that simulate parasite population

dynamics during sporogony may provide a more informative framework [34–36].

Here, we introduce a mathematical model, the “multiscale Stochastic model Of Sporogony

(mSOS)”, to capture the temporal dynamics of Plasmodium sporogony. By explicitly modelling

the underlying biology, at the parasite, mosquito and experimental scales, we aim to provide

an accurate representation of parasite development [37]. We fit mSOS to laboratory data and

present new EIP estimates which contrast with those estimated using the predominant

approach in the literature. This is intended to illustrate the application and implications of

using a mechanistic model of sporogony, and not to summarise current understanding of the

EIP, which would require a wider systematic review. We also demonstrate how mSOS can be

used to estimate the impact of temperature on Plasmodium falciparum sporogony within

Anopheles mosquitoes. All code and data needed to recapitulate our results are available at

https://github.com/IsaacStopard/mSOS.

Models and methods

Data

We are unaware of a single study with sufficient data to fit the model. To capture the full popu-

lation dynamics of oocysts and sporozoites, we combined data from four published studies

(Table 1). Most data came from Standard Membrane Feeding Assays (SMFA) from the same

laboratory, conducted with the same parasite-vector combination [14,19,38]. These studies

collected data over a range of days and temperatures using a laboratory strain of P. falciparum
(NF54) and laboratory-reared Anopheles stephensi mosquitoes. To examine oocyst prevalence

prior to day five, we also included data from a Direct Membrane Feeding Assay (DMFA) [39],
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which used wild P. falciparum parasites to infect laboratory-reared Anopheles gambiae sensu
stricto mosquitoes. It is assumed there is no difference between the two parasite-vector combi-

nations. All studies replicated the following experimental protocol: mosquitoes were raised

from larvae under laboratory conditions; adult female mosquitoes were then fed on P. falcipa-
rum-infected blood via a membrane feeder; at various days post infection, blood fed mosqui-

toes were collected, dissected and the presence of oocysts or salivary-gland sporozoites

identified by microscopy. The oocyst load within each mosquito was estimated by counting

observable oocysts. Sporozoites were quantified by their observed presence or absence during

dissection. Only mosquito larvae kept on a high food diet were used in these analyses, and, in

all cases, mosquitoes were housed at a constant temperature and humidity (see Table 1 for the

range of different temperatures explored).

Model overview

mSOS models the oocyst and salivary gland sporozoite (henceforth sporozoite) life stages, as

oocysts are the most widely recorded outcome of membrane-feeding assays, and sporozoites

are the most epidemiologically important life stage. We explicitly model the counts of oocyst-

and sporozoite-positive mosquitoes to determine how the prevalence (i.e. the percent of posi-

tive mosquitoes among the sample) of each life stage varies over time. We also model oocyst

intensity (mean oocyst load among the sample), as it provides more information on the under-

lying parasite dynamics and is considered a more reliable estimate of human-to-mosquito

transmission [40,41].

Sporogony is modelled at multiple scales, and all parameters are fit simultaneously in a sin-

gle model. At the parasite scale, we model the sequence of three life stages: inoculant oocyst

sporozoite (Fig 1A). We do not model the pre-oocyst life stages since they are harder to count

and are rarely recorded. Rather, these are represented in a notional “inoculant” stage ingested

during blood feeding, each of which develops into a single oocyst. mSOS captures both the

time it takes for each oocyst to appear and the time for each oocyst to develop into sporozoites.

The time taken for each of these transitions to occur is assumed independent of the other, and

we model these times stochastically.

At the mosquito scale, mosquitoes are initially infected with different numbers of inoculant

stage parasites, with each load determined stochastically. We also allow infectious blood fed

mosquitoes to avoid infection (via a human-to-mosquito transmission probability) (Fig 1B).

Table 1. Summary of different studies, parasite-vector combinations and experimental proceedures used to parameterise the model.

Malaria

species

(strain)

Vector species

(strain)

Days post blood feeding

when oocyst presence or

load was determined by

dissection

Days post blood feeding when sporozoite

presence was determined by dissection

Dead mosquitoes

counted?

Adult mosquito

housing

temperature (˚C)

Reference

P. falciparum
(NF54)

A. stephensi
(laboratory)

7 (oocyst load) 15 Yes, infectious blood

fed & uninfected blood

fed (control)

mosquitoes

27, 30 & 33 Murdock

et al. [38]

P. falciparum
(NF54)

A. stephensi
(laboratory)

Not recorded Varied with temperature: 10 to 23 & 25

(21˚C), 9 to 23 & 25 (24˚C), 8 to 18, 20, 22,

24 & 25 (27˚C), 6 to 17 & 19 (30˚C), 5 to

15, 17 & 19 (32˚C) and 5 to 14 & 16 (34˚C).

