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Abstract
Eelgrass (Zostera marina) populations occupying coastal waters of Alaska are separated

by a peninsula and island archipelago into two Large Marine Ecosystems (LMEs). From

populations in both LMEs, we characterize genetic diversity, population structure, and

polarity in gene flow using nuclear microsatellite fragment and chloroplast and nuclear

sequence data. An inverse relationship between genetic diversity and latitude was

observed (heterozygosity: R2 = 0.738, P < 0.001; allelic richness: R2 = 0.327, P = 0.047),

as was significant genetic partitioning across most sampling sites (θ = 0.302, P < 0.0001).

Variance in allele frequency was significantly partitioned by region only in cases when a

population geographically in the Gulf of Alaska LME (Kinzarof Lagoon) was instead

included with populations in the Eastern Bering Sea LME (θp = 0.128–0.172; P < 0.003),

suggesting gene flow between the two LMEs in this region. Gene flow among locales was

rarely symmetrical, with notable exceptions generally following net coastal ocean current

direction. Genetic data failed to support recent proposals that multiple Zostera species
(i.e. Z. japonica and Z. angustifolia) are codistributed with Z.marina in Alaska. Compara-

tive analyses also failed to support the hypothesis that eelgrass populations in the North

Atlantic derived from eelgrass retained in northeastern Pacific Last Glacial Maximum refu-

gia. These data suggest northeastern Pacific populations are derived from populations

expanding northward from temperate populations following climate amelioration at the ter-

minus of the last Pleistocene glaciation.
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Introduction
Eelgrass (Zostera marina Linnaeus, SP.PL.2: 968. 1753), a marine angiosperm adapted to the
cold waters of the North Atlantic and North Pacific, is the most widely distributed of the 60
+ seagrass species. Zostera marina provides valuable habitat for diverse animal assemblages,
functioning as an important primary producer and erosion stabilizer in coastal ecosystems.
Dramatic declines in seagrasses are documented worldwide over the past three decades [1–3].
Major declines of eelgrass populations in North America have been attributed to a variety of
both human-induced events, such as the release of oil, farming induced eutrophication, and
residential expansion [4,5], and natural events, such as disease and anoxia [6–8]. Although the
most severe declines in eelgrass populations in North America have occurred along the Atlantic
coast, populations on the Pacific coast have also experienced losses, especially in the southern
portion of the range [1,9,10].

Coastal Alaska, on the Pacific coast of North America, represents both the northern- and
western-most limits of Z.marina in the Northeast Pacific region [11], and eelgrass meadows
there likely comprise the largest contiguous seagrass meadows in northern North America
[12,13]. Despite a recent proposal that another species, Z. angustifolia, occurs in mixed stands
with Z.marina in some Alaskan locales [14], and that the Z. japonica, an invasive, nonindige-
nous species [15] occurs in southeastern Alaskan waters (i.e. UAMHerb: 248738–41), prior
genetic analyses based on sequence data from nuclear and chloroplast genes in a small number
of eelgrass specimens collected from six locales in Alaska [16] suggests that only one species of
Zostera (Z.marina) occurs in Alaskan waters [17]. Along the coast of Alaska, Z.marina occurs
in geographically isolated coastal lagoons in two Large Marine Ecosystems (LMEs) [18], the
Eastern Bering Sea and Gulf of Alaska LMEs (hereafter, EBS-LME and GoA-LME, respec-
tively), and is thought to be the dominant submerged macrophyte in both ecosystems
[12,13,19]. Due in part to the lack of heavy anthropogenic activity along remote areas of the
Alaskan coastline (particularly in the western portion), eelgrass populations here have not suf-
fered declines as found elsewhere along the Pacific coast of North America [9,10] (e.g., Baja
California [9,10], California, Oregon andWashington [1]), in the Northwest Pacific region
(e.g., Japan [20,21]), and in more densely populated regions including the Atlantic coast of
North America and Europe [22]. However, natural processes (e.g., seismic activity [23]) will
continue to impact high latitude eelgrass populations, and direct or indirect impacts due to
localized human activity (e.g., development of boat harbors [24] and oil spills [25]) as well as
large scale climate change [25,26], are expected to increase in high latitude communities in the
future.

