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Abstract
Changes in biodiversity today shape the future patterns of biodiversity. This fact under-
lines the importance of understanding changes in biodiversity through time and space.
The number of species, known as species richness, has long been studied as a key indi-
cator that quantifies the state of biodiversity, and standardisation techniques, called
rarefaction, have also been used to undertake a fair comparison of the richness observed
at different times or locations. The present study asks whether utilising different rar-
efaction techniques attains comparable results when investigating changes in species
richness. The study framework presents the statistical nature of two commonly adopted
rarefaction techniques: size-based and coverage-based rarefaction. The key finding is
that the rarefied richness results calculated by these two different rarefaction meth-
ods reflect different aspects of biodiversity change, the shift in community size and/or
composition. This fact illuminates that richness analyses based on different rarefaction
techniques can reach different conclusions that may be contradictory. The study also
investigates the mechanism creating such divergence. As such, special care is required
when evaluating biodiversity change using species richness as an indicator.

Keywords Coverage-based · Rarefaction · Richness · Size-based · Sampling ·
Species abundance distribution (SAD)
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1 Introduction

Growing concern about biodiversity change highlights the pressing need for an
improved understanding of the nature of this change as changes in the present shape
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future biodiversity patterns. However, the recent continuous debate on this topic (Vel-
lend et al. 2013; Cardinale 2014; Dornelas et al. 2014a, b; Elahi et al. 2015; Gonzalez
et al. 2016; Vellend et al. 2017, for example) to some extent indicates the degree of
difficulty in quantifying biodiversity change from observed ecological data. In fact,
even the popular biodiversity index on which the present study focuses—the number
of species, often called species richness—is one of the indices that is difficult to work
with, despite its familiarity, because ecological data always contain some extent of
uncertainty due to their survey or sampling conditions (Shimadzu et al. 2016).

Comparing observed richness amongst ecological communities at different sites or
times has long been recognised as an important but challenging task in quantitative
ecology as the survey conditions under which data are collected may easily vary from
one observation to another. The difficulty mainly stems from the fact that the observed
richness increases or decreases in magnitude non-linearly with three factors: the num-
ber of individuals, the size of the survey area and the degree of survey completeness.
Thus, ecologists have adopted standardisation methods known as rarefaction when
comparing the richness of different sites or time periods (Gotelli and Colwell 2001;
Chao and Jost 2012).

To date, common rarefaction techniques take one of two forms. One is a con-
ventional approach, size-based rarefaction, which has a long history and traces its
roots back to a benthic study concerning an assembly of pooled individual organisms
(Sanders 1968). See Hurlbert (1971), Simberloff (1972), Heck et al. (1975) for the
formal framework for this approach; Gotelli and Colwell (2001) provides a compre-
hensive review. The other is a relatively new technique discussed by Alroy (2010),
Chao and Jost (2012), namely, coverage-based rarefaction. Theway inwhich observed
data are standardised to calculate rarefied richness distinguishes these two rarefaction
techniques. A detailed comparison of these techniques will be discussed in a later
section.

However, whether analyses of richness adopting different rarefaction techniques
arrive at the same conclusion has rarely been examined. Much of the previous research
on rarefaction techniques has focused on its merit and the inevitable downwards bias
in rarefied richness. There is little theoretical investigation asking whether these two
rarefaction approaches are parallel, particularly in the context of analysing richness
changes over time and space. A crucial question to be asked is how the analysis results
ought to be interpreted if they are contradictory, for instance, a situation where one
rarefaction technique indicates an increasing or a decreasing trend but the other illus-
trates a flat trend that implies no changes in species richness. The present study stresses
that comprehending the statistical nature of these common rarefaction techniques is a
crucial step towards enhancing the knowledge of the types of biodiversity change that
are currently being quantified and discussed. Further insights that underpin a better
interpretation of biodiversity change as appraised by species richness are required,
given that evaluating biodiversity change is becoming a matter of great importance in
society.

The remainder of the paper presents new insights into the analysis of richness
change, asking whether the utility of different rarefaction techniques acquires compa-
rable results. Section 2 introduces twokey concepts:marginal and conditional richness.
Section 3 then describes the theoretical bases for the study framework, which estab-
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lishes the formal expression of species richness given in Sect. 2. Conditional richness
expresses the statistical nature of rarefaction techniques in a formal manner, speci-
fying the rarefaction mechanism as a type of simple random sampling (Sect. 4). The
current study focuses on examining the temporal trend of richness, and the gradient of
conditional richness over time is then investigated for each rarefaction technique. Sec-
tion 5 delineates the extent to which the trend component of richness consists of two
parts: changes in community composition and abundance. The trends of rarefied rich-
ness produced by the two different rarefaction techniques reflect, in fact, ecologically
different aspects of biodiversity. This finding means that richness analyses based on
different rarefaction techniques can reach conflicting conclusions. A numerical sim-
ulation is performed in Sect. 6 and exhibits an agreement with the theoretical results,
illuminating the mechanism that creates the divergence between these two different
rarefaction techniques.