Yes, infectious blood

fed mosquitoes only

21, 24, 27, 30, 32 &

34

Shapiro

et al. [14]

P. falciparum
(NF54)

A. stephensi
(laboratory)

5, 6, 7, 8, 9 & 10 (oocyst

load)

9, 10, 11, 12, 13, 14, 15 & 16 Yes, infectious blood

fed mosquitoes only

27 Shapiro

et al. [19]

P. falciparum
(wild)

A. gambiae s.s.
(laboratory)

3, 4, 5, 6, 7 & 8 (oocyst

presence used)

Not used No 27–28 Bompard

et al. [39]

https://doi.org/10.1371/journal.pcbi.1008658.t001
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Fig 1. Structure of mSOS: a multiscale model of the population dynamics of Plasmodium falciparum during sporogony. (A) Multiple malaria parasites are found

within a single mosquito; we separately model development time from inoculation at blood feeding (G) to oocyst (O) and from oocyst to salivary gland sporozoites (S).

If dissected, a mosquito is “positive” for a particular parasite life stage if at least a single parasite has developed. We do not model the decline in observed oocyst

numbers due to oocyst bursting, since we do not have sufficient later oocyst observations. (B) Mosquitoes are infected via a membrane feeder; parasite load varies in
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Potential differences in survival of the mosquito population due to differences in malaria infec-

tion [27] are explicitly modelled.

At the observation level, to reconstruct the temporal dynamics of sporogony at a population

level, we recreate populations of parasites nested within a population of mosquito vectors,

which then form samples of dissected mosquitoes (Fig 1C). We allow the composition of each

sample of dissected mosquitoes to vary according to the proportions of infected and unin-

fected mosquitoes alive at the time of dissection.

Experimental evidence indicates that the pre-oocyst life stages are the most temperature

sensitive [42,43], and temperature affects both the human-to-mosquito transmission probabil-

ity [28] and laboratory mosquito survival [14]. We therefore allowed these processes to be

influenced by temperature. The development time from oocyst to sporozoites and the mean

parasite load among infected mosquitoes was assumed to be independent of temperature.

In what follows, we describe the model in detail. To provide greater clarity, a Mathematica

file that steps through the derivations is available (S1 Code).

Parasite scale. We model the time taken, TGO, for each undeveloped oocyst at the time of

blood feeding (the notional inoculant stage denoted ‘G’) to develop into an observable oocyst

(‘O’). We then model the time taken, TOS, for each oocyst to develop, burst, and for the sporo-

zoites to migrate to the salivary glands (we term sporozoites in the salivary glands ‘S’). So,

these transitions follow:

G!
TGOO!

TOSS

These development times are modelled stochastically as: TGO�
i:i:d:

GðaGO; bGOÞ and

TOS�
i:i:d:

GðaOS; bOSÞ; that is, we assume that the time it takes a subsequent oocyst to burst into spo-

rozoites is independent of the initial time taken for the oocyst to develop. This assumption also

implies the transitions of each parasite occur independently, meaning density dependent popula-

tion dynamics do not occur. We assume a parameterisation of the gamma distribution such that

its mean is E(Ti) = αi/βi, where i2(GO, OS), αi is the shape parameter and βi is the rate parameter.

The time required for G to develop into S is given by the sum: TGS = TGO+TOS. An analytic

form for the cumulative density function (CDF) of the sum of two gamma distributed random

variables with different rate (β) parameters is currently not known. This aggregate distribution

can, however, be approximated by a gamma distribution where the mean, λ, and variance, σ2,
match that of the true distribution [44],

TGS � GðaGS; bGSÞ; ð2:01Þ

where,

aGS ¼
l

2

s2
; bGS ¼

l

s2
; l ¼

aOSbGO þ aGObOS

bGObOS
; s2 ¼

aOSb
2

GO þ aGOb
2

OS

b
2

GOb
2

OS

: ð2:02Þ

Mosquito scale. Mosquitoes are treated as self-contained populations of parasites. When

feeding on infectious blood, mosquitoes receive a heterogeneous load of gametocytes, with

some receiving none at all [7]. Additionally, not all parasites develop into the observed oocyst

each due to differences in the number of parasites ingested and variation in mosquito immune response. (C) Temporal dynamics of sporozoite prevalence within a

mosquito population: following the infectious blood feed, a proportion of the population is infected with malaria parasites. The parasites develop into sporozoites

causing the mosquitoes to become infectious. Throughout the experiments, mosquito mortality (in the laboratory) may be greater in infected mosquitoes, resulting in

an eventual decline in observed sporozoite prevalence.

https://doi.org/10.1371/journal.pcbi.1008658.g001
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stage due to the innate immune response of some mosquitoes [13,40]. Evidence indicates that,

assuming the mosquito is still alive, the majority of oocysts will produce sporozoites [45].

Hence, we term a mosquito “successfully infected” if at least one viable oocyst could develop

from the initial infective load given sufficient time and define this probability of successful

infection (i.e. the human-to-mosquito transmission probability) as δ. Among successfully

infected mosquitoes, the initial load of G-stage parasites, n, is modelled by a zero-truncated

negative binomial distribution,

n � NBðm; kÞ; n 2 ½1;1Þ; ð2:03Þ

where, μ is the mean and k is the overdispersion parameter. Evidence indicates that μ and δ
may be jointly influenced by gametocyte density, which is modulated by temperature [30].

Here, however, we treated these parameters as independent, as there was an insufficient com-

bination of gametocyte density and temperature treatments in the data.