Eelgrass populations along the Alaska Peninsula (Fig 1) and the eastern portion of the Aleu-
tian Archipelago are of considerable phytogeographic interest because they occur along the
southern margin of what was once the Bering Land Bridge. The Alaska Peninsula, together
with the Aleutian Archipelago, functions as an important intercontinental bridge for dispersal
for both marine and terrestrial organisms. For species that occur in coastal marine and terres-
trial habitats along the Alaska Peninsula and the Aleutian chain, evolutionary dispersal (gene
flow) between continents can occur in at least two directions: westward from North America
along the Alaska Peninsula through the Aleutian Island Archipelago to Kamchatka, and east-
ward from Eurasia, toward interior Alaska and the Pacific coast [27]. However, native eelgrass
populations are generally thought to be absent along the Aleutian Archipelago beyond the east-
ernmost (“Fox”) island group [28]; the population on Adak Island, in the Andreanof Island
group in the central Aleutian Islands, is considered to be the result of a transplantation experi-
ment conducted in the 1960s [29]. Nevertheless, McRoy [29] suggests Atka Island, also in the
Andreanof Island group, hosts eelgrass populations. Thus, while we are unaware of the
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existence of any specimens of Z.marina collected from Atka, its presence there could signal a
phylogeographic connection with eelgrass populations in Eurasia.

Populations of Z.marina along the southern (Pacific coast) of the Alaska Peninsula (part of
the GoA-LME) are separated geographically from populations along the northern coast of the
peninsula (part of the EBS-LME), and exposed to different current regimes and environmental
conditions. Differences in gene flow polarity among populations of marine organisms in the
different LMEs may reflect the different ocean current circulation patterns. On the Pacific side
of the peninsula, the Alaska Stream, flows westward along the southern portion of the Alaska
Peninsula and represents the northern boundary current of the anticyclonic Pacific subarctic
gyre (Fig 1), which extends from the head of the Gulf of Alaska to the western Aleutians (165°
W to 173° E), and then turns northwesterly into the Bering Sea at Amchitka Pass (180° E).
Unlike other oceanic currents, which experience wide variations in localized kinetic energy
(such as the Gulf Stream), the Alaska Stream is a narrow and consistent high speed current
[30], which may impact polarity of gene flow among populations of marine organisms [30,33].

Fig 1. Major prevailing ocean currents and passes in the Aleutian Islands, within the EBS- and GoA-LMEs. The EBS-LME is shown in blue; the
GoA-LME is shown in green. Major currents are the Alaska Current (AC), Alaska Coastal Current (ACC), Alaska Stream (AS), Aleutian North Slope Current
(ANSC), Bering Sea Current (BSC), and Kamchatka Current (KC). Gray areas in the water indicate trenches. Ocean current data are compiled, but not
identical to, figures from Stabeno and Reed [30,31]. The base map was produced using ArcGIS version 10.2.2 [32].

doi:10.1371/journal.pone.0152701.g001
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Circulation is predominantly cyclonic (counter clockwise) in the Bering Sea basin [34]; the
Aleutian North Slope Current flows eastward along the northern slope of the Aleutian Islands,
then turns northwestern to form the Bering Slope Current, whereas the southward flowing
Kamchatka Current forms the western boundary current [34,35]. Circulation in the Bering Sea
is strongly influenced by the Alaska Stream, which enters the Bering Sea through 14 passes
along the Aleutian Archipelago, which acts as a porous boundary between the North Pacific
and the Bering Sea [35]. Inflow into the Bering Sea is balanced by outflow through the Kam-
chatka Current such that circulation is a continuation of the North Pacific subarctic gyre, mov-
ing eastward along waters off the northern shore of the Alaska Peninsula (Fig 1). The relatively
shallow (< 80m) and narrow (~30km) Unimak Pass, near the documented western limits of
native eelgrass distribution in Alaska, forms the only significant conduit between the shelves of
the Gulf of Alaska and the EBS-LMEs, permitting a strongly northward seasonal flow of a por-
tion of the Alaska Coastal Current. Flow through the pass is predominantly baroclinic, with
speed of northward transport maximizing in the fall and winter and minimizing in the late
spring and summer. Eddies are also ubiquitous in the Bering Sea; these are often anticyclonic
in both the eastern and western side of the basin, and may facilitate localized deviations from
net ocean current flow.