2 Richness

The concept of species richness, the number of species, seems intuitive. Neverthe-
less, this concept is still somewhat confusing without any formal definition. To avoid
unnecessary confusion, two types of richness, which have barely been distinguished
in quantitative ecology, are introduced.

First, let k be the number of species that potentially reside in the ecological com-
munity of interest. Note that this finite number k is not random and fixed. Here and
throughout the manuscript, as commonly used, uppercase letters denote random vari-
ables, and lowercase letters indicate the responding values, the real numbers that the
random variables map into.

Definition 1 (Richness) Richness, S, is the number of species for which at least
one individual exists at a location and/or a time point. Letting Ni be the number of
individuals of the i th species, richness is defined as

S =
k∑

i=1

I (Ni > 0), (1)

where I (·) is the indicator function.
The number of absent species, the counterpart of the species that are present, is

then described as S0 = ∑k
i=1 I (Ni = 0).

Definition 2 (Conditional richness) Conditional richness, S(n), is the number of
species for which at least one individual is observed, in a pooled sample of n indi-
viduals. Here, n = ∑k

i=1 ni . Conditional richness is then defined, using the indicator
function I (·), as

S(n) =
k∑

i=1

I (Ni > 0|N = n). (2)
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Due to the natural variability within ecological communities, each species can be
absent from a pooled sample, which is the case when none of the individuals of species
i is observed, Ni = 0. The number of unobserved species conditioning on pooled n
individuals is therefore given as S0(n) = ∑k

i=1 I (Ni = 0|N = n).

Note that a key difference between richness (1) and conditional richness (2) is
whether the index depends upon the total number of observed individuals, n. Thus,
conditional richness is denoted by S(n), in contrast with richness, denoted by S.

3 Framework

3.1 Ecological communities

Assume that ecological communities potentially consist of a total of k species and
that each individual is randomly distributed over a geological region, say, A ⊂ R

2.
In general, space A is a plane but can also be a space defined by other auxiliary vari-
ables, such as environmental factors. The number of individuals of the i th species in
the region, Ni (A), or numerical abundance, then follows a Poisson distribution with
its mean E [Ni (A)] = Λi (A) = ∫

A λi (x)dx, where λi (·) is the intensity function of
species i , which uniquely specifies a Poisson point process (Cressie 1993; Illian et al.
2008). If the density function is location independent, i.e., λi , it is then a homogeneous
Poisson point process, and its mean becomesΛi (A) = λi |A|, where the modulus sign
denotes the volume (area) of spaceA. Given a group of k species, the total abundance
within space A is expressed as N (A) = ∑k

i=1 Ni (A), and its expectation becomes
E [N (A)] = Λ(A) = ∑k

i=1 Λi (A). The joint distribution of species abundances,
N(A) = (N1(A), N2(A), . . . , Nk(A)), is then given as a product of Poisson distri-
butions for which each mean is Λi (A).

A longstanding goal of ecological studies is to comprehend the stochastic nature of
ecological communities. Typical examples include modelling the mean abundance of
each species, Λi (A), and accounting for other variables with regression-type models,
namely, species distribution models (SDMs: Guisan and Zimmermann 2000). These
models often employ a range of statistical modelling frameworks, such as generalised
linear (GLMs: McCullagh and Nelder 1989) and generalised additive (GAMs: Hastie
and Tibshirani 1990) models. Recent advanced SDMs also include mixture models
that cope with the heterogeneity that is often observed in ecological data (Dunstan
et al. 2011, 2013).

3.2 The distribution of observed abundances

The joint distribution of species abundances, N(A) = (N1(A), N2(A), . . . , Nk(A)),
is expressed as a product of Poisson distributions. Conditioning on the total num-
ber of individuals N (A) = n, in other words, fixing survey area A, the conditional
distribution of species abundances for pooled individuals becomes a multinomial dis-
tribution,
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Pr(N(A) = n|N (A) = n) = Pr(N(A) = n)

Pr(N (A) = n)

=
k∏

i=1

Λi (A)ni

ni ! e−Λi (A)

/
Λ(A)n

n! e−Λ(A)

=
(

n

n1, n2, . . . , nk

) k∏

i=1

pi
ni , (3)

where pi = Λi (A)/Λ(A) is the relative abundance of species i such that their total
sum must be one,

∑k
i=1 pi = 1.

