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Abstract. Macrophage migration inhibitory factor (MIF) is 
an inflammatory cytokine involved in many acute and chronic 
inflammatory diseases. However, its role in acute lung injury 
associated with acute pancreatitis in pregnancy (APIP) has 
not yet been elucidated. The present study was undertaken to 
clarify the effect and potential mechanism of MIF antagonist 
(S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid 
methyl ester (ISO‑1) in the development of acute lung injury in 
rats with APIP. Eighteen late‑gestation SD rats were randomly 
assigned to three groups: Sham operation (SO) group, APIP 
group, and ISO‑1 group. All the rats were sacrificed 6  h 
after modeling. The severity of pancreatitis was evaluated by 
serum amylase (AMY), lipase (LIPA), tumor necrosis factor 
(TNF)‑α, interleukin (IL)‑1β and IL‑6 and assessing the histo-
pathological score. Lung injury was determined by performing 
histology and inflammatory cell infiltration investigations. 
Western blot analysis was used to detect the protein expression 
of MIF, phosphorylated and total P38 and nuclear factor‑κB 
(NF‑κB) protein in lungs. The results showed that MIF was 
upregulated in the lung of APIP rats. Compared with APIP 
group, the intervention of ISO‑1 alleviated the pathological 
injury of the pancreas and lungs, decreased serum AMY and 

LIPA, attenuated serum concentrations of TNF‑α, IL‑1β, and 
IL‑6, reduced the number of MPO‑positive cells in the lung 
and inhibited the activation of P38MAPK and NF‑κB. These 
results suggest that MIF is activated in lung injury induced 
by APIP. Furhtermore, the present findings indicate that the 
MIF antagonist ISO‑1 has a protective effect on lung injury 
and inflammation, which may be associated with deactivating 
the P38MAPK and NF‑κB signaling pathway.

Introduction

Acute pancreatitis in pregnancy (APIP) is a rare event, 
attacking approximately 1/10,000 to 1/1,000 pregnancies (1,2), 
thereby the information on maternal and fetal complications 
is limited. Although less frequent in clinical practice, it was 
associated with up to 5% of maternal deaths and fetal loss (3). 
APIP usually occurs in the third trimester of pregnancy (4), 
and gallstones are the most common cause and responsible for 
more than 60% of cases (1,2). As in any other disease associ-
ated with pregnancy, APIP is associated with greater concerns 
as it deals with two lives.

It has been widely accepted that the activation of trypsin-
ogen leads to self‑digestion of pancreatic acinar cells and then 
results in acute pancreatitis. Acute pancreatitis is frequently 
complicated by an intensive systemic inflammatory response, 
in which increased infiltration of inflammatory cells is 
observed in multiple organs, such as the liver, kidney, and lung, 
further leading to multiple organ dysfunction syndrome (5). 
Among these organs, the lung is the most vulnerable one (6). 
Acute lung injury is reported to occur in 10‑25% of acute 
pancreatitis cases, and it is responsible for up to 60% of acute 
pancreatitis‑associated deaths (7). Additionally, accumulated 
studies have demonstrated that acute pancreatitis‑triggered 
systemic inflammatory response causes acute lung injury (8). 
Moreover, in acute pancreatitis‑induced lung injury, inflam-
matory cascade involving the activation and release of 
various inflammatory cytokines, such as nuclear factor‑κB 
(NF‑κB), tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β 
and IL‑6, was significantly induced (9). Therefore, reducing 
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proinflammatory mediators might be a good therapeutic 
strategy to attenuate acute lung injury associated with APIP.

Macrophage migration inhibitory factor (MIF) is a struc-
turally unique pleiotropic cytokine that plays an important role 
as an upstream regulator of innate and acquired immunity as 
well as in cellular redox signaling (10). It regulates inflam-
matory response through extra‑ and intracellular processes, 
such as binding to a receptor complex made of CD74 with or 
without CD44, CXCR2, and CXCR4 to initiate intracellular 
signaling (11,12). Through these interactions, MIF negatively 
or positively regulates MAPKs  (13). For example, MIF 
induced the phosphorylation of P38MAPK (14), which may 
ascribe to reduce the expression of MKP‑1, a critical phospha-
tase in physiological counter‑regulatory MIF‑glucocorticoids 
(GCs) dyad  (15). In most cases, MIF is recognized as a 
pro‑inflammatory cytokine whose neutralizing antibody (16) 
or small‑molecule inhibitor (17) is used for suppressing inflam-
mation with high levels of MIF in blood circulation or local 
tissue in various animal models, such as severe sepsis (18), 
rheumatoid arthritis (19), allergic airway inflammation (20), 
colitis (21) and chronic obstructive pulmonary disease (22). 
Therefore, a promising therapeutic approach to diminish 
pathological inflammation is to inhibit the production and/or 
biological activity of MIF.