Ocean currents, oceanographic mixing patterns, geographic barriers, and distance all influ-
ence eelgrass distribution and apparently play a role in the differentiation of Z.marina popula-
tions elsewhere [20,21,36–39]. Muñiz-Salazar et al. [38] suggest the 1300-km long Baja
California peninsula and varying oceanographic mixing patterns act as barriers limiting gene
flow among eelgrass populations in the southwestern-most limits of the species’ range along
the Pacific coast of North America and Gulf of California. Although seed rafting on floating
reproductive shoots may be an effective form of dispersal for eelgrass [40,41], dispersal of both
pollen [42] and seeds [43] is typically limited to just a few meters even in areas with strong
tidal currents. Thus, the species is expected to show significant interpopulational structuring.
Further, extensive vegetative reproduction through branching of rhizomes and formation of
shoots is expected to limit genetic diversity within local subpopulations and amplify genetic
structure between populations. Although flowering response apparently increases at the
extremes of Z.marina’s range when compared to temperate populations, northern latitude
populations along the North Pacific coast of North America flower less frequently than at
southern latitudes [44]. Thus, levels of population differentiation likely increase latitudinally,
while diversity will likely decrease, as observed in other plants [45] (although see [37] for dispa-
rate signals in eelgrass of the North Atlantic). Given ocean currents play an important role in
the movement of gametes and individuals between populations, gene flow between discrete
populations as assayed using a coalescence approach [46,47] should correspond to net move-
ment of ocean currents.

We expect eelgrass populations in high-latitude habitats to show lower levels of genetic
diversity than southern populations, and be significantly partitioned at the interpopulational
level. Further, at least regionally, prevailing direction of gene flow should correspond to ocean
current patterns, which differ between the two LMEs separated by the Alaska Peninsula and
Aleutian Island archipelago. However, unlike for peninsulas elsewhere on the Pacific coast of
North America that may sharply restrict or prohibit gene flow among eelgrass populations
[38], the boundary between the EBS- and GoA-LMEs may be relatively semipermeable for eel-
grass, particularly at False Pass, east of Unimak Island where a portion of the Alaska Coastal
Current flows northeastward into the Aleutian North Slope Current. Thus, it is unclear
whether the Alaska Peninsula, as well as different current velocities and mixing regimes in
the EBS- and GoA-LMEs, have constituted an effective historical dispersal barrier for this spe-
cies, as have similar landscape features and ocean currents elsewhere in North America [38],
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and whether interregional structure is present, as in some other marine species in the region
[48–50].

The central aim of this study is to characterize genetic structure in largely undisturbed native
populations of Z.marina along the northwestern-most Pacific coast of North America. Using
nuclear microsatellite markers and nucleotide sequence information from the chloroplast matur-
ase K gene (matK) and the nuclear 5.8S rRNA gene and associated internal transcribed spacers,
ITS-1 and ITS-2, we: (i) validate species, given plasticity in morphology within Zostera can con-
found species determinations [16,51] leading to erroneous assessments of genetic diversity and
differentiation; (ii) quantify levels of genetic diversity and structuring within and among natural
undisturbed populations of Z.marina along the North Pacific and Bering Sea coasts of Alaska,
which are geographically separated by the Alaska Peninsula; (iii) test for association between
genetic and geographical distances among populations within the two regions, and (iv) test for
polarity of gene flow among populations within the EBS- and GoA-LMEs. Because the popula-
tion genetic structure of marine angiosperms, as in other species, has been influenced by Pleisto-
cene environmental events [52], and because ice-free regions in the high latitude Pacific have
been hypothesized as Last Glacial Maximum (LGM) refugia for eelgrass and a source of coloniza-
tion for North Atlantic populations [37], we also (v) test for genetic signatures consistent with
the presence of LGM refugia in these high latitude Northeast Pacific region populations.

Materials and Methods

Ethics Statement
All eelgrass samples collected in United States waters were obtained on public access lands, and
all researchers sampling in United States waters, including California, received permission for
sampling eelgrass from the appropriate state regulatory agencies where required (e.g., Califor-
nia Department of Fish and Game, Washington Department of Natural Resources, Alaska
Department of Fish and Game). Eelgrass samples from Yaquina Bay were obtained on public
access lands and no permission was required because the plant species is not endangered or
protected in the area sampled. In Alaska, permission was also obtained from the specific U. S.
Fish andWildlife Service Refuges for sampling on Refuge lands. Samples in Mexico were col-
lected with permission from SEMARNAT (Secretaria de Medio Ambiente y Recursos Natur-
ales), the federal agency responsible for promoting the protection of natural resources in
Mexico and the regulatory authority for collecting in Mexico’s intertidal areas. The species is
not considered endangered or protected in areas where the sampling occurred in waters of
either the United States, or Mexico.