Note that the survey area, A, will hereafter be omitted from the notation for sim-
plicity unless it is necessary.

3.3 The species abundance distribution

For ease of exposition in the later sections, species abundance distribution (SAD:
McGill et al. 2007) is introduced here. SAD is also known as the size index (Sibuya
1993) or the frequencyof frequencies (Good1953) inmoregeneral contexts. This index
represents a sequence of the number of species that occur with a certain frequency
within an observed community. In the ecological literature, there has been variation
in defining SAD (Shimadzu and Darnell 2015), so a concrete definition is presented
here following McGill et al. (2007) who define SAD based on observations and as
conditioning on a sample of n pooled individuals.

Definition 3 (Species abundance distribution; SAD) The number of species for which
the numerical abundance, the number of individuals, is exactly j in n individuals is
defined as

S j (n) =
k∑

i=1

I (Ni = j |N = n), (4)

where S(n) = ∑n
j=1 S j (n) and N = ∑n

j=1 j S j (n).

3.4 A link between richness and conditional richness

A key objective of ecological research is to find an underlying pattern in ecological
communities rather than describing the observations of a particular occasion. This
objective corresponds to investigating the expected value of species richness in the
present context. The expected conditional richness is therefore needed for comprehen-
sive discussion. Taking the expectation of SAD (4), the expected conditional richness
is expressed as
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E [S(n)] =
n∑

j=1

E
[
S j (n)

]

=
n∑

j=1

k∑

i=1

Pr(Ni = j |N = n)

=
k∑

i=1

Pr(Ni > 0|N = n)

=
k∑

i=1

(1 − Pr(Ni = 0|N = n))

= k − E [S0(n)] . (5)

Note that the expected SAD of the j th frequency is given as

E
[
S j (n)

] =
k∑

i=1

(
n

j

)
pi

j (1 − pi )
n− j . (6)

This formulation naturally follows from the multinomial distribution (Eq. 3), the
marginal distribution of which is expressed as a binomial distribution.

Remark 1 Species richness is a function of both abundance, n, and evenness (relative
abundance), pi ’s, as shown above (Eq. 6). There has been variation in the way that
richness has been defined in the ecological literature, and some works define richness
based on the Hill number (Hill 1973), (

∑k
i=1 p

q
i )1/(1−q), with its power coefficient

being zero, q = 0. However, this approach does not necessarily mean that species
richness is independent of evenness or abundance but is rather a formality with less
ecological interpretation per se.

There is a clear link between richness (1) and conditional richness (2) through their
expectations. They are asymptotically equivalent, viz.

E [S] � E [S(n)] . (7)

This relationship is due to the well-known Poisson limit, applying it to Eq. (6). If the
total number of individuals n tends to infinity and the relative abundance pi tends
to zero in such a way that their product, the mean abundance of species i , remains
constant as npi = Λi , then it becomes

γ j (Λi ) = Λi
j

j ! e−Λi �
(
n

j

)
pi

j (1 − pi )
n− j . (8)

This fact leads to another useful fact about the expected SAD of the j th frequency
(6), that is

∑k
i=1 γ j (Λi ) = E

[
S j

] � E
[
S j (n)

]
and supports Eq. (7). Note that

approximations (7) and (8) will frequently be used hereafter.
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Further, the expected richness is, in fact, the marginal expectation of the expected
conditional richness, as follows:

E [S] = E [E [S(n)|N = n]] = k − E [S0] . (9)

Remark 2 One desirable feature for the number of species is countable additivity.
Both richness (1) and conditional richness (2) satisfy countable additivity if and only
if there are no shared species amongst non-overlapped sites A j ( j = 1, 2, . . . , J ),
A j ∩A j ′ = ∅ for j �= j ′. Recalling the framework (Sect. 3.1), the richness of areaA j

can be denoted by S(A j ) and the feature of countable additivity is then described as

E

[
S(∪J

j=1A j )
]

= ∑J
j=1 E

[
S(A j )

]
. For conditional richness, this feature is given

as E
[
S(

∑J
j=1 n j ,∪J

j=1A j )
]

= ∑J
j=1 E

[
S(n j ,A j )

]
.