(S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic 
acid methyl ester (ISO‑1), a small molecule antagonist of MIF, 
is from the isoxazole series, whose active compounds were 
identified by virtue of their ability to inhibit the tautomerase 
activity of MIF  (17). ISO‑1 inhibits Toll‑like receptor‑4 
(TLR‑4)‑induced proinflammatory cytokine production from 
monocytes  (23), the macrophage release of TNF‑α from 
lipopolysaccharide (LPS)‑stimulated mice and is moderately 
protective in a clinically relevant model of sepsis when admin-
istered intraperitoneally (17).

However, whether MIF inhibition by ISO‑1 is effective in 
protecting against acute lung injury induced by APIP has not 
yet been elucidated. We hypothesized that MIF is involved in 
the pathogenesis of acute lung injury induced by APIP, and 
MIF antagonist ISO‑1 can protect against the lung injury. 
Therefore, in the present study, we attempted to investigate the 
effect and potential mechanism of MIF antagonist ISO‑1 in 
the development of acute lung injury in rats with APIP. The 
results may provide a theoretical basis for the treatment of 
acute lung injury associated with APIP.

Materials and methods

Antibodies and reagents. ISO‑1 and sodium taurocholate were 
obtained from Sigma‑Aldrich (Merck KGaA, Darmstadt, 
Germany). The primary antibodies against P38, phosphory-
lated‑P38, NF‑κB/p65 and TNF‑α were purchased from Cell 
Signaling Technology Inc. (Danvers, MA, USA). MIF primary 
antibody was from Abcam (Cambridge, CA). Rat anti‑MPO 
antibody was from Wuhan Goodbio Technology Co., Ltd. 
(Wuhan, China). Rat TNF‑α, IL‑1β, IL‑6 enzyme‑linked 
immunosorbent assay (ELISA) kits were purchased from 
Cusabio Corp (Wuhan, China).

Animals. Eighteen pregnant Sprague‑Dawley (SD) rats 
(17‑18 days of the first gestation, weighing 390‑450 g) were 

obtained from the Experimental Animals Center of Huazhong 
University of Science and Technology (Wuhan, China). The 
animals were kept under standardized conditions with an 
ambient temperature of 23±2˚C and a 12 h light and dark 
cycle. Before the induction of pancreatitis, the animals were 
fed standard laboratory rodent chow, allowed free access to 
sterile water. All rats were fasted for 12 h prior to the modeling 
while given water ad libitum. All animal experiments in this 
study were reviewed and approved by the Ethics Committee 
of Wuhan University and performed in compliance with the 
ARRIVE guidelines.

Experimental model and groups. Rats we re anesthetized with 
isoflurane (induced with 5% isoflurane and maintaining with 
3% in 2 l/min oxygen flow in a sealed container) and underwent 
standardized surgical procedures as described previously (24) 
and minor steps were revised. Briefly, the APIP rat model was 
induced by retrograde infusion of 5% sodium taurocholate 
solution (1 ml/kg) into the biliary‑pancreatic duct at a constant 
speed of 0.10 ml/min. The pancreas appeared to be hemor-
rhaged and necrotic after 5 mins, indicating the APIP model 
was induced successfully. After closure, 20 ml/kg body weight 
of saline solution was compensated back subcutaneously for 
fluid loss.

The rats were randomly assigned into three experimental 
groups: i) Sham operation group (SO group); ii) APIP group; 
and iii) ISO‑1 + APIP group (ISO‑1 group), including 6 rats 
in each group. All SO group underwent the same procedures 
but were retrogradely infused with equivalent saline water 
instead. The rats of the ISO‑1 group were intraperitoneally 
administered with 3.5 mg/kg ISO‑1 (dissolved in 5% DMSO 
diluted in saline) 30 min before the modeling. The dosage and 
time for ISO‑1 were based on our previous study (25), which 
was non‑toxic and effective. The rats in SO and APIP groups 
received an equivalent volume of vehicle (5% DMSO diluted 
in saline) instead of ISO‑1 before the operation.