Study sites
Eelgrass meadows from 12 sites along the mid-to-northern Pacific Coast of North America
were sampled during summer months between 2000–2006 (Fig 2). Eelgrass meadows at Safety
Lagoon (SL) on the Seward Peninsula, Saint Catherines Cove (SCC) and Izembek Lagoon
(IZL) on the northern side of the Alaska Peninsula, and locales in the Togiak Bay (TOG) area
inhabit geographically separated coastal lagoons on the southern and eastern coast of the
Bering Sea. Eelgrass from the Kuskokwim Shoals (KS) inhabits small embayments associated
with barrier islands forming the Kuskokwim Shoals in the northern Kuskokwim Bay. Meadows
in Kinzarof Lagoon (KIL) andWide Bay (WB) occur in geographically isolated coastal lagoons
along the Pacific coast side of the Alaska Peninsula. Eelgrass collected from Unga (UNGA) and
Simeonof (AKSI) islands of the Shumagin Island group, south of the Alaska Peninsula, are
from beds found in sheltered bays along the open coast environments. Eelgrass fromMontague
Island (PWS) in Prince William Sound in south central Alaska, Nakwasina Bay (NAK) in the
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Alexander Archipelago of southeastern coastal Alaska, and from Yaquina Bay, Oregon (YAB),
occupy sheltered bays along the northwestern Pacific coast of North America. Hereafter,
locales from which these samples were collected are referred to as ‘populations.’

At all but one study site (KS), eight to sixty individuals of Z.marina separated by 20–200 m
were randomly collected during low tides. For KS,> 250 samples were retrieved from an out-
board engine propeller at various sampling sites along a general transect of 2.5 km. Plants were
scraped clean of visible epiphytes and invertebrates, blotted dry with paper towels and stored
in powdered silica gel until DNA was extracted from leaf tissue. All individuals in each popula-
tion were sampled within an area smaller than 750,000 m2. This area is much larger than the
genetic neighborhood area (500–1600 m2) for eelgrass suggested by Ruckelshaus [42,55] and
Reusch et al. [56] but is nevertheless appropriate for examining large-scale (phylogeographic)
population differentiation [38].

Fig 2. Sites sampled for Z.marina analyzed in this study, with respect to surface currents. Sample locales for Z.marina are shown with asterisks (*).
Arrows indicate direction of prevailing seasonal surface currents derived from Brower et al. [53,54]. The base map was produced using ArcGIS version 10.2.2
[32].

doi:10.1371/journal.pone.0152701.g002
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Laboratory analyses
See S1 Methods for details of laboratory analyses. Following extraction and quantification of
DNA, nucleotide sequence data from 348 basepairs (bp) of the Zostera chloroplast maturase K
(matK) gene and 488 bp of the 5.8S rRNA gene and associated internal transcribed spacers,
ITS-1 and ITS-2 (ITS) were collected following methods presented in the literature [16].
Sequence data were collected from 3–12 samples at the 11 locales along the coast of Alaska. For
comparative purposes, we also obtained sequence data frommatK and ITS from 3–13 individ-
uals per population (except Morro Bay for ITS) in the other two Pacific Coast LMEs of North
America: 1) the California Current LME (CC-LME), including Puget Sound, Washington (PS),
Monterey (MON), Humboldt (HUM), and Morro bays, California, and four lagoons along the
coast of Baja California Peninsula (Estero Punto Banda, Bahia San Quintin, Laguna Ojo de Lie-
bre, Laguna San Ingnacio [38], and three lagoons in the 2) Gulf of California LME (GoC-LME:
Bahia Concepcion, Punta Chueca, and Isla Tiburon [38]). AllmatK and ITS data were com-
pared with data from prior research [16] and sequences accessioned in GenBank. Fragment
data were collected at 10 polymorphic microsatellite loci [56,57]) from the 12 locales in Alaska,
following procedures outlined elsewhere [38,58]. For comparative purposes, genotypes gener-
ated from YAB (see Muñiz-Salazar et al. [38]) were also included in analyses.

Data analyses
Analyses of sequence data. MatK and ITS sequences were collapsed into haplotypes using

DNACollapser [59]. To address proposals that more than one species of Zostera occurs in
Alaska and to verify that our analyses were from populations of Zostera marina, we used the
BLASTN algorithm [60] to compare allmatK and ITS haplotypes to data from different Zos-
tera species deposited on NCBI (see [16,61,62]). As well, sequences were compared to homolo-
gous information from both loci obtained from accessioned specimens used by Talbot et al.
[16] to represent North Pacific Z.marina: UAMHerb:43460, collected fromWide Bay, Alaska
Peninsula (GoA-LME); and UAMHerb:40475, collected from Cowpack Lagoon on the Seward
Peninsula (EBS-LME). We note that UAMHerb:40475, previously determined to be Z.marina,
was annotated and ascribed in 2006 to Z. angustifolia. Unfortunately, no sequence data for ITS
ormatK attributed to Z. angustifolia are archived in GenBank. Nevertheless, we assumed that
if two different Zostera species occupied habitats within the two high latitude LMEs, and Z.
angustifolia was indeed a discrete lineage and one of those species, we would observe 1) diag-
nostic differences between UAMHerb: 40475 (cf. Z. angustifolia) and UAMHerb: 43460 (Z.
marina) at the ITS andmatK genes, and 2) among sequences assayed from individuals repre-
senting our target populations. Further, 3) if sampled ‘populations’ actually comprised individ-
uals from different species, we should observe significant linkage disequilibrium (and likely
deviations from Hardy Weinberg proportions) across most or all microsatellite loci collected
across individuals sampled from within the mixed ‘population’ [63].