To model the observed oocyst or sporozoite presence, we assume a mosquito is measured

as “positive” if at least a single parasite has developed to the given life stage. That is, we assume

that dissection always uncovers some parasites of a given life stage should any exist.

Let the time taken for parasite j to develop into a subsequent stage be Tj for j = 1,2,. . .,n par-

asites within a specific mosquito. Whether a mosquito is positive for a particular stage at time t
then depends on whether t � Tmin

1:n ¼ minðT1;T2; . . . ;TnÞ. Since we are concerned with the

minimum of a series of random variables, we are in the realm of order statistics–see, for exam-

ple, [46]. Specifically, Tmin
1:n is the 1st order statistic of the sample of n development times. Con-

sidering a single parasite, j, the probability that it has developed by time t is given by Pr(t�Tj)
= Q(α, 0, βt), where Q(α, 0, βt) is the CDF of the gamma distribution governing that particular

life stage transition. Specifically, Q is the generalized regularized incomplete gamma function

Qða; z0; z1Þ ¼
R z1

z0
ta� 1e� tdt=

R1
0
ta� 1e� tdt, and α, β are the shape and rate parameters of the

underlying gamma distribution (these parameters will, in general, be different for TGO and

TGS). Considering n parasites within a single mosquito, the probability that at least one of

them has developed by time t is:

Prðt � Tmin
1:n Þ ¼ 1 �

Yn

j¼1

Prðt < TjÞ ¼ 1 � ð1 � Qða; 0;btÞÞn: ð2:04Þ

To model the number of oocysts at a given time within an individual infected mosquito,

Y(t), we track the number of G-stage parasites, from the initial load n, that have developed by a

given time, which follows a binomial distribution,

YðtÞ � Bðn;QðaGO; 0; bGOtÞÞ; ð2:05Þ

where Q(αGO, 0, βGOt) is the cumulative probability that an individual parasite has developed

into an oocyst by time t.
Mosquitoes die throughout the course of the experiments, which we explicitly model using

a Cox regression model. We estimate the probability a mosquito is alive immediately prior to

time t, A(t), by fitting this model to the mosquito survival data (Table 1) and allow for differ-

ences in the survival due to infection by comparing groups of mosquitoes exposed to unin-

fected and infected blood and allowing the hazard to vary with infection status. Mosquitoes

exposed to infected blood may not actually become infected, so this group consists of a mix of

infected and uninfected individuals. By fitting the complete model, we account for this to esti-

mate infection-specific differences in mortality (see S1 Text for full details). A previous analysis

of a subset of the data determined that the Gompertz distribution, in which the mosquito
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mortality rate increases with age (senescence) [14], was the best fit, and we use this distribution

here.

Observation level. During the experiments, samples of mosquitoes are dissected at partic-

ular time intervals. From these samples, two possible measurements are recorded: (1) the

aggregate count of parasite-positive mosquitoes (either oocysts or sporozoites) and (2) the

number of oocysts counted in each of the dissected mosquitoes.

We model the aggregate count of positive mosquito data thus. At each time, a sample of

mosquitoes, D(t), are dissected, likely comprising a mix of infected and uninfected individuals.

The number of infected mosquitoes within the sample, I(t), is modelled as a binomial random

variable,

IðtÞ � BðDðtÞ; dRðtÞÞ; ð2:06Þ

where δ is the probability successful infection occurs during the infectious blood feeding, and

R(t) is the fraction of infected mosquitoes alive. R(t) is the ratio of survival probabilities for

infected (E) and uninfected (U) mosquitoes:

RðtÞ ¼
AEðtÞ
AUðtÞ

: ð2:07Þ

Note, we assume that once a mosquito is infected it will remain so for the duration of its

lifespan [47].

A mosquito may be successfully infected but no parasites observed during dissection if

insufficient time has passed since blood feeding. If n was known for each dissected mosquito,

the probability dissection would detect parasites of a given life stage, at time t, is given by Eq

(2.04). In reality, n is not known. We model this uncertainty using Eq (2.03) and incorporate it

into the probability any infected mosquito has observable parasites by marginalising n out of

the joint distribution,

Prðt � TminÞ ¼
X

n

Prðt � Tmin
1:n jnÞPrðnÞ

¼ EnðPrðt � Tmin
1:n jnÞÞ

¼ Enð1 � ð1 � Qða; 0; btÞÞnÞ

¼
1 � kkðkþ mQða; 0; btÞÞ� k

1 �
k

kþ m

� �k

ð2:08Þ

where Tmin is the time when first parasite of the given life stage appears (O or S), and En (:)
denotes the expectation with respect to the distribution of n (Eq (2.03)).