Collection of blood and tissue samples. All the rats were 
sacrificed at 6 h after modeling, which was based on our 
earlier study (2). Blood samples were collected by inferior vena 
cava puncture and the serum was stored at ‑80˚C for further 
analysis. Subsequently, pancreas and lung tissues were excised 
and fixed in 4% polyoxymethylene for histological detection or 
were frozen immediately in liquid nitrogen and stored at ‑80˚C 
for the following assay.

Serum enzyme activity assay. Serum amylase (AMY) and 
lipase (LIPA) levels were measured by a full automatic 
biochemical analyzer (Olympus AU680; Olympus, Tokyo, 
Japan) using standard techniques.

Histopathology analysis. The pancreatic and lung specimens 
were fixed in 4% polyformaldehyde, embedded with paraffin, 
sectioned at 4 µm thick, and sequentially stained with hema-
toxylin and eosin (H&E). All slides were assessed under the 
optical microscope (Olympus Optical Ltd., Tokyo, Japan) by 
3 experienced pathologists who are blind to the research. The 
Pancreatic histological assessment was determined by edema, 
hemorrhage, vacuolization, inflammatory cell infiltration, 
and acinar necrosis according to the standard scale system 
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described by Schmidt et al (26). Similarly, lung injury was 
assessed using a scale for interalveolar septal thickening, 
alveolar hemorrhage and inflammatory cell infiltration and 
fibrosis, as described by Werner et al (27).

ELISA. The serum concentrations of TNF‑α, IL‑1β, and 
IL‑6 were detected by enzyme‑linked immunosorbent assay 
(ELISA) using corresponding ELISA kits according to the 
manufacturer's protocols. The absorbance was read using an 
automated microplate reader at 450 nm and the concentrations 
were calculated according to the standard curve run on each 
assay plate. All samples were duplicated 3 times.

Immunofluorescence assay. Myeloperoxidase (MPO), the 
marker of neutrophil infiltration, was detected in the lung by 
immunofluorescence analyses. Briefly, following xylene depa-
raffinization and hydration using a graded series of ethanol 
solutions, the slides were boiled for 10 min at 121˚C in a 
pressure cooker containing 10 mM citrate buffer (pH 9.0) for 
epitope retrieval. Subsequently, the slides were cooled to room 
temperature and rinsed in phosphate‑buffered saline (PBS). 
After permeabilization with 0.2% Triton X‑100 for 45 min, 
the slides were washed with PBS and then blocked with 10% 
normal donkey serum to eliminate the nonspecific fluores-
cence. The sections were incubated with the primary antibody 
against MPO (1:200) at 4˚C overnight in a humidity box. And 
followed by the fluorescence‑labeled secondary antibodies at 
room temperature for 1 h. Nuclei were counter‑stained with 
DAPI. The negative control experiments were performed 
in which PBS was substituted for the primary antibody. All 
sections were examined and photographed using an automatic 
fluorescence microscope (Olympus Optical Ltd.) under blind 
conditions. And the staining was analyzed by Image Pro‑Plus 
6.0 system (Media Cybernetics Inc., Rockville, MD, USA).

Western blot  analysis.  The expression of  MIF, 
phosphorylated‑P38, P38, TNF‑α and NF‑κB in the lung 
were determined by western blot analysis. Lung tissues 
were homogenized and lysed on ice with lysis buffer 
(nuclear‑cytosol extraction kit; Applygen Technologies Inc., 
Beijing, China) in the presence of protease and phosphorylase 
inhibitor cocktail (Roche Diagnostics, Mannheim, Germany). 
Lysates were collected, and the concentrations of protein were 
detected with BCA protein assay. In brief, equal amounts of 
protein samples were electrophoresed on 10 or 12% sodium 
dodecyl sulfate‑polyacrylamide gels (SDS‑PAGE) and then 
transferred to polyvinylidene difluoride (PVDF) membranes 
(Millipore). After blocking with 5% fat‑free milk dissolving 
in Tris‑buffered saline containing 0.1% Tween‑20 (TBST) at 
room temperature for 2 h, the membranes were subsequently 
incubated with the primary antibodies (all of them were 
diluted as recommended 1:1,000) overnight at 4˚C. Following 
washing with TBST (5 min x 3), the membranes were incu-
bated with fluorescently‑labeled secondary antibody at room 
temperature for 1‑2 h. Then the specific protein bands were 
scanned by Odyssey Infrared Imaging System (LI-COR 
Biosciences, Lincoln, NE, USA) according to the manufac-
turer's instructions. The relative band intensity was quantified 
by Quantity One 4.6.2 software (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA).