An unrooted phylogenetic network was constructed formatK data using NETWORK Ver-
sion 4.612 (Fluxus Technology Ltd., fluxus-engineering.com; [64]). Homologous sequence
from three other species of Zostera (Z. asiatica: AB125360; Z. japonica: AB125361; and Z. cau-
lescens: AB125358; [62]) were included for comparison.

Clonality and genetic diversity. Details of analyses to assess levels of genetic diversity at
microsatellite loci are provided in S1 Methods. To determine the level of clonality and generate
a dataset for subsequent population genetics analysis, we employed the match statistics option
in Microsatellite Toolkit [65] to identify samples sharing identical multilocus genotypes, pre-
sumably representing a single clone, among the samples, and GenClone ver. 1.0 [66], to esti-
mate genotypic richness (R), a measure of clonality within the population [67]. Populations
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with a value of R at unity have 0.0% clonality; lower values of R indicate higher levels of clonal-
ity. Following assessment of R, the dataset was pruned by eliminating data from all but one
sample representing a genetic individual (a genet). This pruned dataset was used to test the
power to detect individuals by calculating the probability of observing identical multilocus
genotypes between two individuals sampled from a population (PID and PIDsib; [68]), using the
program GIMLET v. 1.3.2 [69], and to conduct subsequent population genetics analyses. We
quantified genetic variation (using data from genets only) and tested for neutrality in microsat-
ellite loci using a variety of computer programs routinely used to analyze genetic data [70,71].
In all cases of multiple tests, significance levels were adjusted using sequential Bonferroni cor-
rections [72].

Population structure. Details of analyses to assess levels of population and regional struc-
ture are provided in S1 Methods. Significance of spatial variation in microsatellite allele fre-
quency between populations was assessed using F-statistics and their analogs (θ, [73]; ρ,
[74,75]), employing several computer programs routinely used to analyze genetic data [76–78].
Significance of tests based on random permutation of alleles between populations, and p-values
were adjusted using Bonferroni corrections. We also tested for differences in the distributions
of alleles and genotypes across populations using a log-likelihood (G) based exact test [79],
using GENEPOP’007 [80] and judging the significance after applying sequential Bonferroni
procedures.

To further investigate the pattern of population structuring, we also applied a Bayesian clus-
tering approach [81]. Data were analyzed to detect the occurrence of population structure,
without a priori knowledge of putative populations, under two situations: situations under
which i) the number of clusters was pre-defined (K = 2, corresponding to the two LMEs, and
K = 3–4, based on results of the regional analyses of molecular variance; see below); and ii) the
number of clusters was not predetermined, but with an upper limit of 20 (more than the sam-
pled locales), to facilitate the identification of more detailed patterns across the geographic dis-
tribution. Each Bayesian clustering analysis was repeated 10 times to ensure consistency across
runs. We also investigated genetic structuring and visualized regional and between-population
by conducting discriminant analyses of principal components (DAPC), using the R package
adegenet [82,83]. Optimal cluster number within each region and population was determined
using sequential k-means algorithm on principal components and discriminant functions
transformed data and compared to original population identification, with probability of mem-
bership in each population determined for each sample [84].

Regional structure. We employed hierarchical analyses of molecular variance (AMOVA)
to test the hypothesized regional relationship between the GoA-LME and EBS-LME popula-
tions relative to a suite of alternative hypotheses, quantifying variance at four hierarchical lev-
els: 1) between regions (EBS-LME and GoA-LME), 2) among populations within regions, 3)
among individuals within populations, and 4) within individuals. Statistical significance of var-
iance measures was assessed via non-parametric permutation [77].