The count of infected mosquitoes in which the parasite life stage of interest (O or S) is

observed, X(t), given a sample of infected mosquitoes, I(t), is then also binomially distributed,

XðtÞ � BðIðtÞ;Prðt � TminÞÞ: ð2:09Þ

Within a given sample of mosquitoes, the number of successfully infected mosquitoes, I(t),
is not known–we only observe the count of observed infected individuals, X(t), and the total

number dissected, D(t). We incorporate this uncertainty in I(t) by marginalising this quantity

out of the joint distribution defined in Eqs (2.06) and (2.09), resulting in the following
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binomial distribution describing the observed count,

XðtÞ � BðDðtÞ; dRðtÞPrðt � TminÞÞ: ð2:10Þ

We next detail how our model describes oocyst counts, Y(t). A particular mosquito may

yield a zero count when dissected either if it was not successfully infected or if insufficient time

has elapsed for any oocysts to develop. The probability a sampled individual is successfully

infected is δR(t). The count of oocysts to have developed by a given time within a successfully

infected mosquito is described by Eq (2.05): this probability distribution depends on n (the

number of G-stage parasites)–an unknown quantity. To derive the sampling distribution of

oocyst counts, we marginalize n out of the joint distribution assuming its uncertainty is

described by Eq (2.03). Combining this with our underlying uncertainty regarding the mos-

quito’s infection status results in the following expression describing the probability of count-

ing Y oocysts at time t, in a dissected mosquito,

PrðYðtÞjQGOðtÞ; d;RðtÞ; t; m; kÞ

¼

ð1 � dRðtÞÞ þ dRðtÞ

k
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where, for notational convenience, we term QGO(t) = Q(αGO, 0, βGOt). From Eq (2.11), the

mean oocyst intensity within the population is given by dR tð Þ QGOðtÞm

1� k
kþmð Þ

k. Mosquitoes are typically

dissected for oocysts before any burst, so we do not model how bursting would lead to a

decline in oocyst prevalence or intensity.

Incorporating temperature-dependence

First, we fit the model to data collected under standard insectary conditions (27˚C), which

included the complete range of oocyst intensity, oocyst prevalence, sporozoite prevalence and

survival data (grouped according to whether mosquitoes were infectious blood fed or control).

Next, to investigate the impact of temperature on the EIP, we fit the model to the data collected

at each other temperature, which included sporozoite prevalence and survival data only. Due

to the lack of oocyst data, development times from day of blood feeding to sporozoite were

estimated as a single gamma distribution with shape, αGS, and rate, βGS. Data collected at 33˚C

was excluded as mosquitoes were only sampled on a single day. We refer to these individual

temperature model fits collectively as the “single temperature models”.

To estimate a functional relationship between temperature and EIP, we fit the model to all

the data simultaneously (the “all temperature model”). To do so, we first plotted the αGS and

βGS parameters of the single temperature models against temperature (S1 Fig). This indicated

an approximate linear relationship between temperature and the development rate, βGS. Labo-

ratory studies have found the early part of sporogony of laboratory strains of P. falciparum, in

A. stephensi, is most temperature sensitive [42,43], so we assumed the temperature variation
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affected the rate at which parasites develop from G to O. The development rate was then mod-

elled as a linear function of temperature, C,

bGO ¼ mbC þ cb: ð2:12Þ

In the laboratory, the infection of mosquitoes has been found to decline at high temperatures,

due to factors such as the impact of temperature on vector immunity [28] and the establishment

of gametocytes [30]. To account for this, we included a relationship between temperature and the

human-to-mosquito transmission probability, δ, modelled as a logit-linear function,

d ¼
1

1þ e� ðmdCþcdþriÞ
: ð2:13Þ

To capture differences between membrane feeding assays [40], we included a hierarchical

term, ρi, in Eq (2.13) where,

ri � Nð0; sdÞ; ð2:14Þ

and i refers to an individual experiment, defined as any unique combination of study and tem-

perature treatments (i.e. the combination of reference and adult mosquito housing tempera-

ture values in Table 1).

Kaplan-Meier plots of mosquito survivorship and existing studies indicated that laboratory

A. stephensi survival depended on temperature (S2 Fig). To account for this, a temperature-

dependent mortality term was incorporated into the Cox model hazard,

h0ðtÞe
ðbCCþbEEþεiÞ; ð2:15Þ

where C is temperature, E is the infection status (E = 1 indicates successful infection; and E = 0

for uninfected individuals), and h0(t) is the baseline hazard modelled by a Gompertz distribu-

tion. To account for experimental heterogeneity in mosquito survival between experiments, a

hierarchical error term, εi, was included in Eq (2.15) where,

εi � Nð0; ssurvivalÞ: ð2:16Þ

To facilitate model fitting, we scaled the temperature values such that temperature was cen-

tred around 0 with a standard deviation of 1.

Model fitting

The models were fit under a Bayesian framework, using the probabilistic programming lan-

guage Stan (version 2.21.0 with R version 3.6.3) [48], which implements the No-U-turn Mar-

kov chain Monte Carlo (MCMC) sampler [49]. We specified weakly informative priors

following a literature search (S1 Table). For each model fit, four chains were run, each with

1500 warmup iterations and 4500 iterations in total. Convergence was determined by R̂ <
1:01 for all parameters, and bulk and tail effective sample sizes (ESS; an estimate of sampling

efficiency) greater than 400 (see S2 Table for these values). We visually examined the trace

plots (S3 Fig), pairwise plots of the MCMC parameter values (S4 Fig) and difference between

prior and posterior distributions (S5 Fig).

