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Abstract: Stem cell-based therapies and experimental methods rely on efficient induction of human
pluripotent stem cells (hPSCs). During limb development, the lateral plate mesoderm (LPM) produces
limb-bud mesenchymal (LBM) cells that differentiate into osteochondroprogenitor cells and form
cartilage tissues in the appendicular skeleton. Previously, we generated PRRX1-tdTomato reporter
hPSCs to establish the protocol for inducing the hPSC-derived PRRX1+ LBM-like cells. However,
surface antigens that assess the induction efficiency of hPSC-derived PRRX1+ LBM-like cells from
LPM have not been identified. Here, we used PRRX1-tdTomato reporter hPSCs and found that
high pluripotent cell density suppressed the expression of PRRX1 mRNA and tdTomato after LBM-
like induction. RNA sequencing and flow cytometry suggested that PRRX1-tdTomato+ LBM-like
cells are defined as CD44high CD140Bhigh CD49f−. Importantly, other hPSC lines, including four
human induced pluripotent stem cell lines (414C2, 1383D2, HPS1042, HPS1043) and two human
embryonic stem cell lines (SEES4, SEES7), showed the same results. Thus, an appropriate cell density
of hPSCs before differentiation is a prerequisite for inducing the CD44high CD140Bhigh CD49f−

PRRX1+ LBM-like cells.

Keywords: human pluripotent stem cells; limb-bud mesenchyme; PRRX1; surface antigen

1. Introduction

Damaged cartilage is a hallmark of osteoarthritis and rheumatoid arthritis damage
cartilage. Although cartilage transplantation therapy aims to regenerate damaged carti-
lage [1,2], current methods, including microfracture and osteochondral autograft transplan-
tation, are invasive and burdensome for patients.

Human cartilage tissues develop from neural crest (NC), paraxial mesoderm (PM)-
derived, or lateral plate mesoderm (LPM)-derived lineages, which each exists in the cranial,
axial, and appendicular skeleton, respectively [3,4]. Human pluripotent stem cells (hPSCs),
including human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells
(hESCs), are a versatile cell resource for basic research and tissue regeneration because of
their indefinite proliferation and pluripotency [5]. Several groups have induced iMSC-,
NC-, or PM-derived hyaline cartilage tissues from hPSCs [6–11]. As the appendicular
skeleton or limbs develop, LPM cells differentiate into paired related homeobox 1 (PRRX1)+

limb-bud mesenchymal (LBM) cells [12], and LBM-derived osteochondroprogenitors form
articular cartilage and bone tissue [13]. Following ontogenic differentiation, hPSC-derived
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LPM cells can form LBM-like cells whose chondrogenic potential matches that of mouse
LBM cells [14–18]. Although the clinical application of hPSC-based therapies requires
highly reproducible differentiation protocols, the methods how to assess the induction
efficiency of hPSC-derived LPM cells into LBM-like cells have not been established.

Surface antigens are cell membrane-localized proteins whose expression patterns vary
with cell type [19–23]. Identifying these surface antigens can help assess the frequency of
specific cell populations and to purify them. Before chondrogenesis, the CD271+ CD73−

population should be purified from hPSC-derived NC-like cells, and then the CD271+

CD140A+ CD73+ CD13− CDH2− population can be used to test the chondrogenic capacity
of NC-like-derived progenitor cells [10]. Previously, we established a protocol that not
only induces almost all hPSC-derived LPM cells into PRRX1+ LBM-like cells but also stably
expands them with a high chondrogenic capacity [14]. However, the downregulation of
PRRX1 causes the loss of their chondrogenic capacity, indicating that surface antigens
defining PRRX1+ LBM-like cells immediately prior to expansion should be identified to
exclude the possible contamination of low chondrogenic cells.

In this study, we found that a high density of pluripotent cells dramatically suppresses
PRRX1 expression after LBM-like induction. Using a PRRX1-tdTomato reporter hPSC line,
we showed that CD44high CD140Bhigh CD49f− can be used to identify PRRX1-tdTomato+

LBM-like cells. Finally, we confirmed that PRRX1+ LBM-like cells derived from other hPSC
lines are also CD44high CD140Bhigh CD49f−.

