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Abstract

Background: Genome instability lncRNA (GILnc) is prevalently related with gastric cancer (GC) pathophysiology.
However, the study on the relationship GILnc and prognosis and drug sensitivity of GC remains scarce.

Method: We extracted expression data of 375 GC patients from TCGA cohort and 205 GC patients from GSE26942
cohort. Then, lncRNA was separated from expression data, and systematically characterized the 8 marker lncRNAs using
the LASSO method. Next, we constructed a GILnc model (GILnc score) to quantify the GILnc index of each GC patient.
Finally, we analyzed the relationship between GILnc score and clinical traits including survival outcomes, TP53, and drug
sensitivity of GC.

Results: Based on a computational frame, 205 GILncs in GC has been identified. Then, a 8 GILncs was successfully
established to predict overall survival in GC patients based on LASSO analysis, divided GC samples into high GILnc score
and low GILnc score groups with significantly different outcome and was validated in multiple independent patient cohorts.
Furthermore, GILnc model is better than the prediction performance of two recently published lncRNA signatures, and the
high GILnc score group was more sensitive to mitomycin. Besides, the GILnc score has greater prognostic significance than
TP53 mutation status alone and is capable of identifying intermediate subtype group existing with partial TP53 functionality
in TP53 wild-type patients. Finally, GILnc signature as verified in GSE26942.

Conclusion: We applied bioinformatics approaches to suggest that a 8 GILnc signature could serve as prognostic
biomarkers, and provide a novel direction to explore the pathogenesis of GC.
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Introduction

Gastric cancer (GC) is one of the leading contributors to the
global cancer disease burden, which has brought heavy
burden to the society and family.1,2 Despite the many
treatments available to treat GC, it still ranks fourth in
tumor-related mortality.3,4 The genesis and development of
GC are reported to be due to the accumulation of gene
mutations and epigenetic changes, which in turn lead to
transcriptional or translational dysregulation.5,6 Due to
gene mutations that have occurred in the early stages of the
malignant tumor, molecular mechanisms of gene mutations
regulation have to be further explored, and the analysis of
its relations with GC metastasis and drug resistance will
help to find new early GC markers, and will help to im-
prove and enrich the early diagnosis of GC, in order to
achieve targeted drugs which provide theoretical basis for
the development of GC, and will help to improve the
prognosis of patients with GC.

Molecular biology studies have shown that there is
genomic instability or genetic instability in GC.7 Loss of
heterozygosity (LOH) and microsatellite instability (MSI)
caused by DNAmismatch repair (MMR) gene repair errors
are considered to be the two main phenotypic features of
genome instability.8 Genomic instability can be a hallmark
of both human genetic disease and cancer.9 Tumor cells
have biological characteristics such as unrestricted pro-
liferation, vascular regeneration, and metastasis, and the
instability of the genome is the most essential characteristic
of tumor cells. The relative stability of the genome is the
basic prerequisite for cells to be faithfully passaged. When
there are genetic defects or exposure to adverse environ-
mental factors such as biological, physical, and chemical
tests, it will lead to genomic instability.10 Studies have
constructed 10-miRNA signatures related to DNA damage
response, and have shown that 10-miRNA signatures are
associated with poor prognosis in ovarian cancer.11 More
and more evidence indicates that lncRNA plays an im-
portant role in tumors, and abnormal lncRNA expression
may affect tumor cell proliferation, tumor progression or
metastasis.12-14 Therefore, constructing lncRNAs related to
genomic instability may be a prognostic factor for GC.

In this study, we extracted the transcription data of
375 GC patients from TCGA cohort and 205 GC patients
from GSE26942 cohort. Then, lncRNAwas separated from
expression data, and systematically characterized 8 marker
genome instability lncRNAs (GILnc) using the LASSO
method. We constructed a GILnc score to quantify the
GILnc index of each GC patient. We revealed that the
distribution of GILnc score was validated in the GSE26942
cohort, suggesting that this scoring system based on GILnc
plays an important role in predicting the prognosis of GC.