Population relationships and tests of isolation-by-distance. We examined genetic rela-
tionships among populations by creating a neighbor-joining tree [85], inferred from allelic fre-
quency data using Cavalli-Sforza and Edwards’ [86] chord distances (DCE), evaluating
confidence of the tree topology via bootstrapping over loci (1000 replicates) using POPULA-
TIONS 1.2.30 [87] and visualizing the resulting networks using TREEVIEW Ver. 1.6.6 [88].
We used IBD 3.0 [89] to compare pairwise genetic and geographic distances with those
expected under a stepping-stone model of population structure [90], testing for a correlation
between the logarithm of the geographic distance and Rousset’s genetic distance [91] for popu-
lations overall and within each region, separately. Reduced-major-axis regression implemented
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in the program IBD was used to determine the slope of significant regression for the Pacific
coast and Bering Sea graphs.

To determine whether there is an inverse relationship between genetic diversity and latitude,
as expected if contemporary populations of eelgrass in the North Pacific colonized from tem-
perate or southern refugia following climate amelioration at the Pleistocene/Holocene bound-
ary, we performed a linear regression analysis fitting two commonly-used measures of genetic
diversity: expected heterozygosity (HE) data and standardized allelic richness (AR [92,93]), to
degrees latitude. An inverse relationship between genetic diversity and latitude is expected if
genetic diversity decreases constantly along a latitudinal gradient following an isolation-by-dis-
tance pattern. We combined data from this study (YAB, NAK, WB, IZL, TOG, SL only) and
comparable data from other populations (Baja California: Bahia Magdalena, Bahia San Quin-
tin, Estero Punto Banda, [38]; California: MON; andWashington: PS, represented by Shallow
Bay in [58]). Data for six (CT-3, CT-20, GA-1, GA-2, GA-3, and GA-5) of the 10 loci used in
this study were available for all 12 populations (http://dx.doi.org/10.5066/F7GQ6VTK), and all
HE values were derived from genets.

Gene flow rates and polarity. We estimated the magnitude and polarity of gene flow
among populations within the two regions using the maximum likelihood approach imple-
mented in MIGRATE 2.0.3 [47,94]; details of the gene flow analyses are provided in S1 Meth-
ods. MIGRATE uses a coalescence approach to estimate gene flow rates (Nm) among
populations, assuming a constant per-locus mutation rate (μ). To test whether net current
direction can predict localized direction of gene flow, we performed MIGRATE analyses sepa-
rately for Bering Sea and Pacific coast populations, estimating full models, Θ = 4Neμ (the com-
posite measure of effective population size and mutation rate; see S1 Methods) and all pairwise
migration parameters individually from the data and comparing them to a restricted island
model whereby Θ and pairwise migration parameters are constrained to be equal between pop-
ulations. Competing models were evaluated for goodness-of-fit given the data using a log-like-
lihood ratio test. The resulting statistic from the log-likelihood ratio test is equal to a χ2

distribution, with the degrees of freedom equal to the difference in the number of parameters
estimated in the two models [94].

Results

Nuclear and chloroplast DNA sequencing
Three-hundred forty-eight bp of thematK gene and 488 bp of the ITS genes were recovered
from among 170 and 103 sequenced samples, respectively, from EBS-LME to the GoC-LME.
Combined with data from [16], a total of 178 and 118 samples were used to make inference
from these gene region, respectively (S1 Fig). Sequence data obtained from samples collected
from Alaska (n = 75 and 56, respectively, formatK and ITS) demonstrated we sampled and
extracted genomic DNA from Z.marina and not the invasive Z. japonica, which may occur in
Alaskan coastal waters (i.e. UAM:Herb:248738, 248740, 248741, and 248739). We observed
two ITS haplotypes (S1 Fig) among all samples assayed from Alaska through Baja California
and the Gulf of California. A single ITS variant (ITS1) was observed within all populations in
Alaska (NAK through SL; see S1 Fig), including accessioned voucher specimen UAMHerb
43460. ITS1 shared 99% sequence homology (a single site G$ A transition) with sequences
from Z.marina reported by Les et al. [95] (AY077986, vouchered at CONN: Yarish s.n.), and
differed at 98 nucleotide sites (46 insertions/deletions, 21 transitions and 30 transversions)
from Z. japonica, reported in Talbot et al. [16]. Further, ITS1 sequences were identical to
homologous sequences from other individuals sampled from all other North Pacific North
American Z.marina samples (PS, YAB, HUM) assayed, as well as in Japan (S1 Fig). However,
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a novel variant (ITS2) co-occurred with ITS1 in Baja California (the CC-LME) and GoC-LME
(S1 Fig). The novel variant, present in 28% of samples assayed from Baja California and Gulf of
California locales (S1 Fig), differed from the common North American variant at a single tran-
sition (G$ A) change. Sequences have been deposited in GenBank (KU704817-KU704920).