Statistical analysis. All data were expressed as mean ± SEM 
and analyzed by the Graphpad Prism 7.0 software using 
one‑way analysis of variance (ANOVA) followed by Tukey's 
test. P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

ISO‑1 reduced the serum pancreatic enzymes and pancreatic 
histology. Since elevated activities of serum AMY and lipase 
(LIPA) are considered the most sensitive and specific markers 
of AP (28), firstly, we assessed the activities of these markers. 
As shown in Fig. 1A‑B, compared with SO group, serum AMY 
and LIPA levels were dramatically increased in the rats of 
APIP group (P<0.01). However, ISO‑1 pretreatment reversed 
the increases compared with the APIP group (P<0.01).

Then pancreatic injury was estimated, based on edema, 
inflammatory cell infiltration, hemorrhage, and necrosis. 
As demonstrated in Fig. 2A, there was a little morphological 
evidence of pancreatic injury in SO group. While, conspicuous 
pancreatic edema, interstitial leukocyte infiltration, intrapancre-
atic hemorrhage, and necrosis were observed in the APIP group 
(Fig. 2B). Compared with APIP group, the extent and severity 
of the pancreatic histological injury were significantly alleviated 
in the ISO‑1 group (Fig. 2C). As shown in Fig. 2D, there was a 
significant reduction of the pancreatic histological score in rats 
pretreated with ISO‑1 in comparison with APIP group (P<0.01).

ISO‑1 decreased the proinflammatory cytokines following 
APIP. Serum concentrations of proinflammatory cytokines such 
as TNF‑α, IL‑1β, and IL‑6 greatly increase in AP (29,30), so we 
measured their levels to obtain insight into the effect of MIF antag-
onist ISO‑1 on the inflammatory process in APIP. As illustrated 
in Fig. 3A‑C, concomitant with the taurocholate administration, 
marked increases in serum levels of TNF‑α, IL‑1β and IL‑6 
formation were observed in the APIP rats compared with that in 
SO group (P<0.01). By contrast, the increases of these cytokines 
were obviously decreased by the pharmacological blockade of 
MIF antagonist ISO‑1 (P<0.01).

ISO‑1 alleviated the lung histopathology and the inflammatory 
cell infiltration. Next, we investigated the effect of ISO‑1 on 
the lung injury. As shown in Fig. 4A, the lung sections of SO 
rats showed a normal alveolar morphology. However, rats that 
underwent pancreatitis demonstrated the recognized features 
of lung injury including alveolar wall thickening, and increased 
exudates as well as inflammatory cell infiltration in the alveolar 
spaces (Fig. 4B). The intervention of MIF antagonist ISO‑1 
significantly amended the APIP‑induced histopathologic 
changes of the lung (Fig. 4C). In addition, the histopathological 
score of lung injury in the ISO‑1 group was significantly reduced 
than the score of the APIP group (P<0.01; Fig. 4D).

Acute lung injury is usually accompanied by increased 
inflammatory cells accumulation, mainly including neutro-
phil, which can be marked by MPO (31). So, we explored 
whether ISO‑1 could alleviate the inflammatory cell infiltra-
tion in the lung by performing immunofluorescent assay of 
MPO. As shown in Fig.  5A, green‑colored MPO‑positive 
cells in the lung were indicative of neutrophil cells. The 
number of MPO‑positive cells was significantly elevated after 
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taurocholate induction compared to the SO group (P<0.01). In 
contrast, when pretreated with ISO‑1, the number was appar-
ently reduced (P<0.01; Fig. 5B).

MIF was activated in the lung of APIP rats. Abnormal 
MIF expression is regarded as an important process in 

inflammatory reaction (32,33). Here, results from western 
blot suggested that compared with the SO group, the expres-
sion of MIF in lung tissues of APIP rats was significantly 
increased (P<0.01). ISO‑1 pretreatment slightly decreased 
the MIF expression, but there was no statistical difference 
(P>0.05; Fig. 6A).