Materials and methods

Data source and preprocessing

This study was retrospective in nature. All data in this study
was obtained from Public DataBase. We systematically
searched GC-related array datasets from the public data-
bases and selected the GC microarray data since 2010. The
GC microarray datasets were recruited from Gene Ex-
pression Ominibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) with the following criteria: (1) only from
Affymetrix platform; (2) gastric cancer; (3) the number of
patients ≥50; (4) with more than 12,000 protein coding
genes. Finally, GSE26942 (n = 205) microarrays dataset
were retrieved.15 One dataset was from The Cancer Ge-
nome Atlas (TCGA) (https://portal.gdc.cancer.gov/
repository): TCGA-STAD (n = 375). Then lncRNA was
separated from expression data. Next, we divided all
TCGA-STAD samples into a training set and a test set. The
training set included 168 samples for the creation of a
clinical outcome lncRNA risk model. The test set included
169 patients, used to validate the predictive ability of the
prognostic risk model. Meanwhile, we calculated the tumor
mutation burden (TMB) in the samples and estimate the
average number of mutations in the tumor genome. In-
formation on the data obtained is summarized in Table 1.

Selection of GILnc signature in GC

To identify the GILncSigs in GC, the top 25% somatic
mutations per patient (n = 90) and the last 25% somatic
mutations per patient (n = 97) of the patients were assigned
to GU-like (genomic unstable) group and GS-like (geno-
mic stable) group. Use the “Limma” software package in
the R statistical software to extract and analyze the
downloaded data, and screen out the differentially GILncs
between GU-like group and GS-like group. We set the
adjusted p-value < 0.05 and log2FC>1 as a significance
threshold.16

Construction of a risk model with prognostic value
in GC

Next, univariate Cox regression analysis was used for
differentially expressed GILncs, and the differentially
expressed GILncs related to the patient’s overall survival
(OS) were screened out based on p<0.05. Then, LASSO
was used to identify the most powerful prognostic GILncs.
A risk score for each patient was calculated according to the
following formula

GIncSigRiskcore¼
Xn

i¼1
coef ðIncRNAiÞ∗exprðIncRNAiÞ
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where i means the GILnc feature genes.17,18 Next, we
divided GC samples into high-risk and low-risk groups
base on the median of GILnc score.

Gene set enrichment analysis (GSEA)

We performed GSEA to identify differences in the en-
richment of pathways and biological processes between
high-risk and low-risk groups. GSVA was conducted

using the “GSEA” package in R. We downloaded the gene
sets of “c2. cp.kegg.v7.3. symbols” and “h.all.v7.3.
symbols” from the MSigDB database for GSEA
(http://www.gsea-msigdb.org/gsea/downloads.jsp). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were performed
using the “clusterProfiler” package. A significance level
of 0.05 (FDR) was considered to indicate statistical
significance.19

Table 1. Clinical characteristics of GC patient datasets in this study.

Characteristic TCGA dataset (N = 337) Discovery dataset (N = 168) Validation dataset (N = 169) p-value

Age (years), n (%) ≤65 153 (45.4%) 74 (44.1%) 79 (46.8%) 0.735
>65 181 (53.7%) 92 (54.8%) 89 (52.7%)
Unknown 3 (0.9%) 2 (1.2%) 1 (0.6%)

Gender, n (%) Female 119 (35.3%) 66 (39.3%) 53 (31.4%) 0.159
Male 218 (64.7%) 102 (60.7%) 116 (68.6%)

Grade, n (%) G1-2 129 (38.3%) 65 (38.7%) 64 (37.9%) 0.968
G3-4 199 (59.1%) 102 (60.7%) 97 (57.4%)
Unknown 9 (2.67%) 1 (0.6%) 8 (4.7%)

Stage, n (%) Stage I/II 152 (45.1%) 73 (43.5%) 79 (46.8%) 0.614
Stage III/IV 171 (50.7%) 88 (52.4%) 83 (49.1%)
Unknown 14 (4.2%) 7 (4.2%) 7 (4.1%)

T, n (%) T1-2 89 (26.4%) 45 (26.8%) 44 (26.0%) 0.974
T3-4 244 (72.4%) 121 (72.0%) 123 (72.8%)
Unknown 4 (1.2%) 2 (1.2%) 2 (1.2%)

M, n (%) M0 303 (89.9%) 157 (93.5%) 146 (86.4%) 0.238
M1 22 (6.5%) 8 (4.8%) 14 (8.3%)
Unknown 12 (3.6%) 3 (1.8%) 9 (5.3%)