Model investigation

To compare our estimates with the predominant approach, we estimated the EIP and human-

to-mosquito transmission probability using a logistic model [14,16,19,28,50], which we fit

using non-linear least squares (see S1 Text). Given a decline in the observed sporozoite
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prevalence at later time points, the data were subset to include only data points before the time

of peak observed sporozoite prevalence. This method has previously been used to enable the

logistic function to be fit to modal data [14], but requires the following assumptions to be true:

(1) the time when the observed sporozoite peak occurs in those mosquitoes sampled reflects

the same attribute in the underlying population, and (2) all mosquitoes have developed sporo-

zoites by the time observed sporozoite prevalence starts to decline.

Data did not exist to investigate the impact of parasite load experimentally. We therefore

used our fitted model to simulate the temporal dynamics of sporogony with different mean

parasite loads (among infected mosquitoes) holding all other parameters at their mean poste-

rior values for 27˚C (“as a” sensitivity analysis).

Results

Temporal dynamics of sporogony

We first considered the observed temporal dynamics of sporogony at a single temperature

(27˚C; standard insectary conditions). All central values we report are the posterior predictive

means and the credible intervals are the 95% central posterior estimates; times reported are the

number of days post infectious blood feed. From the model fit, we estimate that oocyst preva-

lence was 10% at 2.2 days (CI: 2.1–2.3 days) and peaked at 69% (CI: 68–71%) after approxi-

mately 5.9 days (CI: 5.8–6.0 days) (Fig 2A). The modelled oocyst intensity peaked at an

average of 2.0 (CI: 1.9–2.1) oocysts per mosquito, shortly after oocyst prevalence peaked (Fig

2B). In the raw data, sporozoite-positive mosquitoes were first observed on day 10 when the

sporozoite prevalence was 1.4%; our model estimates the appearance of sporozoite-positive

mosquitoes earlier, with the model estimating a sporozoite prevalence of 5% at 9.0 days (CI:

8.8–9.2 days) (Fig 2C). The time required for sporozoites to appear varied between mosqui-

toes, and, only after 15.9 days (CI: 14.2–16.0 days) did the modelled sporozoite prevalence

peak at 63% (CI: 61–65%).

Fig 2. Single temperature 27˚C model fit to the oocyst and sporozoite data. The panels show our model fit to the

27˚C dataset: panel A to the oocyst prevalence, panel B to the oocyst intensity data and panel C to the sporozoite

prevalence. (A & C) points show parasite prevalence of the laboratory mosquito data (95% confidence intervals are

given by the point range). The grey shaded area represents the 95% credible interval of the model posterior predictive

means, the median posterior predictive mean is shown by the black line. (B) The points show the mean parasite load

among all blood fed mosquitoes (intensity); the point range indicates the 2.5%–97.5% quantiles of the raw data. The

shaded area represents the 2.5%–97.5% quantiles of the negative binomial distribution; where the location and

overdispersion parameters are set to their posterior means.

https://doi.org/10.1371/journal.pcbi.1008658.g002
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At the individual parasite level, we consider the time taken for each modelled parasite life

stage transition to occur: the mean time taken was 3.4 days (CI: 3.3–3.6 days) for G to O, 9.2

days (CI: 8.9–9.5 days) for O to S and 12.6 days (CI: 12.3–12.9 days) for G to S (S6A Fig). For

G to O, the majority of individual parasites (which we took as 99.5% of all parasites) had

undergone each of these transitions at 6.1 days (CI: 5.6–6.6 days); for O to S, at 14.7 days (CI:

13.9–15.5 days); and, for G to S, at 18.5 days (CI: 17.8–19.3 days) (S6B Fig).

Impact of temperature

We next considered the impact of temperature on sporogony. The single temperature models

fitted the sporozoite prevalence data well across the entire range of temperatures (S7 Fig). The

all temperature model fitted the sporozoite prevalence data well at lower temperatures

(between 21˚C and 30˚C); at higher temperatures, the model tended to overstate the EIP (Fig

3). The survival of both infectious blood fed and control mosquitoes was only available at

27˚C, 30˚C and 33˚C, and consequently the single temperature model survival parameters had

greater freedom to vary. Indeed, the all temperature model (S8 Fig) fits to the survival data

were less variable and more predictable across different temperatures than the single tempera-
ture models (S9 Fig). Consequently, here we provide the all temperature model (Figs 3 and

S10) results since they are less likely to overfit the data.

For the all temperature model, infection resulted in a higher risk of mosquito death, with a

hazard odds ratio of 1.65 (CI: 1.47–1.86). Increases in temperature elevated mosquito mortality

with a hazard odds ratio of 1.57 (CI: 1.33–1.86) per 3.5˚C change. At 10 days post-infection,

the probability of an infected mosquito being alive, A(t), was 0.91 (CI: 0.87–0.94) at 21˚C ver-

sus 0.67 (CI: 0.58–0.75) at 34˚C, with similar differences for uninfected individuals.