Figure 3. Effects of ISO‑1 on the activities of serum proinflammatory cytokines in all groups. (A) TNF‑α, (B) IL‑1β, and (C) IL‑6 concentrations were 
quantified by ELISA assay. (mean ± SD, n=6). P<0.05 indicates a significant difference between the marked groups. SO, sham operation group; APIP, acute 
pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. ISO‑1, (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester; TNF‑α, tumor 
necrosis factor‑α; IL, interleukin.

Figure 2. Morphologic changes and histopathological score of pancreas in all groups. H&E sections were examined by light microscopy (original magnifica-
tion, x200). (A) SO group, (B) APIP group, (C) ISO‑1 group, (D) Comparison of the total pathological scores of pancreas in all groups. P<0.05 indicates a 
significant difference between the marked groups. SO, sham operation group; APIP, acute pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. ISO‑1, 
(S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester.

Figure 1. Effects of ISO‑1 on serum AMY and LIPA in all group of rats. Serum AMY (A) and LIPA (B) levels of each group were detected by the automatic 
biochemical analyzer and duplicated three times. P<0.05 indicates a significant difference between the marked groups. SO, sham operation group; APIP, 
acute pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. ISO‑1, (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester; AMY, 
amylase; LIPA, lipase.
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ISO‑1 inhibited the P38MAPK and NF‑κB activation in the 
lung. Taken together, all of the above results indicated that 
MIF antagonist ISO‑1 mitigated the degree of pancreatitis 

and associated lung injury, but the underlying mechanism 
was unknown. Since the P38MAPK and NF‑κB signaling 
pathways play key roles in the induction of several inflam-
matory diseases (34,35), next we investigated if ISO‑1 exerts 
its anti‑inflammatory activities by affecting the two pathways 
in lung injury induced by APIP. As shown in Fig. 6B, APIP 
induced a marked increase in the phosphorylated level of 
P38MAPK compared with SO group (P<0.01). In addition, 
pretreated with the MIF antagonist ISO‑1 markedly reduced 
the phosphorylation of P38MAPK in the lung following APIP.

The translocation of NF‑κB indicated the activation of 
NF‑κB signaling pathway. As the western blot showed in 
Fig. 6C, the expression of NF‑κB increased significantly in the 
nucleus following APIP, accompanied by the reduction in the 
cytoplasm. However, pretreatment with ISO‑1 inhibited this 
translocation process. We also found that the expression of 
TNF‑α in lung tissues was greatly upregulated after APIP, but 
ISO‑1 treatment reversed the increase (P<0.01; Fig. 6D).

Discussion

In the present study, the effect of MIF antagonist ISO‑1 on 
APIP and associated lung injury as well as the underlying 
mechanism was preliminarily explored. Our results indicated 
that MIF expression was upregulated in the lung of APIP 
rats, and ISO‑1 pretreatment could ameliorate pancreatitis 
and associated lung injury. In addition, ISO‑1 reduced serum 
AMY and LIPA concentrations, pro‑inflammatory media-
tors and inflammatory cell infiltration in the lung. We also 
demonstrated that the inhibitory effect of ISO‑1 on APIP 
and associated lung injury may be through deactivating 
P38MAPK and NF‑κB signaling pathways. All of these 
observations indicate that MIF antagonist ISO‑1 exerts potent 
anti‑inflammatory effects and ameliorates the degree of APIP 
and associated lung injury in rats.

Figure 5. Representative immunofluorescence staining for MPO of the 
lung sections of each group (original magnification, x200). (A) MPO was 
stained green and nuclei was stained blue. (B) Comparison of the number 
of MPO‑positive cells in the lung. P<0.05 indicates a significant differ-
ence between the marked groups. SO, sham operation group; APIP, acute 
pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. ISO‑1, 
(S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester; 
MPO, myeloperoxidase.