N, n (%) N0 99 (29.4%) 46 (27.4%) 53 (31.4%) 0.385
N1-3 227 (67.4%) 119 (70.8%) 108 (63.9%)
Unknown 11 (3.3%) 3 (1.8%) 8 (4.7%)

Figure 1. Flow chart of the steps in the performed analyses.
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Immune cell infiltration

We performed the ssGSEA, CIBERSORT, and xCell al-
gorithm methods to calculate the composition of immune
cells between the clusters

Statistical analysis

The normality of the variables was evaluated using the
Shapiro–Wilk normality test. Continuous variables between
two groups were compared using the unpaired Student t-test
and Mann–Whitney U test for parametric data and non-
parametric data, respectively. For comparison between more
than two groups, we used parametric one-way ANOVA or
non-parametric Kruskal–Wallis test. Kaplan–Meier analysis
was used to generate survival curves using the “survival”
and “survminer” packages, and the cut-off values were
determined through the “surv_cutpoint” function in the

packages. The receiver operating characteristic (ROC) curve
was generated using the “pROC” package. To calculate the
hazard ratios and identify the independent prognostic fac-
tors, univariate and multivariate Cox regression analyses
were performed using the “survival” package. All statistical
analyses were two-sided and considered p < 0.05 as the
threshold for statistical significance. The statistical results
were all analyzed by R (version3.6.2).

Result

Identification of GILncs signature in GC patients

The workflow of our study was presented in Figure 1. As
showed in Supplemental Table 1, GILncs were signifi-
cantly different expression between GU-like group and
GS-like (Figure 2(a)). Using 205 differentially expressed
GILncs, all 375 patients were arranged into two clusters,

Figure 2. Identification and functional annotations of genomic instability-related lncRNAs in patients with gastric cancer. (A) Heatmap
of the top 20 genome instability-associated lncRNAs expressing the most upregulation and downregulation. (B) Unsupervised
clustering of 375 GC patients based on the expression pattern of 205 candidate genomic instability-related lncRNAs. The left blue
cluster is GS-like group, and the right red cluster is GU-like group. (C) Boxplots of somatic mutations in the GU-like group and GS-like
group. Somatic cumulative mutations in the GU-like group are significantly higher than those in the GS-like group. (D) Boxplots of
UBQLN4 expression level in the GU-like group and GS-like group. The expression level of UBQLN4 in the GU-like group is significantly
higher than that in the GS-like group. Horizontal lines: median values. Statistical analysis was performed using the Mann–Whitney U test.
(E) Coexpression network of genomic instability-related lncRNAs and mRNAs based on the Pearson correlation coefficient. The red
circles represent lncRNAs, and the blue circles represent mRNAs. (F) Functional enrichment analysis of GO for mRNAs co-expressed
lncRNAs. (G) Functional enrichment analysis of KEGG for mRNAs co-expressed lncRNAs.
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the GS-like cluster and the GU-like cluster (Figure 2(b)).
Next, we further analyzed the difference between the cu-
mulative somatic mutation value between the GU group
and the GS group, and the results showed that the cu-
mulative somatic mutation value of the GU group was
significantly higher than that of the GS group (Figure 2(c)).
Researchers have discovered UBQLN4 is a newly iden-
tified driver of genomic instability, and harmful UBQLN4
mutations in families with autosomal recessive syndromes.
Loss of UBQLN4 can lead to increasing sensitivity to
genotypic stress and delayed DNA double-strand break
repair.20 Therefore, we compared the expression level of
UBQLN4 in the GU group and the GS group, and the
results showed that the expression level of UBQLN4 in the
GU group was significantly higher than that in the GS
group (Figure 2(d)).

To better understand the functions of these GILncs, we
constructed a lncRNA-mRNA coexpression network,
where the nodes are lncRNA and mRNA, if they are related
to each other, lncRNA and mRNA will be linked together
(Figure 1(e)). In addition, functional enrichment analysis of
go and kegg for lncRNA-correlated mRNA, go and kegg
showed that lncRNA-correlated mRNA are mainly cancer-
specific pathways (Figure 2(f) and (g)).