At higher temperatures, fewer mosquitoes develop sporozoites, but those that do, do so

faster. We estimate that, between 21˚C and 34˚C, increases in temperature reduced the EIP:

Fig 3. Model fits to sporozoite prevalence data across all temperatures. These fits were generated by fitting a single

model to all temperatures simultaneously (“all temperature” model), with the functional form of temperature as

described in Eqs (2.11) and (2.12). Black points: parasite prevalence of the laboratory mosquito data (95% confidence

intervals are given by the vertical black lines). The grey shaded area represents the 95% quantiles of the posterior

predictive means; the black lines represent the median posterior predictive means.

https://doi.org/10.1371/journal.pcbi.1008658.g003
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EIP10 fell from 12.9 days (CI: 12.4–13.4 days) to 6.9 days (CI: 6.7–7.1 days), EIP50 declined

from 16.1 days (CI: 15.3–17.0) to 8.8 days (CI: 8.6–9.0 days) and EIP90 fell from 20.4 days (CI:

19.2–22.1 days) to 11.3 days (CI: 10.9–11.8 days) (Fig 4A). S3 Table provides the EIP percen-

tiles at all temperatures. Increases in temperature reduced the human-to-mosquito transmis-

sion probability, which fell from 84% (CI: 74–90%) at 21˚C to 42% (CI: 32–52%) at 34˚C (Fig

4B).

Key differences in transmission parameters estimated using mSOS

Next, we compared our estimates of two important malaria transmission parameters–the EIP

and human-to-mosquito transmission probability–to those obtained using the predominant

literature approach based on logistic regression (logistic model fits are shown S11 Fig). In our

framework, we can disentangle the development time of parasites from other underlying pro-

cesses, specifically mosquito mortality induced by malaria infection, which can influence the

observed sporozoite prevalence. In doing so, we quantify the EIP distribution as the time taken

for a given percentile of the infected mosquitoes to display sporozoites, in the absence of other

mechanisms that determine the observed sporozoite prevalence. This is given by the time at

which the cumulative probability an infected mosquito develops any salivary gland sporozo-

ites, Pr(T1�t), reaches a given value. Using this approach, across all temperatures, the variation

in the EIP distribution is greater than the equivalent logistic model estimates (Fig 4A). At

27˚C, for example, our single temperature model estimated an EIP10–EIP90 range of 9.2–13.7

days compared to 10.3–11.2 days estimated by the logistic approach. This result was replicated

across the different temperatures: by taking into account differences in mosquito survival, our

EIP90 estimates are higher than those from the logistic method.

The mSOS estimates of the human-to-mosquito transmission probability were consistently

higher than the equivalent values estimated by the logistic model (Fig 4B). The 27˚C single tem-
perature model estimate, for example, was 70% (CI: 68–72%) as opposed to the logistic growth

model estimate of 60%. This is because, in the laboratory data we analysed, infected mosqui-

toes died at an elevated rate, meaning that the proportion of infected mosquitoes declined with

time and the observed peak of sporozoite prevalence is not representative of the initial propor-

tion of infected mosquitoes. Not accounting for these mechanisms results in an underestimate

of the human-to-mosquito transmission probability.

Fig 4. Effect of temperature on malaria transmission parameters. Panel A shows the model impact of temperature

on the EIP quantiles (as indicated in legend); panel B shows its impact on the human-to-mosquito transmission

probability. In both panels, the lines show impact as estimated by the all temperature mSOS model with 95% posterior

intervals indicated by shading; the discrete round points show the independent estimates from the single temperature
mSOS model at each temperature, 95% posterior credible intervals are shown by the vertical lines. The discrete triangle

points show the logistic growth model parameter estimates at each temperature. The number of iterations used to

calculate the EIP plot were thinned to every 5th iteration for efficiency.

https://doi.org/10.1371/journal.pcbi.1008658.g004
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Sensitivity analysis of the mean parasite load

Within our model, the time-taken for each simulated parasite to develop is both independent

and stochastic. At each time point, whether or not that parasite has yet developed can be

viewed as a toss of a coin: the more coins are tossed, the more likely it is that one will land on

heads, or, equivalently, a parasite will have developed, by chance. Higher parasite loads then

lead to earlier rises in parasite prevalence. Fig 5A shows the simulated sporozoite prevalence

over time across populations with different mean parasite load parameter values, which indi-

cates that, within the model, greater parasite numbers cause the prevalence to peak earlier. Fig

5B shows the resultant EIP quantiles as a function of parasite load: increasing the mean para-

site load from 1.7 to 25.0 reduced the modelled EIP50 from 10.9 to 8.0 days.

Discussion

Membrane feedings assays form the bulk of experiments used to determine key parasitological

parameters of malaria transmission, but despite the seeming simplicity of these experiments,

numerous hidden processes contribute to the observed data. Here, we applied a systems biol-

ogy approach to develop a multiscale model of the temporal dynamics of sporogony (mSOS)

that explicitly accounts for these underlying processes. To illustrate its use, we fitted mSOS to

experimental data and demonstrated it can produce a reasonable visual fit to the data across a

range of experimental protocols. In doing so, we estimated two important determinants of

malaria transmission intensity–the EIP and human-to-mosquito transmission probability. By

adopting a mechanistic approach, our EIP estimates are defined in terms of the underlying

biology rather than characteristics of the raw experimental data. Our estimates indicate greater

variation in the EIP than previously thought and highlight the importance of accounting for

this variation when making epidemiological predictions (see also [16]). This variation could be

included by embedding mSOS within transmission dynamics models of malaria.