FivematK haplotypes (matK2, 4, 5, 6, 7), which differed at up to two segregating sites across
four variant nucleotide sites (3 transitions, 1 transversion), were observed across the species’
North American Pacific coast distribution (S1 Fig and Fig 3A). Similar to ITS, all Alaskan pop-
ulations, including UAM 40475 (ascribed to Z. angustifolia), were characterized by a single
matK variant (matK2; see S1 Fig).MatK2 was also found in North Pacific samples north of 40°
latitude, including PS, YAB, and HUM, as well those reported for Z.marina by Tanaka et al.
[61] (GenBank accession: AB096164; accessioned at TNS: Tanaka 99190) and Kato et al. [62]
(Zmm1, GenBank accession: AB125354), but not by us (or other researchers, to date) at lati-
tudes lower than 40° along the north Pacific coast of North America, including Morro Bay,
MON, or Baja California and GoC-LME populations.MatK4, the most common variant in the

Fig 3. (A) Parsimony network of chloroplastmatK haplotypes from Z.marina and (B) a neighbor-joining tree illustrating relationships among
Pacific coast populations of Z.marina. (A) A parsimony network of chloroplastmatK haplotypes assayed from Z.marina from the EBS-LME (n = 29),
GoA-LME (n = 45), CC-LME (n = 86), and GoC-LME (n = 21). Data are from populations listed in S1 Fig, along with homologous data reported elsewhere
[62,96] for samples collected from various locales within the CC-LME (GenBank accessions:matK2—EF19834, AB125354, AB096164;matK4—
EF1983339, EF198342, AB125356, AB125355). Homologous data from Z.marina from the Northwest Pacific (Japan and Korea; n = 14, data from [16,62]),
the North Atlantic (Germany, n = 2, GenBank accessions: JN225374-75; Ukraine, n = 1, GenBank accession: JQ990925), and one sample each from Z.
japonica (GenBank accession: AB125361), Z. caulescens (GenBank accession: AB125358), and Z. asiatica (GenBank accession: AB125360) are included
for comparison. The size of the node corresponds to the frequency of each haplotype within each LME or region, and length of branch corresponds to number
of changes, unless noted with diagonal slant bars. The small white diamond indicates an intermediate ancestral allele that was not sampled. (B) Neighbor-
joining tree illustrating relationships among Pacific coast populations of Z.marina. DCE distances were generated by data from 10 microsatellite loci.
Bootstrap values (2000 replications) are listed at the node. Black, white, and gray circles identify populations belonging to the three discrete groupings
(Model D) uncovered via AMOVA analyses to reflect significant and highest allelic variance at the regional level (see Results, in text, and S1 Table).

doi:10.1371/journal.pone.0152701.g003
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CC-LME, was observed in PS and HUM, but not in YAB; this variant also occurred in the
GoC-LME (S1 Fig and Fig 3A). Laguna Ojo de Liebre on the Pacific coast of Baja California
possessed threematK variants (S1 Fig). Haplotype sequences have been deposited in GenBank
(KU704921-KU705084).

Microsatellite Analyses
Clonality and genetic diversity. There were 61 pairwise instances in which we found that

more than one sample yielded an identical 10-locus genotypes (seven instances in YAB, six in
UNGA, 46 in PWS, and one each in AKSI and TOG). In no instance were identical genotypes
observed in samples from across two or more populations. Genotypic richness was lowest in
UNGA and PWS (Table 1). We dropped all but one of any set of samples that shared identical
10-locus genotypes, assuming the set represented a clone, since the probability of observing
identical multilocus genotypes in two unrelated genets sampled from populations in these
regions averaging 1/3,346,720, and ranging from 1/674 within KS to 1/29,533,372 within YAB
(Table 1). Microsatellite genotype data are accessioned at the USGS Alaska Science Center data
repository (http://dx.doi.org/10.5066/F7GQ6VTK).

Number of alleles detected per locus ranged from four (CT-19, GA-4) to 43 (CT-17) and
the mean number of alleles per locus per population (observed allelic diversity) ranged from
2.2 to 7.6 (Table 1). All EBS-LME populations and four of the seven GoA-LME populations
were monomorphic (P< 1.0) for at least one locus; only KIL, PWS and YAB were polymorphic
at all loci (Table 1). Allelic richness, calculated based on the sample size at UNGA, varied from
1.95 at KS to 3.62 at YAB (Table 1); allelic diversity was on average higher in GoA-LME popu-
lations (mean allelic diversity = 2.91) than EBS-LME populations (mean allelic diversity = 2.49).
Except in KS, SCC, UNGA and AKSI, private alleles occurred in all populations, and the great-
est number of private alleles (5) was found in SL and PWS (Table 1). Overall, the EBS-LME
populations demonstrated the highest number of private alleles. Average HE within

Table 1. Measures of genetic diversity at ten microsatellite loci for Zostera marina populations along the Pacific coast of North America.