Development of a GILncs signature for prognosis of
patients with GC in the training set

Next, 375 GC patients were divided into the training set
and the testing set according to best batches. Table 1 shows
the clinical characteristic of training set, the testing set and
TCGA dataset. In order to predict the clinical outcomes of

Figure 3. Identification of the genomic instability-derived lncRNA signature (GILncSig) for outcome prediction in the training set. (A)
Forest plots showing the results of the multivariate Cox regression between GILncSig expression and OS. (B Kaplan–Meier estimates
of overall survival of patients with low or high risk predicted by the GILncSig in the training set. Statistical analysis was performed using
the log-rank test and univariate Cox analysis. (C) Time-dependent ROC curves analysis of the GILncSig at 1-year. (D) LncRNA
expression patterns and the distribution of somatic mutation and UBQLN4 expression with increasing GILncSig score. The
distribution of somatic cumulative mutations (E) and UBQLN4 expression in the (F) in the high-risk and low-risk groups for GC patients.
The red represents the high-risk group, and the blue represents the low-risk group. Horizontal lines: median values. Statistical analysis
was performed using the Mann–Whitney U test.
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GC with GILncs signature, we applied LASSO Cox re-
gression algorithm to the 205 GILncs in the training set.
Eight GILncSigs were selected to build the risk signature
based on the minimum criteria (Supplemental figure 1(a)
and (b)). Next, to inspect whether eight GILncSigs were
related to prognosis in GC, multivariate Cox regression
was employed to analyze the hazard ratio (HR) of 8
GILncSigs in GC. Forest plot showed that high expression
levels of 6 genes including RHOXF1-AS1, AL049838.1,
LINC01436, LINC01833, AL359182.1, and LINC01614

were significantly related to poor OS of GC patients. While,
high expression levels of AC078883.2 and AL365181.3
were closely related to relatively better OS in GC patients
(Figure 3(a), Table 2). Furthermore, Kaplan–Meier log-
rank analysis revealed that high GILnc score group was
significantly correlated with poor overall survival (OS)
(Figure 3(b)). To test the efficiency of GILncSig, ROC
curve was constructed. The risk score’s AUC was 0.699,
indicating that its efficiency to predict prognosis was ac-
curate (Figure 3(c)). Simultaneously, as increasing GILnc

Table 2. Multivariate Cox regression analysis of genome instability-related lncRNAs associated with overall survival in GC

Ensembl ID Gene symbol Genomic location Coefficient HR 95% CI p-value

ENSG00000232788 AC078883.2 Chromosome 2: 172,464,262–172,466,022 �0.57 0.57 0.39–0.83 0.004
ENSG00000258545 RHOXF1-AS1 Chromosome X: 120,036,236–120,146,854 0.24 1.27 1.06–1.53 0.011
ENSG00000259039.3 AL049838.1 Chromosome 14: 57,578,409–57,600,404 0.54 1.72 1.01–2.93 0.046
ENSG00000231106 LINC01436 Chromosome 21: 36,005,338–36,007,838 0.10 1.10 1.02–1.20 0.017
ENSG00000259439 LINC01833 Chromosome 2: 44,921,077–44,939,199 0.14 1.15 1.06–1.25 <0.001
ENSG00000083622 AL359182.1 Chromosome 7: 117,604,791–117,647,415 0.37 1.45 1.02–2.05 0.038
ENSG00000272405 AL365181.3 Chromosome 1: 156,641,666–156,644,887 �0.06 0.94 0.89–0.98 0.018
ENSG00000230838 LINC01614 Chromosome 2: 215,718,043–215,719,424 0.09 1.10 1.01–1.20 0.029

Figure 4. Performance evaluation of the GILncSig in the TCGA set and testing set. Kaplan–Meier estimates of overall survival of patients
with low or high risk predicted by the GILncSig in the TCGA set (A) and testing set (C). Statistical analysis was performed using the log-
rank test and univariate Cox analysis. time-dependent ROC curves analysis of the GILncSig at 1-year in the training set (B) and testing set
(D). LncRNA expression patterns and the distribution of somatic mutation count distribution and UBQLN4 expression for patients in
high- and low-risk groups in the training set (E) and testing set (H). The distribution of somatic mutation in patients of high- and low-risk
groups in the training set (F) and testing set (I). The distribution of UBQLN4 expression in patients of high- and low-risk groups in the
training set (G) and testing set (J). Horizontal lines: median values. Statistical analysis was performed using the Mann–Whitney U test.
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score, the chang of expression in the training set (Figure
3(d)). We further analyzed the difference between the
cumulative somatic mutation value between the two
groups. The result showed the cumulative somatic muta-
tion value in the high GILnc score group was higher than
that in the other group (Figure 3(e)). We also compared the
expression level of UBQLN4 in two groups. The result
showed the UBQLN4 in the high GILnc score group was
higher than that in the other group (Figure 3(f)).