The influence of parasite-induced mosquito mortality is still a source of debate and likely to

vary depending on the parasite-vector system [27,38]. Nonetheless, accounting for potential

differences in mortality is essential to avoid bias in parameter estimates: our estimates of the

human-to-mosquito transmission probability, for example, were higher than those estimated

by the logistic model. By modelling mosquito infection and survival in a single framework we

could estimate malaria infection induced differences in mosquito survival, whilst accounting

for mosquitoes that do not develop oocysts within the infectious blood fed group. At higher

temperatures, we found that the modelled differences in mosquito survival only partly

Fig 5. Modelled impact of parasite load on the extrinsic incubation period. Panel A shows the impact of varying the

mean parasite load of infected mosquitoes on the temporal dynamics of sporozoite prevalence in a sensitivity analysis;

panel B summarises how the EIP is affected by the same parameter in the sensitivity analysis. All other parameters were

held constant at their mean posterior values.

https://doi.org/10.1371/journal.pcbi.1008658.g005
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explained the sporozoite prevalence data. Another study observed no difference in the survi-

vorship of wild caught A. gambiae mosquitoes due to malaria infection, yet P. falciparum
detection did decline over time [51]. So, it is possible that mosquito survivorship was not

completely responsible for these observed declines and alternative explanations, such as sporo-

zoite loss during sugar-feeding [52,53] or sporozoite mortality could require further investiga-

tion. Including other such mechanisms in our model could lead to alternative estimates of the

EIP. This means that it is possible that the differences between our EIP estimates and those

previous could partly be because important, yet unknown, mechanisms were not included in

our model.

Temperature is an important predictor of P. falciparum prevalence among humans: its

impact is, however, often non-linear and location-specific [54–56]. Laboratory data are used to

determine temperature-driven variation in the EIP, which is commonly used in the prediction

of the spatiotemporal limits and endemicity of malaria transmission [33,57,58]. Over the tem-

perature range investigated, we determined that a linear relationship between temperature and

parasite development rate was a reasonable approximation. But, we recognise that the data do

not capture the thermal limits of sporogony, and, to handle these would likely require includ-

ing non-linear relationships (for example see [33]). Our EIP estimates qualitatively match

those of [16], which determined that the EIP falls with increases in temperature, and that the

incremental change is greatest at lower temperatures. In a semi-field setting, increases in tem-

perature, due to the interaction between deforestation and altitude, decreased the EIP of wild

P. falciparum [20]. But very little field data exists, and further experimental studies across the

whole temperature range of the disease with natural vector-parasite combinations are required

to capture the full relationship between temperature and EIP. To more accurately simulate the

EIP in the field will require consideration of the impact of the time of biting [59], diurnal tem-

perature fluctuations [60] and mosquito resting location on the temperatures parasites are

exposed to during different life stages. The degree to which the EIP of locally adapted strains

differ to the laboratory strains must also be considered [61]. Current estimates indicate climate

change has the potential to change the number of people at risk of malaria [58,62,63], though

there is uncertainty due to the complexity of how the parasite and mosquito will interact with

the local changing environment in the long term. Characterising spatiotemporal heterogeneity

in the EIP in the field is thus critical to assess our current understanding of malaria and its con-

trol as well as the changing risk of malaria resulting from the interactions between climatic,

land-use [64] and socio-economic factors [65].

Within our model, heterogeneity in the EIP emerges from differences in the development

times of individual parasites. Density-dependent processes [66,67] and intraspecific variation

in individual mosquito characteristics, such as body size [68], may also impact the observed

sporozoite prevalence. To include such processes in the model in a data-driven way requires

higher resolution data to differentiate the impact of different hypotheses. Indeed, to parame-

terise mSOS, we collated data from four previously published experimental infections that pro-

duced data with high temporal resolution. To characterise parasite development, it would be

useful if future studies dissected mosquitoes across a greater range of times post infection. It

would also be useful if mosquito mortality were recorded: ideally determining the past infec-

tion status of carcases through molecular methods.

The work shows a possible mechanism for how higher parasite loads within a mosquito

might decrease the EIP, which could potentially have important epidemiological conse-

quences, since it indicates that onwards transmission may be more efficient from more infec-

tious people. This relationship has also recently been considered in another modelling study

[36], which found that the impact of parasite load on the EIP of Plasmodium berghei is non-lin-

ear. Other processes may be operating: emerging experimental evidence hints that a decrease
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in resource availability per parasite, as determined by the parasite load and the number of

times the mosquito blood feeds, may decrease the parasite development rate [50,69]. So, to

fully capture this relationship may require the incorporation of density-dependent mecha-

nisms. Since (a) transmission is highly sensitive to changes in EIP, (b) transmission blocking

interventions cause a decline in oocyst intensity [40], and (c) parasite load in the field may be

higher than previously thought [39], the influence of parasite load on EIP merits further

investigation.