4 Rarefaction techniques

The comparison of the richness observed at different sites or time points normally
adopts rarefaction techniques that are formulated in one of two ways. The form of
these indices can be specified in the expectation of conditional richness, E

[
S(n∗)

]
,

and the way in which the rarefied sample of n∗ individuals is assembled distinguishes
these two techniques. One form conditions on an equalised number of individuals,
and the other conditions on the same degree of sampling completeness. Note that
once rarefaction is performed, the size of rarefied samples, n∗, no longer follows
the Poisson distribution with a mean of Λ that is discussed in Sect. 3.1, but follows
an altered distribution, the mean of which is accordingly adjusted by the fraction of
rarefaction.

Consider a situation comparing the richness of ecological communities at differ-
ent sites or time points and in which community size differs, nt , t = 1, 2, . . .. The
most commonly used rarefaction technique, that based on an equalised number of
individuals, is then defined as follows.

Size-based rarefaction The conventional rarefaction measure counts the number of
species found amongst a fixed number of individuals, n∗, which is normally the min-
imum number of individuals of a community at different occasions, n∗ = mint {nt }.
If a pooled sample’s size nt is greater than n∗, the conventional rarefaction procedure
draws a single subsample of n∗ individuals from the pooled sample of size nt , and
then counts the number of species found. The size-based rarefied richness of occasion
t is then expressed as

Rt (n
∗) = S

(
min
t

{nt }
)

.

The rarefaction process is essentially a simple random sampling. For example, if
there are n individuals in a pooled sample, then rarefied richness is calculated based
on a subsample of n∗ = n −m individuals that are randomly selected. This approach
means that the observed number of species varies depending upon the selected sample.
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The following proposition states the extent to which a negative bias is induced by the
rarefaction process.

Proposition 1 When the pooled sample of n individuals is reduced to (n − m) indi-
viduals by rarefaction, the expected number of missing species is given as

E [S(n)] − E [S(n − m)] = E [S0(n − m)] − E [S0(n)]

=
k∑

i=1

{
1 − (1 − pi )

m}
(1 − pi )

n−m (10)

where 0 < pi ≤ 1 is the relative abundance of species i .

Proof FromEq. (5),E [S(n)]−E [S(n − m)] = (k−E [S0(n)])−(k−E [S0(n − m)]).
Substituting j = 0 inEq. (6) to calculate the componentsE [S0(n)] andE [S0(n − m)],
the desired result follows. ��
Remark 3 There is a link to another rarefaction approach proposed byColeman (1981).
Noting Eq. (7) due to the Poisson limit, Eq. (10) in Proposition 1 can be rewritten in
an asymptotic form as

E [S(n)] − E [S(n − m)] = E [S0(n − m)] − E [S0(n)]

�
k∑

i=1

(
1 − e−mpi

)
e−(n−m)pi . (11)

This approximation (11) is satisfactory as sample size n is often relatively large in
actual study situations.

Some useful applications of Proposition 1 can be seen in a range of ecological
studies, including the following typical examples.

Example 1 (Species accumulation curve) The species accumulation curve is a standard
illustration tool that exhibits the extent to which the number of species increases as the
size of the sample increases. Colwell et al. (2012) discussed the aspects of interpolation
and extrapolation in the context of the species accumulation curve. Depending on
which of these values, n or (n − m), is regarded as the initial sample size, Eq. (10)
can easily be converted to either interpolation (rarefaction) or extrapolation. Given a
collection of n individuals, the expected conditional richness of a rarefied sample with
(n − m) individuals is expressed as interpolation,

E [S(n − m)] = E [S(n)] + E [S0(n)] − E [S0(n − m)] .

With a sample of n individuals, the expected conditional richness of a sample of (n+m)

individuals is, on the other hand, described as extrapolation,

E [S(n + m)] = E [S(n)] + E [S0(n)] − E [S0(n + m)] .
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Example 2 [Coverage (Good 1953)]With the number of (n−1) individuals identified,
the probability of the next individual, the nth individual, belonging to one of those
species already found is called coverage. Taking m = 1 in Proposition 1 and using
Eq. (10), the coverage becomes

C(n) = 1 − (E [S(n)] − E [S(n − 1)])

= 1 − (E [S0(n − 1)] − E [S0(n)])

= 1 −
k∑

i=1

pi (1 − pi )
n−1

= 1 − n−1
E [S1(n)] .

Substituting the expectation, E [S1(n)], with the observation, the number of species
with only one individual, say, s1, a simple coverage estimate is given as

Ĉ(n, k1) = 1 − s1n
−1. (12)

This estimate is called the Good–Turing estimate. Chao and Shen (2010) proposed
another coverage estimate based on two types of the number of species: singletons,
s1, and doubletons, s2,

Ĉ(n, s1, s2) = 1 − s1
n

{
(n − 1)s1

(n − 1)s1 + 2s2

}
.