Validation of GILnc score for outcome prediction in
the testing set and TCGA set

To examine the robustness of the GILnc score in the testing
set and TCGA set. The results showed that patients in the
high GILnc score group had a poor survival as compared
with low GILnc score group in the testing set and TCGA set
(Figure 4(a) and (c)). The risk score’s AUC was 0.671 in
TCGA set and 0.634 in testing set, indicating that its effi-
ciency to predict prognosis was accurate (Figure 4(d) and (d)).

Simultaneously, as increasing GILnc score, the chang of
expression in the testing set and TCGA set (Figure 4(e) and
(i)). We further analyzed the difference between the cu-
mulative somatic mutation value between the two groups.
The result showed the cumulative somatic mutation value
in the high GILnc score was higher than that in the testing
set and TCGA set (Figure 4(f) and (j)). We also compared
the expression level of UBQLN4 in two groups in the
testing set and TCGA set, and the expression level of
UBQLN4 in the high GILnc score group was significantly
higher than that in the low GILnc score group (Figure 4(g)
and (k)). Functional enrichment analysis revealed that the
high GILnc score group was enriched in cancer-related
pathways, and low GILnc score group was enriched in
metabolism-related pathways (Figure 5(a) and (b)).

Independent prognostic analysis of GILncs signature

Next, to investigate whether GILnc score could serve as
an independent prognostic factor for GC, we performed

Figure 5. GSEA on the TCGA cohort to explore mechanisms underlying the 8-GILncSig. (A) GSEA GO identifies high and low risk
related signaling pathway in GC. (B) GSEA KEGG identifies high and low risk related signaling pathway in GC.
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univariate and multivariate Cox regression analyses. The
results indicated that GILnc score is a robust indepen-
dent prognostic factor in TCGA cohort (1.09 [1.03–
1.16], p < 0.001) and GSE26942 cohort (1.53 [1.07–
2.69], p = 0.037) (Table 3). Subsequently, Kaplan–Meier
log-rank analysis revealed that high GILnc score group
was significantly correlated with poor OS in the path-
ological stage (Figure 6(a)-6L). In addition, the AUCs
for 1-year, 3-year, and 5-year OS were 0.671, 0.670, and
0.668 (Figure 7(a)). Furthermore, the results showed that
the AUCs for risk, age, gender, and stage OS were 0.671,
0.563, 0.519, and 0.601 (Figure 7(b)). Based on the
above results, GILnc score has independent research
value in GC.

Association of GILnc score with TP53

TP53 gene is closely related to the occurrence and de-
velopment of GC.21 As shown in Figure 7(a), the pro-
portion of patients with TP53 mutations in the high GILnc
score group was significantly higher than that in the low
GILnc score group (p <0.05). Then, we divide all patients
into TP53 mutation/GS, TP53 mutation/GU, TP53 wild/GS,

and TP53 wild/GU group. The results showed that patients
in TP53mutation/GU had a poor survival as compared with
TP53 mutation/GS in TCGA set (Figure 7(b)). Further-
more, we compared the resulting GIlnc to the latest pub-
lished signatures related to lncRNAs; the first signature is
the 8-lncRNA signature (SunLncSig),22 and the second
signature is the 3-lncRNA signature (WangLncSig).23 The
results showed that the AUCs for SunLncSig, WangLnc-
Sig, and GILncSig OS were 0.586, 0.589, and 0.671
(Figure 7(c)). To gain further insight into the effects of the
GILnc score on drug sensitivity, we evaluated the corre-
lation between GILnc score and drug sensitivity, we found
that the high GILnc score group showed significantly in-
creased sensitivity to mitomycin drug (Figure 7(d)). In
addition, the positive EBV status was significantly corre-
lated with lower GILnc score (Figure 7(e)).