Figure 4. Representative histopathological changes of lung injury in each group (original magnification, x400). (A) SO group, (B) APIP group, (C) ISO‑1 group, 
(D) Comparison of the total pathological scores of lung injury. P<0.05 indicates a significant difference between the marked groups. SO, sham operation group; 
APIP, acute pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. ISO‑1, (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester.
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AP is a challenging clinical problem characterized by 
increased mortality depending on the severity. Although there 
have been few clinical trials with pharmacological agents, no 
effective treatment exists (36). APIP is a severe complication 
of pregnancy, which easily results in miscarriage, stillbirth and 
premature birth, and the fetal mortality can be up to 10‑20%, 
even 30% as reported (37,38). The incidence of APIP increased 
during recent years with the change of dietary habits. It mostly 
occurs in the third trimester. The most frequent cause of 
APIP is gallstones, which is responsible for more than 60% of 
cases (1,39). Gallstones are more likely to form during preg-
nancy because of elevated progesterone level and it induces 
biliary hypotonia and increase the pressure of Oddi sphincter, 
which would lead to bile stasis and stone formation (40). So 
retrograde infusion of sodium taurocholate solution into the 
biliary‑pancreatic duct to induce APIP is in line with the 
pathophysiological changes of APIP.

MIF, as an important multifunctional cytokine, involves 
in various physiological and pathological processes including 
inflammation, immunity, tumor, and pregnancy. Studies have 
shown that MIF plays a certain role in the initiation and devel-
opment of acute necrotizing pancreatitis (41), liver injury (42), 
acute respiratory distress syndrome (43) and sepsis (18). ISO‑1 
can selectively bind to the MIF tautomerase site, inhibiting its 

enzyme activity, thereby suppressing some of the biological 
function of MIF. Lung injury is the most common organ 
damage in AP and is responsible for 43% mortality, a main 
reason for the death of AP patients (5). However, whether inhi-
bition of MIF with ISO‑1 could ameliorate lung injury induced 
by APIP has been unknown. Therefore, we hypothesized that 
MIF may be related to acute lung injury induced by APIP. 
In our study, it was demonstrated that MIF was significantly 
upregulated in the lung of APIP rats, suggesting it may be 
involved in the pathogenesis of acute lung injury. While, 
ISO‑1 pretreated did not downregulate the MIF expression, 
which was consistent with the earlier study that ISO‑1 can 
‘bind‑onto’ the tautomerase site of MIF thereby blocking its 
recognition whereas it can't inhibit MIF synthesis (17).

Generally, pancreatic digestive enzymes such as AMY and 
LIPA are most commonly obtained as the biochemical marker 
of pancreatic disease, particularly AP. It is contributed at an 
early stage to the damage of acinar cells and, consequently, 
to inflammatory processes and cytokine production into the 
pancreas. In our experiments, conspicuous hyperamylasemia, 
hyperlipasemia, and pathological evidences like pancreatic 
hemorrhage and necrosis were observed in the sodium tauro-
cholate induced APIP rats. These results showed that the APIP 
model was successfully induced.

Figure 6. Effects of MIF antagonist ISO‑1 on the P38MAPK and NF‑κB signaling pathway in the lung injury induced by APIP. Lung samples were obtained at 
6 h after modeling. MIF, total and phosphorylated P38 and TNF‑α in the cytoplasm, as well as NF‑κB in the cytoplasm and nucleus were measured by western 
blot assay. β‑actin was used as internal control of cytoplasm, and LaminB was used as nucleus internal control. Densitometry quantification of (A) MIF, 
(B) p‑P38, (C) NF‑κB, and (D) TNF‑α was evaluated by the Quantity One software. Data are expressed as mean ± SD (n=6). P<0.05 indicates a significant 
difference between the marked groups. SO, sham operation group; APIP, acute pancreatitis in pregnancy group; ISO‑1, ISO‑1+APIP group. MIF, macrophage 
migration inhibitory factor; ISO‑1, (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester; TNF‑α, tumor necrosis factor‑α; NF‑κB, 
nuclear factor‑κB
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In AP, inflammatory response and pro‑inflammatory 
cytokines play pivotal roles and exert major influences on the 
outcome of the disease, in particular by triggering the systemic 
inflammatory response and multisystem organ failure (44,45). 
Growing evidences have identified crucial contribution of 
inflammation to AP‑induced lung injury. In the study, elevated 
levels of TNF‑α, IL‑1β, and IL‑6 in the serum of APIP rats 
were observed. The proinflammatory cytokine TNF‑α is 
regarded as one of the key cytokine initiators of the inflam-
matory cascade of AP and the degree of pancreatic injury in 
AP correlates directly with the level of TNF‑α (46). IL‑1β and 
IL‑6 are the principal mediators in the synthesis of acute‑phase 
proteins and in the regulation of immune responses and the 
inflammatory process (47). In acute lung injury, these inflam-
matory mediators have cytotoxic effects, such as inducing 
apoptosis of multiple cells including alveolar epithelial cells, 
increasing capillary permeability and damaging intercellular 
tight junctions, further resulting in increasing extravasation 
of vascular fluid, inflammatory cells and more inflammatory 
mediators (48). In our study, recognized features of lung injury 
including alveolar wall thickening, and increased exudates as 
well as inflammatory cell infiltration in the alveolar spaces of 
rats that underwent pancreatitis were observed.