The other type of rarefaction that is discussed in the present study is formalised by
Chao and Jost (2012) and applies a different approach based on coverage, rather than
sample size. This approach is defined as follows.

Coverage-based rarefactionGiven different samples of size nt with coverageC(nt ) =
qt , t = 1, 2, . . ., coverage-based rarefaction counts the number of species conditioning
on a certain coverage, say, q, that yields the size of the rarefied sample as n∗

t =

C−1(q)�.Here, 
·� is thefloor function.Chao and Jost (2012) suggestq to bemint {qt }.
The coverage-based rarefied richness is then expressed as

R̃(n∗
t ) = S

(

C−1(q)�

)
.

As a consequence of this approach, the size of the rarefied sample n∗
t varies, but the

coverage, q, remains the same across places and occasions, t = 1, 2, . . ..

Remark 4 If the coverage increases towards completeness, q → 1, the expectation of
coverage-based rarefied richness tends to the expectation of richness (Eq. 7), as

lim
q→1

E

[
R̃(n∗

t (q))
]

= E [St ] .

Since n∗
t (q) = E [S1(nt )] /(1− q), adopting Eq. (12), n∗

t (q) tends to infinity when q
goes to 1. Recall the present framework in Sect. 3, by which nt pit tends toΛi t (Eq. 8).
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Table 1 The difference between two rarefaction techniques

Size-based Coverage-based

Rarefied sample size (n∗
t ) mint {nt } 
C−1(q)�

The range of n∗
t n∗ ≤ nt n∗

t ≤ nt or n∗
t > nt

Time varying (dn∗
t /dt) No (= 0) Yes

Remark 5 Chao and Jost (2012) showed that as a unique feature of coverage-based
rarefied richness, R̃(n∗), this measure satisfies the property called the replication prin-
ciple, in other words, countable additivity (Remark 2). For different non-overlapped
sitesA j , j = 1, 2, . . . , J , if there are no shared species amongst the sites, thismeasure
is given as

R̃
(

C−1(q)�,∪J

j=1A j

)
= J R̃

(

C−1(q)�,A j

)
.

Table 1 summarises the differences between the two rarefaction techniques dis-
cussed. Note that the way determining rarefied sample size n∗

t distinguishes these
two techniques and treats them as simple random sampling. A key distinction is
whether the rarefied sample size, the number of individuals from which the num-
ber of species is counted, varies over time t = 1, 2, . . .. This number remains constant
for size-based rarefaction as n∗ = mint {nt } but varies for coverage-based rarefac-
tion as n∗

t = 
C−1(q)�, where q = mint {C(nt )}. This feature becomes key when
investigating the components of richness change in the next section.

5 Components of richness change

For ease of exposition, the study here focuses on temporal changes in species rich-
ness that can be studied by the gradient (slope) of expected conditional richness,
dE [S(nt )] /dt . Although this indicator is sensible for quantifying the amount of
change in biodiversity over time, it has received little investigation as to whether
the two different rarefaction techniques acquire the same gradient. The statements
presented in this section argue that these techniques are different from each other and
that they shed light on very different aspects of temporal changes in biodiversity.

Recalling Sect. 3.1, the numerical abundance, Nit , of species i follows a Poisson
distribution: γ j (Λi ) = Pr(Nit = j;Λi ) = e−Λi Λ

j
i / j !. First, it is useful to study the

extent to which the expected SAD of the j th frequency changes over time.

Lemma 1 The gradient of expected SAD of the j th frequency with a reasonably large
sample size, nt , can be expressed as

d

dt
E

[
S j (nt )

] �
k∑

i=1

(
γ j−1(nt pit ) − γ j (nt pit )

) d

dt
nt pit , (13)

where pit is the relative abundance of species i . Here, it is promised that γ−1(nt pit ) =
0.
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Proof Using the Poisson limit (Eq. 8), E
[
S j (nt )

] � ∑k
i=1 γ j (nt pit ). Taking the

derivative of γ j (nt pit ) with respect to time t , the result follows. ��
The gradient of expected conditional richness is then expressed as follows.

Theorem 1 The gradient of expected conditional richness, conditioning on a sample
of reasonably large size, nt , is given as

d

dt
E [S(nt )] �

k∑

i=1

γ1(nt pit )
d

dt
log(nt pit ), (14)

where γ1(nt pit ) is the probability of species i to be singleton, and pit is the relative
abundance of the species.