The GILncs signature in the role of PD-1/
L1 immunotherapy

We first analyzed the immune infiltration between high-risk
and low-risk group, and significantly higher immune in-
filtration in the high-risk group was observed relative to

Figure 6. Kaplan–Meier curves were performed for patients stratified by clinicopathological features in the TCGA set. Impact of
prognostic risk on overall survival for patients younger than 65 years old (A) and older than 65 years old (B); for female (C) and male
patients (D); for patients in G1-2 (E) and G3 (F); for patients in N0 (G) and N1-3 (H); for patients in stage I-II (I) and stage III-IV (J); and for
patients in stage T1-2 (K) and stage T3-4 (L).

Yi et al. 9



low-risk group (Figure 8(a)). Next, we download the im-
munotherapy data of TCGA-STAD patients, and the sig-
nificant therapeutic advantages and clinical responses to
PD-1/L1 immunotherapy in patients with high-risk group
compared to those in low-risk group were confirmed
(Figures 8(b) to (e)).

Construction and assessment of a
predictive nomogram

A nomogram incorporating tumor stage and risk group was
built to predict 1-year, 3-year, and 5-year OS (Figure 9(a)).
Calibration plots showed that the nomogram was better at
predicting short-term survival (1- and 3-year) rather than
long-term survival (5-year), as indicated by agreement
between the predicted survival and actual survival (Figure
9(b)). According to DCA curves, the nomogram also of-
fered the highest net benefit among the three factors ex-
amined (Figure 9(c)).

Validation the expression and prognosis of GILncs
signature in GSE26942

To further validate GILnc score in GC, GSE26942 cohort was
used to measure the GILnc score, and the result showed that
compared with normal group, the RHOXF1-AS1,
AL049838.1, LINC01436, LINC01833, AL359182.1, and
LINC01614 level were significantly higher in GC group,
however, the AC078883.2 and AL365181.3 level were sig-
nificantly lower in GC group (Figures 10(a) to (h)), and
Kaplan–Meier analysis revealed that the prognosis of patients
with high GILnc score group was significantly poor than that
of patients with low GILnc score (Figure 10(i)).

Discussion

GC is characterized by genomic instability, researches
show that genomic instability play significant roles in the
pathological process of chronic atrophic gastritis, gastric

Figure 7. Relationship between the GILncSig and TP53 somatic mutation. (A) The proportion of TP53 mutation in high-risk and low-
risk groups in the training set, testing set and the TCGA set. (B) Kaplan–Meier curve analysis of overall survival is shown for patients
classified according to TP53 mutation status and the GILncSig. Statistical analysis was performed using the log-rank test. (C) The ROC
analysis at 1-year of overall survival for the GILncSig, LilncSig and BailncSig. (D) The drug sensitivity in high-risk and low-risk groups. (E)
The EBV status in high-risk and low-risk groups.
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ulcer, atypical hyperplasia, intestinal metaplasia, and
gastric carcinoma.24 The occurrence of malignant tumor is
a process of multi-gene participation and gradual evolu-
tion.25 The progression from a normal cell to a malignant
cell is actually a long process that involves various genetic
mutations that lead to a precancerous lesion and then to a
malignant tumor. This series of genomic evolution often
requires DNA damage or replication abnormalities in
chromosomal instability and even the emergence of a
“hyperploidy” phenotype. As a result, most tumors often
present a complex genetic map at the time of diagnosis,
which is very different from that of normal controls,
suggesting a high degree of genomic instability in the body
at the time of tumor development.26,27 Genomic instability
is an important molecular feature of malignancy.28 The
relative stability of the genome is the basic prerequisite for
faithful cell passage.29 Detection of genomic instability is

now thought to be an early warning of tumorigenesis.30

Current studies have also confirmed that genes that cause
genomic instability are important clues to the causes of
tumors.31 Moreover, with the continuous improvement of
modern molecular biology methods, more and more evi-
dence shows that cancer patients can be timely treated by
detecting their genomic instability.32 Clinically, there have
been some targeted drugs targeting genomic instability-
related genes, which have brought good news to tumor
patients.33 It has been established that downregulation of
these genomic instability-related genes has been clinically
found to significantly enhance the sensitivity of cancer
patients to platinum-based chemotherapy.34,35 To sum up,
it is of great significance to elucidate the relevant mech-
anisms of genomic instability in tumor cells and to conduct
relevant assays to reduce the incidence of tumor, delay the
progression and improve the disease condition.