MPO has been used as a biochemical marker for inflam-
matory cells infiltration in studies of multiple‑organ injury in 
AP (49). In addition, its activity in the lung were correlated 
with the degree of lung injury (31). In this study, the number 
of MPO‑positive cells were dramatically increased in the 
lung of APIP rats. Together with aggravating morphological 
changes of the lung and increased inflammatory cells infiltra-
tion demonstrated obvious lung injury during the progression 
of pancreatitis.

However, ISO‑1 pretreatment greatly inhibited the eleva-
tion of serum AMY and LIPA, in addition, we also found 
that ISO‑1 significantly improved the pathological state of the 
pancreas and lung, inhibited proinflammatory cytokines, and 
reduced the number of MPO‑positive cells. All of these obser-
vations indicate that the MIF antagonist ISO‑1 exerts potent 
anti‑inflammatory effects and ameliorates the degree of APIP 
and associated lung injury in rats.

Published studies have showed P38MAPK and NF‑κB are 
both essential pathways involved in regulating the expression 
of inflammatory mediators in the pathogenesis of SAP (50,51). 
The expression of phosphorylated P38MAPK in the pancre-
atic and lung tissue was increased rapidly in the SAP rat 
model  (50). And inhibiting P38MAPK expression amelio-
rates the severity of the disease (52). Therefore, P38MAPK 
activation may represent a major regulatory mechanism 
during severe acute pancreatitis. Our results revealed that 
taurocholate stimulation could induce the phosphoryla-
tion of P38MAPK in the lung tissue. As anticipated, ISO‑1 
pretreatment greatly inhibited the APIP‑induced P38MAPK 
phosphorylation. In addition, we found that the MIF antagonist 
ISO‑1 can simultaneously inhibit NF‑κB signaling pathway in 
the lung. Activation of NF‑κB pathway needs NF‑κB translo-
cation from cell plasma to the nucleus, binding to the promoter 
region of various pro‑inflammatory NF‑κB responsive genes 
and activates transcription (53). Our data showed that NF‑κB 
increased significantly in the nucleus following APIP‑induced 
lung injury, accompanied by the reduction in the cytoplasm, 

implying the activation of NF‑κB signaling pathway. We found 
that pretreatment with ISO‑1 effectively attenuated NF‑κB 
intranuclear translocation in the lung. Inhibition of NF‑κB 
activation reduces the severity of severe acute pancreatitis (54). 
ISO‑1 inhibits the NF‑κB activation and thus ameliorates 
severe acute pancreatitis‑induced lung injury. Previous studies 
have shown that NF‑κB activating can produce multiple 
proinflammatory cytokines (55). In this study, we detected the 
expression of TNF‑α in the lung tissues. The results showed 
that the expression of TNF‑α was greatly increased in the 
lung of APIP rats, whereas ISO‑1 pretreatment reduced the 
increase. These results indicate that the protective effects of 
ISO‑1 against lung injury induced by APIP are correlated with 
the deactivation of P38MAPK and NF‑κB signaling pathways.

In summary, our study provides evidences that MIF 
upregulation participated in the lung injury following APIP, 
and ISO‑1, an MIF antagonist, markedly ameliorated the 
severity of pancreatitis and lung injury, which may through 
the deactivation of P38MAPK and NF‑κB signaling path-
ways. Targeting its upstream or downstream substrates may 
attenuate lung injury and improve APIP outcomes, but the 
specific mechanisms need further investigations. Therefore, 
the findings presented in this study may stimulate interest in 
the development of more potent and specific MIF inhibitors 
for the prevention and treatment of APIP, and associated lung 
injury.
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