It is now well over a century since Plasmodium parasites were first uncovered in dissected

anopheline mosquitoes. Today, we remain dependent on dissection for understanding the par-

asite lifecycle in mosquitoes, and there remains much to learn. The model we introduce here

provides a new way to parse dissection data to probe the underlying biology. Our model, or

ones like it, could be extended to incorporate more fine scale characteristics of parasite ecol-

ogy, but to do so in a principled manner requires more fine scale data. As such, we foresee a

great necessity and opportunity for closer collaboration between experimentalists and model-

lers in the future.
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S1 Code. Mathematica file that demonstrates the derivation of the model.

(NB)

S1 Text. Supporting Information: survival analysis and logistic growth model methods.
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S1 Table. Model priors.
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S2 Table. All temperature model posterior values.

(XLSX)

S3 Table. EIP estimates by temperature. The posterior predictive median, 5% and 95% quan-

tiles of the all temperature model EIP estimates are given to one decimal place.

(XLSX)

S1 Fig. Single temperature model estimates of parasite transition parameters. Panels show

the posterior estimates of the two parameters (A: shape; B: rate) of the gamma distribution

governing the development time between inoculation and observed sporozoites for the single

temperature models. The posterior median and difference between the 2.5 and 97.5 posterior

quantiles are represented by the points and vertical lines respectively.

(TIF)

S2 Fig. Kaplan-Meier estimates of the mosquito survival data used in the model fitting.

Mosquito survival data was obtained from three previously published studies [14,19,38]. Mos-

quitoes fed on infectious blood are shown in blue, mosquitoes fed on uninfected (control)

blood are shown in yellow.

(TIF)

S3 Fig. Trace plots of the MCMC parameter sampling for the all temperature model. The

horizontal and vertical axis give the iteration and parameter values respectively. Iterations dur-

ing the warmup are not included.

(TIF)

S4 Fig. Pairwise comparison of the MCMC parameter samples for the all temperature

model. Parameter syntax is as follows: αGO (“shape_oocyst”), mβ (“m_rate_oocyst”), cβ
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(“c_rate_oocyst”), αOS (“shape_sporozoite”), βOS (“rate_sporozoite”), μ (“mu_NB”), k

(“k_NB”), mδ (“m_delta”), cδ (“c_delta”), a (“a”), b (“b”), βE (“beta_inf”), βC (“beta_temp”), σδ
(“sigma_error_delta”) and σsurvival (“sigma_error_survival”).

(TIF)

S5 Fig. Posterior and prior probability densities. The posterior distributions are estimated

by kernel density estimation with a gaussian smoothing kernel.

(TIF)

S6 Fig. Modelled times required for individual malaria parasites to transition between life

stages. Panels A and B show the probability density function (PDF) and the cumulative proba-

bility density function (CDF) that an individual P. falciparum parasite within a mosquito

(maintained under standard insectary conditions: 27˚C) will transition from a given life stage

to the next life stage at a given time post blood feed. The grey shaded area represents 2.5%-

97.5% posterior quantiles of the estimated distributions.

(TIF)

S7 Fig. Single temperature model fits of the temporal variation in sporozoite prevalence.

Black points: parasite prevalence of the laboratory mosquito data (95% binomial confidence

intervals are given by the vertical black lines). The grey shaded area represents the 95% uncer-

tainty intervals of the mean prevalence (posterior predictive means). The black line represents

the median of the poster predictive means.

(TIF)

S8 Fig. Kaplan-Meier survival curves and all temperature Cox proportional hazards sur-

vival model fit. Kaplan Meier curves are stepped. The shaded area shows the 95% uncertainty

intervals of the posterior predictive mean survival probability (A(t)) modelled by the Cox pro-

portional hazards model.

(TIF)

S9 Fig. Kaplan Meier survival curves and the single temperature Cox proportional hazards

survival model fits. Kaplan Meier curves are stepped. The shaded area shows the 95% uncer-

tainty intervals of the posterior predictive mean survival probability (A(t)) modelled by the

Cox proportional hazards model.

(TIF)

S10 Fig. All temperature model fits of the temporal variation in oocyst prevalence and

oocyst intensity. Oocyst prevalence plot: black points represent the prevalence of the labora-

tory mosquito data and the lines represent the 95% binomial confidence intervals. The grey

shaded area represents the 95% uncertainty interval of the posterior predictive mean preva-

lence. Oocyst intensity plots: black points represent the mean oocyst intensity among all blood

fed mosquitoes, the black line shows the posterior predictive mean oocyst count, and the grey

shaded area represents the uncertainty in the mean oocyst count indicating the 2.5% and

97.5% negative binomial quantiles when fixing all parameters at their mean posterior values.

(TIF)

S11 Fig. Logistic growth model fits. Logistic model fits (black line) to a subset of the sporozo-

ite prevalence data (i.e. all data before observed peak sporozoite prevalence) are shown as solid

lines; black points indicate those points were included in the fitting; grey points show those

excluded.

(TIF)
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