Proof Using Eq. (13) in Lemma 1 and the Poisson limit (8),

d

dt
E [S(nt )] �

∞∑

j=1

d

dt
E

[
S j (nt )

]

=
k∑

i=1

∞∑

j=1

(
γ j−1(nt pit ) − γ j (nt pit )

) d

dt
nt pit

=
k∑

i=1

{1 − (1 − γ0(nt pit ))} d

dt
nt pit ,

and the desired result follows. Note that the toal mass probability of a Poission distri-
bution is

∑∞
j=0 γ j (nt pit ) = 1. ��

Expanding the right-hand side in Eq. (14) further, Theorem 1 clearly highlights the
fact that the temporal change in species richness is formed of two components in an
additive manner, viz.

d

dt
E [S(nt )] � E [S1(nt )]

d

dt
log (nt ) +

k∑

i=1

γ1(nt pit )
d

dt
log (pit ) . (15)

These two terms on the right-hand side in Eq. (15) are directly linked with the tem-
poral changes in community abundance, nt , and species relative abundance, pit , that
are two key components in quantitative ecology (Brown 1981). An equivalent decom-
position for the expectation of numerical abundance, the number of individuals, was
also derived in Shimadzu et al. (2015), in which the temporal turnover of ecological
communities was discussed.

In biodiversity research, the comparison of species richness is performed by com-
paring rarefied richness,which has a sample size n∗

t , instead of the conditional richness,
the sample size of which is nt . Equation (14) in Theorem 1 states that the gradient

123



1374 H. Shimadzu

of rarefied richness can also be calculated by substituting nt with n∗
t as the general

rarefaction context.
For the cases of the two rarefied richness indicators, a clear distinction can be

summarised in the following corollaries.

Corollary 1 Given a rarefied sample of size n∗ = mint {nt } = nt −mt , the gradient of
expected size-based rarefied richness is given as

d

dt
E

[
Rt (n

∗)
] �

k∑

i=1

wi tγ1(nt pit )
d

dt
log(pit ), (16)

where wi t = γ0(mt/nt − mt pit ) for mt � nt .

Proof From Eq. (14) in Theorem 1

d

dt
E

[
Rt (n

∗)
] �

k∑

i=1

γ1(n
∗
t pit )

d

dt
log(n∗

t pit ).

Here, γ1(n∗
t pit ) can be rewritten as

γ1(n
∗
t pit ) = n∗

t pitγ0(n
∗
t pit ) = (nt − mt )pitγ0((nt − mt )pit )

= (nt − mt )pitγ0(−mt pit )γ0(nt pit )

= (1 − mt/nt )γ0(−mt pit )γ1(nt pit )

� γ0 (mt/nt − mt pit ) γ1(nt pit ).

Noting the fact that d log(n∗
t )/dt = 0 as n∗

t = mint {nt }, the desired result follows.
��

This result (Eq. 16) reveals that the trend of the size-based rarefied richness reflects
only the change in community composition, pit ’s, suggesting a link to an information
approach (Margalef 1957, 1958) that has commonly been used in biodiversity research
and also relies only on the community composition. If the term omitted from Eq. (15),
which is related to the change in community size nt , plays a key role, the calculated
gradient is not able to represent the trend of species richness. However, whether using
this approach is appropriate largely depends upon the scientific question asked.

Corollary 2 Suppose a rarefied sample of size n∗
t = E [S1(nt )] /(1−q) for an arbitrary

coverage 0 < q ≤ 1. The gradient of expected coverage-based rarefaction is given
as

d

dt
E

[
R̃(n∗

t )
]

� w̃1t
d

dt
E [S1(nt )] + d

dt
E

[
Rt (n

∗
t )

]
, (17)

where w̃1t = E
[
S1(n∗

t )
]
/E [S1(nt )] is a weight due to rarefaction.
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Proof Since n∗
t = E [S1(nt )] /(1 − q), using Eq. (14) in Theorem 1, it becomes

d

dt
E

[
R̃(n∗

t )
]

�
k∑

i=1

γ1(n
∗
t pit )

d

dt

(
log

(
E [S1(nt )]

1 − q

)
+ log(pit )

)

= E
[
S1(n∗

t )
]

E [S1(nt )]

d

dt
E [S1(nt )] +

k∑

i=1

γ1(n
∗
t pit )

d

dt
log(pit ).

Noting Corollary 1, the result then follows. ��

Corollary 2 above suggests that the gradient of coverage-based rarefied richness
also consists of two components, the changes in community size nt and composition
pit ’s. To highlight the relationship to the expected gradient of species richness (14),
the first term on the right-hand side in Eq. (17) can be expanded as

w̃1t
d

dt
E [S1(nt )] = w̃1t

d

dt
{E [S(nt )] + (E [S0(nt )] + E [S1(nt )])} .