Figure 8. The GILncs signature in the role of PD-1/L1 immunotherapy. (A) Landscape of immune infiltration in high-risk and low-risk
groups. The correlation of GILncs signature with clinical response to anti-PD-1 immunotherapy. (B) CTLA4_negative+ PD-1_negative,
(C) CTLA4_negative + PD-1_positive, (D) CTLA4_positive + PD-1_negative, and (E) CTLA4_positive + PD-1_positive.
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LncRNA is widely defined as a class of RNA molecules
whose transcriptional length is greater than 200 nucleotides
and lacks an open reading frame.36 LncRNAs have a
potential role in regulating the function of tumor cells.37

LncRNA regulate gene expression at different levels in-
cluding chromatin assembly, transcriptional, and
posttranscriptional.38,39 Recent studies have shown that
NORAD and GUARDIN are essential for genomic
stability.40,41 Currently, a variety of tumor genomic in-
stability detection technologies have sprung up rapidly, and
the understanding of the role of genomic instability in the
development of tumors is gradually deepening. However,
the genom-wide identification of genomic instability-
related lncRNAs and the systematic exploration of their
clinical significance in cancer are still in their infancy.
Therefore, it is of great significance to identify lncRNAs
associated with genomic instability.

First, we downloaded the GC expression profile data
and mutation data. We defined the 25% with the highest
frequency as the high mutation group, and the 25%with the
lowest frequency as the low mutation group. A total of 205
different lncRNAs were obtained compared with the low
mutation group. These lncRNAs were characterized as
genomic instability-related lncRNAs. Functional enrich-
ment analysis of mRNAs co-expressed with 205 lncRNAs

indicated that these lncRNAs may play an important role in
the pathogenesis of GC, which is consistent with other
studies.42 Abnormal repair of DNA damage is directly
related to genomic stability. If the mechanism of repairing
DNA damage is defective, it will directly lead to the
persistence of DNA damage and the harmful changes of
cells, until the tumor is triggered. DNA damage is mainly
exogenous, such as chemical exposure, UV irradiation,
biological hazards, and endogenous, such as in vivo
spontaneous DNA damage events, cell cycle process and
DNA replication process block. These damages, if not
repaired in time, can induce genomic oxidation, alkylation,
and even DNA crosslinking, dimer formation, and even
DNA breakage.43,44 Therefore, whether DNA damage can
be repaired in time and correctly directly affects the
maintenance of genome stability.

In the past, the pathological classification of gastric
cancer commonly included Lauren classification, Borr-
mann classification, and WHO classification; however,
these classifications have limited significance for the
clinical treatment of gastric cancer.45,46 Now, with the
progress of genetic technology, the classification of gastric
cancer at the molecular level is more meaningful for the
selection of targeted drugs for gastric cancer patients.
GILncSig divided patients into low GILnc score group and

Figure 9. Construction and assessment of a predictive nomogram. (A) A nomogram predicting survival probability at 1-, 3-, and 5-year
after surgery for GC patients; (B) Calibration curves for the nomogram; (C) DCA curves showing the comparison between the
nomogram and tumor stage or risk group alone for predicting 1-, 3-, and 5-year overall survival in GC.
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high GILnc score group. Kaplan–Meier analysis revealed
that the prognosis of patients with high GILnc score group
was significantly poor than that of patients with low GILnc
score group. In addition, the high GILnc score group was
more sensitive to mitomycin. The above studies suggest
that GILnc score classification has the potential to predict
prognosis and guide medication.

Our study has some limitations. First, given the indi-
vidual heterogeneity of GC, the results of our study should
be further validated using more multicenter clinical data.
Last, our findings have substantial implications for 8
GIlncs of GC, and the detailed molecular mechanisms
require further research to explore deeper interactions.

Conclusion

In a conclusion, this study was focused on the analysis of
GILnc in GC, and based on GILnc, we constructed the

GILnc score model to explore the extensive regulation
mechanisms by which genome instability affects tumori-
genesis. The relationship between the scoring system and
clinical outcomes in GC patients was demonstrated, and
model validation was performed using external dataset
from the GEO databases. This study provides novel in-
sights into the role of genome instability in GC
development.
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