2. Results
2.1. Effect of Pluripotent Cell Density before LBM-like Induction on PRRX1 Expression

Previously, we ontogenically induced PRRX1+ LBM-like cells from hPSCs and estab-
lished their expansion method (Figure 1a) [14]. Although almost all LPM cells became
PRRX1+ LBM-like cells following our protocol, conditions that decrease their induction
efficiency have not been identified. We cultured PRRX1-tdTomato reporter hPSCs for two
different time periods—three days (the condition previously used [14]) and seven days—
during the pluripotent state to determine their effect on inducing PRRX1+ LBM-like cells.
Seven-day cultures yielded higher cell densities than three-day cultures (Figure 1b). Pluripo-
tent: 7 days showed higher cell density than Pluripotent: 3 days at Day 0 (pluripotent state).
Following LBM-like cell (Day 4) induction under both conditions, PRRX1 expression dra-
matically decreased after seven days of culture (Figure 1c). Pluripotent: 7 days-derived cells
were called PRRX1low Day 4 cells hereafter, as induction of PRRX1-tdTomato+ LBM-like
cells was also suppressed in Pluripotent: 7 days (Figure 1d–f).

2.2. Identification of Surface Antigens Defining PRRX1+ LBM-like Cells

RNA-seq analysis of global gene expression was performed to identify surface antigens
that distinguish PRRX1+ LBM-like cells from PRRX1low Day 4 cells. Volcano plot analysis
was performed to find differences in surface antigen expression between PRRX1+ LBM-like
cells and PRRX1low Day 4 cells (Figure 2a). We identified 21 genes upregulated in PRRX1+
LBM-like cells and 20 genes upregulated in PRRX1low Day 4 cells that encode cell surface
markers. Flow cytometry analysis showed that CD44 (HCAM) and CD140B (PDGFRB)
were highly expressed in conjunction with PRRX1-tdTomato (Figure 2b,c). In contrast,
CD49f (ITGA6) expression was detected only in PRRX1low Day 4 cells.
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Figure 1. Suppressive effect of high cell density at pluripotent state on inducing PRRX1-tdTomato+ 
LBM-like cells. (a) Schematic overview of the induction and stable expansion of hPSC-derived 
LBM-like cells. ExpLBM with high chondrogenic capacity is assessed by 
CD90highCD140BhighCD82low, but surface antigens that define PRRX1+ LBM-like cells have not been 

Figure 1. Suppressive effect of high cell density at pluripotent state on inducing PRRX1-tdTomato+

LBM-like cells. (a) Schematic overview of the induction and stable expansion of hPSC-derived LBM-like
cells. ExpLBM with high chondrogenic capacity is assessed by CD90highCD140BhighCD82low, but
surface antigens that define PRRX1+ LBM-like cells have not been identified. (b) Phase images at
pluripotent state just before LBM-like induction. PRRX1-tdTomato reporter hPSCs were seeded and
maintained on culture dishes for 3 or 7 days. Note that cells at Pluripotent: 7 days had high cell density.
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(c) Comparison of PRRX1 mRNA levels between Pluripotent: 3 days and Pluripotent: 7 days after
LBM-like induction. Total RNA was extracted on Day 4, and PRRX1 mRNA levels were compared
using qRT-PCR. All expression values are normalized to those of ACTB mRNA levels (n = 3, three
biologically independent experiments). (d) Images of Pluripotent: 3 days and Pluripotent: 7 days
after LBM-like induction. Note that PRRX1-tdTomato was downregulated in Pluripotent: 7 days.
(e) Flow cytometry analysis of Pluripotent: 3 days and Pluripotent: 7 days after LBM-like induction.
Almost all cells derived from Pluripotent: 3 days became PRRX-tdTomato+, but the expression of
PRRX-tdTomato was extremely low in cells derived from Pluripotent: 7 days. (f) Comparison of mean
fluorescence intensity (MFI) values of PRRX1-tdTomato between Pluripotent: 3 days and Pluripotent:
7 days after LBM-like induction (n = 3, three biologically independent experiments). ** p < 0.01,
*** p < 0.001.
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tween PRRX1-tdTomato+ LBM-like cells and PRRX1-tdTomatolow Day 4 cells. The dashed line indi-
cates the threshold. Red dots represent differentially expressed genes (n = 2, two biologically inde-
pendent experiments, padj < 0.01, log2FC > 1). (b) Representative flow cytometry analysis data for 
CD44 (HCAM), CD140B (PDGFRB), and CD49f (ITGA6) expressed by PRRX1-tdTomato+ LBM-like 
cells or PRRX1-tdTomatolow Day 4 cells. (c) Comparison of mean fluorescence intensity (MFI) val-
ues of CD44, CD140B or CD49f between Pluripotent: 3 days and Pluripotent: 7 days after LBM-like 
induction (n = 3, three biologically independent experiments). * p < 0.05, *** p < 0.001. 