This expansion is due to Eq. (13) in Lemma 1, in other words, due to the fact that
d(E [S(nt )] + E [S0(nt )])dt = dk/dt = 0 (Eq. 5). This fact highlights that the
expected gradient of coverage-based richness is linearly related to that of species rich-
ness (14). If the two gradients dE [S0(nt )] /dt and dE [S1(nt )] /dt are offsetting each
other, the gradient of expected coverage-based rarefaction (17) can be a reasonable
proxy of species richness (14).

6 An illustrative example

Here, a simulation study exhibits the extent towhich the difference in temporal richness
change is exposed when the two different rarefaction techniques are employed. The
ecological community to be considered here is a species assemblage dominated by
low abundance species, a typical community in real-world situations, that has often
been reported in the ecological literature (Magurran and Henderson 2003).

What the majority of species with low relative abundance pit imply is that these
specieswill demonstrate fairly low temporal change in the relative abundance, dpit/dt .
For this scenario, the theory discussed in the previous section predicts that the size-
based rarefaction approach canyield aflat gradient (Corollary 1)whichwill be different
from that of the coverage-based rarefaction approach accounting for the change in
community size as well (Corollary 2).

The following simulation result confirms the theory presented and illustrates the
situation where the temporal trends of size- and coverage-based approaches reach
different conclusions that are somewhat contradictory. This case can be typical in
practical situationswhere extra care is requiredwhen interpreting the results of richness
change analyses.
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6.1 Simulation setup

Recall the settings in Sect. 3.1. Consider an ecological community potentially con-
sisting of 100 species (k = 100), the large majority of which exhibit low abundance
so that the mean abundance is less than one, Λi t < 1. Note that such a species
composition reflects reality well, resembling patterns commonly observed in field
studies (Dornelas 2010). The community at time t is then described as a vector:
N t = (N1t , N2t , . . . , N100t ), where Nit is the number of individuals, numerical abun-
dance of species i , governed by a Poisson distribution, that is Nit ∼ Poiss(Λi t ).
For ease of exposition, the mean abundance of species i is assumed to increase or
decrease linearly over time with rate ri such that Λi t = E [Nit ] = max{0,Λi0 + ri t}.
A normal-distributed random number is allocated to each species’ change rate, ri , so
that ri ∼ N (−0.7, 1), but it remains constant over time.

The simulation was run 1000 times (� = 1, 2, . . . , 1000), generating the collection
of the number of individuals, N t = n[�]

t , for 100 time steps (t = 1, 2, . . . , 100). For
each run, the two types of rarefaction measure were calculated. One measure was
size-based rarefaction, the conventional approach, which has a rarefied sample size
n∗[�] = mint {n[�]

t }; the other was the coverage-based rarefaction measure, which has a
rarefied sample size n∗[�]

t = 
C−1(q[�])�, where q[�] = mint {C(n[�]
t )}. The rarefaction

process followed as described in Sect. 4. At each simulation step, a linear trend was
calculated for each rarefied richness series: size-based Rt and coverage-based R̃t .

6.2 Results

Figure 1 shows a snapshot, one of the 1000 simulations run, as an illustration. For
each simulation step, an ecological community is generated over 100 time steps,
N t = n[�]

t , (t = 1, 2, . . . , 100) (Fig. 1, top panel). The overall abundance of the com-
munity decreases over time. Three types of richness are acquired from the community
(Fig. 1, bottom panel). The solid black line represents the conditional richness S(nt )
series, in other words, the observed richness; the solid red and magenta lines are the
two types rarefied richness: size-based Rt (n∗) and coverage-based R̃(n∗

t ). The three
superimposed straight lines (blue, green and cyan) are the temporal linear trend of
each species richness series. The lines for conditional (blue) and coverage-based rar-
efied richness (cyan) both illustrate a similar decreasing pattern, although the line for
size-based rarefied richness (green) suggests a flat trend.

The pattern observed in Fig. 1 was, in fact, persistent over the 1000 simulations.
Figure 2 summarises the distribution of the gradient (slope coefficient) of the linear
trend over the 1000 simulations for each richness measure. This figure suggests that
the size-based rarefaction technique tends to mute the decline of species richness
(Fig. 2, middle panel) as the green histogram is shifted towards zero relative to the
blue histogram, illustrating the observed richness (Fig. 2, top panel). Specifically, if the
trend of the size-based rarefaction is judged as to whether it departs considerably from
a flat line, 85% of the coefficients are classified as statistically non-significant—the
transparent green area in the middle panel of Fig. 2. In contrast, the cyan histogram
for the coverage-based rarefaction measure indicates a negative trend in species rich-
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Fig. 1 A snapshot, one of the 1000 simulations run. Top: An observed series of total abundance simulated
from the assumed system consisting of 100 species of which abundance follows a Poisson distribution. The
red dot on the line is the minimum number of individuals, the rarefied sample size to which all the size-based
rarefied samples are equalised. The magenta triangle is the observation point that achieved the minimum
converge was achieved and to which all the coverage-based rarefied samples are adjusted. Bottom: The
solid black line is observed richness. The red line represents size-based rarefied richness and the purple line
represents coverage-based rarefied richness. The three superposed straight lines are the linear trend of each
richness series over time (color figure online)