2.3. Detection of CD44high CD140Bhigh CD49f− LBM-like Cells Derived from hiPSC Lines 
We used four hiPSC lines, including 414C2 (the parental line of PRRX-tdTomato re-

porter hiPSC), 1383D2, HPS1042, and HPS1043, to analyze the expression of CD44, 
CD140B, and CD49f after LBM-like induction. Each cell line showed that CD44 and 
CD140B were highly expressed in LBM-like cells (Pluripotent: 3 days) but CD49f was on-
ly expressed in PRRX1low Day 4 cells (Pluripotent: 7 days) (Figures 3a and 4). 

Figure 2. Comparison of surface antigens expressed in PRRX1-tdTomato+ LBM-like cells and PRRX1-
tdTomatolow Day 4 cells. (a) Volcano plots to identify genes differentially expressed between PRRX1-
tdTomato+ LBM-like cells and PRRX1-tdTomatolow Day 4 cells. The dashed line indicates the
threshold. Red dots represent differentially expressed genes (n = 2, two biologically independent
experiments, padj < 0.01, log2FC > 1). (b) Representative flow cytometry analysis data for CD44
(HCAM), CD140B (PDGFRB), and CD49f (ITGA6) expressed by PRRX1-tdTomato+ LBM-like cells or
PRRX1-tdTomatolow Day 4 cells. (c) Comparison of mean fluorescence intensity (MFI) values of CD44,
CD140B or CD49f between Pluripotent: 3 days and Pluripotent: 7 days after LBM-like induction
(n = 3, three biologically independent experiments). * p < 0.05, *** p < 0.001.

2.3. Detection of CD44high CD140Bhigh CD49f− LBM-like Cells Derived from hiPSC Lines

We used four hiPSC lines, including 414C2 (the parental line of PRRX-tdTomato
reporter hiPSC), 1383D2, HPS1042, and HPS1043, to analyze the expression of CD44,
CD140B, and CD49f after LBM-like induction. Each cell line showed that CD44 and
CD140B were highly expressed in LBM-like cells (Pluripotent: 3 days) but CD49f was only
expressed in PRRX1low Day 4 cells (Pluripotent: 7 days) (Figures 3a and 4).
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pressed by hiPSC (414C2, 1383D2, HPS1042, and HPS1043)-derived LBM-like cells or PRRX1low 
Day 4 cells. (b) Representative flow cytometry analysis data for CD44 (HCAM), CD140B (PDG-
FRB), and CD49f (ITGA6) expressed by hESC (SEES4 and SEES7)-derived LBM-like cells or 
PRRX1low Day 4 cells. 

Figure 3. Flow cytometry analysis for comparing the surface levels of CD44, CD140B, and CD49f
between hiPSC or hESC-derived PRRX1+ LBM-like cells and PRRX1low Day 4 cells. (a) Representative
flow cytometry analysis data for CD44 (HCAM), CD140B (PDGFRB), and CD49f (ITGA6) expressed
by hiPSC (414C2, 1383D2, HPS1042, and HPS1043)-derived LBM-like cells or PRRX1low Day 4 cells.
(b) Representative flow cytometry analysis data for CD44 (HCAM), CD140B (PDGFRB), and CD49f
(ITGA6) expressed by hESC (SEES4 and SEES7)-derived LBM-like cells or PRRX1low Day 4 cells.

2.4. Detection of CD44high CD140Bhigh CD49f− LBM-like Cells Derived from hESC Lines

Next, we tested two hESC lines, including SEES4 and SEES7, to analyze the expression
of CD44, CD140B, and CD49f after LBM-like induction. Each cell line showed that CD44
and CD140B were highly expressed in LBM-like cells (Pluripotent: 3 days), but CD49f was
only expressed in PRRX1low Day 4 cells (Pluripotent: 7 days) (Figures 3b and 4).
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Figure 4. Quantification of the surface levels of CD44, CD140B, and CD49f among hiPSC or hESC-
derived PRRX1+ LBM-like cells and PRRX1low Day 4 cells. Comparison of mean fluorescence intensity
(MFI) values of CD44, CD140B or CD49f expressed by hiPSC (414C2, 1383D2, HPS1042, and HPS1043)
or hESC (SEES4 and SEES7)-derived LBM-like cells or PRRX1low Day 4 cells (n = 3, three biologically
independent experiments). ** p < 0.01, *** p < 0.001.

3. Discussion

hPSC-based therapies show great potential for clinical applications, particularly car-
tilage regeneration. However, methods must be established to assess and increase the
purity of differentiated cells to avoid teratoma formation in vivo [24]. hPSCs have high
glycolytic activity, and their metabolism gradually shifts to oxidative phosphorylation
during differentiation [25,26]. Several groups use metabolic shifts to kill undifferentiated
hPSCs and increase the purity of differentiated cells [27,28], but surface antigens that enable
us to understand their induction efficiency have not been identified. Here, we developed
a surface antigen-based quality assurance to test the purity of hPSC-derived LBM-like
cells. Although our previous study showed that almost all hPSC-derived LPM cells become
PRRX1+ LBM-like cells [14], the expression of PRRX1 significantly decreased in response
to the longer expansion time of hPSCs before LBM-like induction (Figure 1). Colonies of
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hPSCs at Pluripotent: 7 days were large and highly condensed, unlike Pluripotent: 3 days
(Figure 1b). Cell density determines stem cell fate, as preculture at high cell density also
changes cell sensitivity to cytokine stimulation [29–32]. Our results indicated that high cell
density in the pluripotent state negatively affects the induction of PRRX1+ LBM-like cells
from LPM cells.

RNA sequencing and flow cytometry identified hPSC-derived PRRX1+ LBM-like cells
as CD44high CD140Bhigh CD49f− (Figures 2–4). Freshly isolated mouse limb bud mesenchy-
mal cells express surface antigens such as Sca1, CD105, CD90, CD73 [17]. Although the
human ortholog of mouse Sca1 does not exist, we found that LBM-like cells express CD90
but do not express CD73 and CD105 (data not shown). CD44 is a hyaluronan receptor
expressed by several stem and differentiated cells [33,34]. Although CD44 is highly ex-
pressed in the apical ectodermal ridge to support the proliferation of LBM cells [35], a
small population of LBM cells is also CD44+ [17]. CD44 not only is a target gene in the
WNT/beta-catenin signaling pathway but also increases its activity [36]. Our previous
study showed that WNT/beta-catenin signaling upregulates PRRX1 expression, so CD44
may help LPM cells differentiate into LBM-like cells.

CD140B is a receptor for platelet-derived factors, and its surface level on Expandable
LBM-like cells (ExpLBM) decreases with the downregulation of PRRX1 and chondrogenic
capacity [14]. During development, LPM cells differentiate into cardiac mesoderm or LBM
cells [12]. Consistent with ExpLBM, CD140B levels in LBM-like cells correlate positively
with PRRX1 levels, suggesting that PRRX1 transcriptionally activates CD140B. CD49f is
a marker of stem/progenitor cell populations [37], including cardiac stem cells, and was
expressed here only in PRRX1low Day 4 cells. High cell density inhibits WNT signaling
to promote cardiomyocyte differentiation from hiPSCs [38] and the expression level of
PRRX1 in cardiac mesoderm is lower than that of forelimb mesoderm [18,39], indicating
that high cell density may have promoted the cardiac mesoderm-directed differentiation of
LPM cells.

4. Materials and Methods

Cell culture. The hPSCs were cultured and maintained using StemFit (AK02N, Aji-
nomoto, Tokyo, Japan). Before reaching subconfluency, the cells were dissociated with
TrypLE Select (Thermo Fisher, Waltham, MA, USA)/0.25 mM EDTA and suspended in
StemFit containing 10 µM Y27632 (Wako, Tokyo, Japan). The cells (1 × 104) were then
suspended in StemFit containing 10 µM Y27632 and 8 µL iMatrix511 (human laminin-511
E8 fragment, Nippi, Tokyo, Japan) and added to a 6-cm dish. The culture medium was
replaced on the next day with fresh StemFit without Y27632. The medium was changed
every two days until the next passage. The following hPSC lines were used: 414C2 hiPSCs
were provided by the Center for iPS Cell Research and Application, Kyoto University,
Japan; 1383D2 hiPSCs, HPS1042 hiPSCs, HPS1043 hiPSCs, SEES4 hESCs, and SEES7 hESCs
were donated by RIKEN BRC (Tokyo, Japan).