ness (Fig. 2, bottom panel), as does the observed richness. This typical illustration
underlines the importance of clarifying which aspect of biodiversity change is being
sought when using species richness as an indicator. Otherwise, what the increasing or
decreasing trend means becomes unclear.

7 Discussion and concluding remarks

The present study has revealed that the analysis of richness change can delineate
the different aspects of biodiversity change depending on the types of rarefaction
technique employed; in other words, the result depends upon the sampling fraction
induced by the rarefaction. This finding indicates the fact that the analysis of richness
likely draws different, sometimes contradictory, conclusions if different rarefaction
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Fig. 2 The histograms of the slope coefficients from the 1000 simulation study. The blue one (top) represents
the distribution of the slope coefficients of the observed richness series. The green (middle) and the cyan
(bottom) histograms show the distribution of the slope coefficients of size-based rarefied richness and of
coverage-based rarefied richness, respectively. The transparent colour highlights statistically non-significant
coefficients, under the null hypothesis in which the slope coefficient is zero. The black vertical lines are
their averages (color figure online)

techniques are adopted. The size-based rarefied richness indicator reflects mainly
the change in species composition, pit ’s, (Corollary 1), whereas the coverage-based
rarefaction indicator presents the changes in both components: species composition,
pit ’s, and community size,nt , (Corollary 2). The latter rarefaction techniquemaybetter
resemble the slope of species richness (Fig. 1) but relies heavily on the construction
of species composition. This fact, however, seems to have rarely been acknowledged
amongst researchers. Thenew insights providedhere suggest that extra care is therefore
required when interpreting changes in species richness as the choice of rarefaction
method will drive the results.

Which rarefaction technique is adequate largely depends upon the scientific
question asked. Although the coverage-based rarefied richness indicator is able to
accommodate the changes in both community size and composition, this feature does
not necessarily mean that the approach surpasses the size-based method. For instance,
if the question asked focuses on changes in community composition, investigating
richness changes using size-based rarefaction will yield a more realistic figure than
the coverage-based method.

The compositional change of ecological communities has historically been a central
question in biodiversity research, and a number of ecological theories stand directly on
a base assumption that community size is constant (Gotelli et al. 2017). This subject is
related to a recent argument raised and discussed by Hillebrand et al. (2017) indicating
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that species richness is insensitive in quantifying the change in biodiversity compared
to a set of turnover indices. The change in species richness additively consists of
the two components: the changes in community size and composition. If the shift in
community size is considerable in termsof the fractionof the change, the compositional
change is then relatively muted. This offsetting is the mechanism that makes richness
measures occasionally insensitive to biodiversity change. However, this insensitivity
underlines the importance of clarifying what aspects of biodiversity change are sought
rather than just choosing one of the commonly used biodiversity indices.

The framework presented in the study can also be discussed in a more general
context concerning sampling effects in ecological data. A range of sampling methods
used for collecting ecological data can be specified as types of random sampling
(Shimadzu et al. 2016). The rarefaction techniques discussed here are, in fact, specified
as simple random sampling with the fraction of rarefaction. Another typical source of
uncertainty in ecological surveys can also be treated in the same manner by regarding
the process as two-step sampling procedure: sampling and rarefaction. See Shimadzu
et al. (2016) for more details. For a general description of sampling processes in
ecological surveys, a thinned Poisson point process is a handy model (Cressie 1993;
Illian et al. 2008).

The present change in biodiversity underpins the future patterns of biodiversity. This
fact illuminates the importance of understanding what aspects of biodiversity change
the commonly used biodiversity indices are able to capture. In particular, for species
richness, the theoretical framework developed in the present study has uncovered a
key fact that different rarefaction techniques highlight different aspects of biodiversity
change. The analysis results can, therefore, be different depending on the rarefaction
method used. Nevertheless, such a consequence has received little attention. The study
argues that the recognition of the statistical nature of biodiversity indices is a crucial
step towards enhancing the knowledge of biodiversity change at a time when these
changes are becoming a great matter in society.
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