Differentiation of LBM-like cells. The differentiation of hPSCs was performed as
described previously [14]. In brief, hPSCs (3 × 104) were suspended in 1 mL of StemFit
containing 10 µM Y27632, and 4 µL of iMatrix511 were added to a 3.5-cm culture dish.
The culture medium was replaced the next day with fresh StemFit without Y27632. After
culturing for two or six days, the cells were differentiated to mid-primitive streak, LPM
and LBM-like cells as shown in Figure 1b.

Real-time quantitative RT-PCR (qPCR). Total RNA was extracted using an RNeasy
kit (QIAGEN, Germantown, MD, USA), and cDNA was synthesized using M-MLV Re-
verse Transcriptase (Thermo Fisher, Waltham, MA, USA) and oligo-dT primers (Sigma-
Aldrich, St. Louis, MO, USA). cDNAs were then used as templates for qPCR analy-
sis with gene-specific primers. qPCR was performed using an AriaMX Real-Time PCR
System (Agilent, Santa Clara, CA, USA). The cycle parameters were as follows: denat-
uration at 95 ◦C for 30 s, annealing at 62 ◦C for 30 s, and elongation at 72 ◦C for 30 s.
The expression level of each gene was calculated using the 2−∆∆Ct method. The primer
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sequences are as follows; ACTB Forward-5′AGAAAATCTGGCACCACACC3′, ACTB
Reverse-5′AGAGGCGTACAGGGATAGCA3′, PRRX1 Forward-5′TGATGCTTTTGTGCGA-
GAAGA3′, PRRX1 Reverse-5′AGGGAAGCGTTTTTATTGGCT3′.

Flow cytometry. Following dissociation with Accutase (Thermo Fisher, USA), 1× 105 cells
were suspended in 100 µL of 2% FBS/PBS and incubated with fluorophore-conjugated
antibody (200×) for 1 h on ice. The cells were then washed, and fluorescence was detected
using a CytoFLEX S flow cytometer (Beckman Coulter, Brea, CA, USA). Data were analyzed
using FlowJo v10.8.1 software (FlowJo LLC, Ashland, OR, USA). The antibodies used are as
follows; APC-CD44 (eBioscience, Waltham, MA, USA, 17-0441), FITC-CD49f (BD, Franklin
Lakes, NJ, USA, 561893), BB700-CD140B (BD, Franklin Lakes, NJ, USA, 745822).

RNA-sequence analysis. Total RNA was extracted using an RNeasy kit (Qiagen, USA),
and sequencing libraries were prepared using a KAPA RNA HyperPrep Kit with RiboErase
(HMR) (Kapa Biosystems, Wilmington, MA, USA) and a SeqCap Adapter Kit (Set A or
Set B, Roche) following the manufacturer’s instructions. The sequencing libraries were
transferred to a GENEWIZ and loaded onto a HiSeq 2500 system (Illumina, San Diego,
CA, USA) for sequencing. All sequence reads were extracted in FASTQ format using the
CASAVA 1.8.4 pipeline. Trimmomatic (version 0.36) was used to remove adapters and filter
raw reads <36 bases as well as leading and trailing bases with < quality 20. Filtered reads
were mapped to hg19 using HISAT2 software (version 2.1.0). Raw counts for each gene
were based on sense-strand data obtained using featureCounts software from the Subread
package. RUVSeq (release 3.10) was used for further normalization to account for sample
variations. Differentially expressed genes were identified using DESeq2 analysis with a
threshold of padj < 0.01 and abs (log2FC) > 1. Principal component analysis and a heatmap
of gene expression levels of each differentially expressed marker were analyzed using the
R prcomp function and hclust function (R version 3.6.1). The raw and processed RNA-seq
data were deposited in the NCBI GEO database under the accession number (GSE197373).

Study approval. The Ethics Committee of Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, approved the experimental protocols for
studies of human subjects. Written informed consent was provided by each donor.

Statistical analysis. Data were analyzed using Prism 9. All data were acquired by
performing biological replicates of three independent experiments and are presented as
the mean ± standard error of the mean. Statistical significance was determined using a
two-tailed t-test using the Bonferroni method.

5. Conclusions

Our study showed that the cell density of hPSCs should be optimized before differen-
tiation. Although human mesenchymal stromal cells (hMSCs) are widely used for cartilage
regeneration, their invasive isolation from different tissues and donor-dependency inhibit
stable results [40–43]. Our differentiation protocol mimics the human developmental pro-
cess and provides stable results, including quality assurance of chondrogenesis, which are
seldom achieved using hMSC-based current therapies. This study supports hPSC-based
skeletal regeneration or disease therapy and offers novel insights on developmental biology
and stem cell research.
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