POPULATION R n P A AR PA HO HE PID PIDsib

Eastern Bering Sea LME

Safety Lagoon (SL) 1.00 34 0.80 5.4 2.49 5 0.29 0.31 8.620e-05 3.137e-02

Kuskokwim Shoals (KS) n/a 29 0.60 2.6 1.95 0 0.18 0.21 1.484e-03 9.107e-02

Togiak (TOG) 0.97 49 0.80 6.2 2.59 3 0.20 0.23 6.276e-05 6.419e-02

Izembek Lagoon (IZL) 1.00 71 0.90 7.4 2.77 4 0.32 0.33 3.275e-05 2.032e-02

Saint Catherine Cove (SCC) 1.00 24 0.90 4.7 2.67 0 0.33 0.36 2.952e-05 1.825e-02

Gulf of Alaska LME

Kinzarof Lagoon (KIL) 1.00 48 1.00 7.6 3.10 2 0.34 0.36 1.666e-06 1.547e-02

Wide Bay (WB) 1.00 33 0.90 4.1 2.41 2 0.32 0.33 5.816e-05 2.435e-02

Unga Island (UNGA) 0.56 6 0.70 2.2 2.20 0 0.35 0.31 1.621e-05 4.609e-02

Simeonof Island (AKSI) 0.83 6 0.80 2.9 2.90 0 0.33 0.33 1.203e-08 3.224e-02

Montague Island (PWS) 0.67 46 1.00 7.0 3.29 5 0.46 0.45 5.574e-07 5.438e-03

Nakwasina Bay (NAK) 1.00 30 0.90 5.6 2.84 2 0.35 0.35 2.608e-06 1.970e-02

Yaquina Bay (YAB) 0.80 25 1.00 6.0 3.62 4 0.60 0.56 3.386e-08 1.895e-03

Values are as follows: R = clonal diversity (genotypic richness), n = sample size for analysis (genets only); P = percent polymorphism, A = average

number of alleles per locus, AR = allelic richness [92,93]; PA = number of private alleles; HO = observed heterozygosity; HE = expected heterozygosity

[97]; PID = probability of identity given a randomly breeding population; PIDsib = probability of identity given populations are comprised only of first-order

relatives. All values except R were calculated using genets only.

doi:10.1371/journal.pone.0152701.t001
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populations ranged from 0.21 at KS to 0.56 at YAB; average HO ranged from 0.18 at KS to 0.60
at YAB (Table 1). Overall HE was 0.46; average HE was higher in GoA-LME (0.35) than
EBS-LME populations (0.29). Overall HO was 0.33; again, average HO was higher in GoA-LME
(0.35) than EBS-LME (0.26) populations.

The global test revealed significant departures from HWE in 2 of the 12 populations: SCC
(P = 0.003) due to significant heterozygote deficit at one locus (CT-3; P = 0.0013), and TOG
(P< 0.0001) due to significant heterozygote deficit at two loci (CT-3, P = 0.0134; GA-5, P =
0.0001). No significant inbreeding values were observed across loci overall, after correction for
multiple tests (FIS = -0.154–0.115, P< 0.0004 for all values). Exact tests among the 382 possible
pairwise comparisons demonstrated significant linkage disequilibrium (P< 0.005) in 15 cases
(four pairwise comparisons within YAB, three within WB, two within SCC, SL, PWS, and
TOG, one within KIL). This is lower than the number of spurious results expected for 382 pair-
wise comparisons (19.1), although more significant pairwise comparisons were observed (4)
than expected spuriously (2.25) within YAB. The global test across populations, for all 45 pair-
ings of loci, was not significant (P> 0.087). Given the general adherence to HWE expectations
and lack of significant linkage disequilibrium, coupled with the results of the sequence analysis
of chloroplast and nuclear loci, we conclude that our populations are comprised of Z.marina
and do not represent either Z. japonica, or Z. angustifolia. All data from genets and across loci
were retained for analysis of population structure.

Population and regional structure. We observed significant differentiation based on vari-
ance of allele frequency overall (θ = 0.302, P< 0.0001); values of ρ were higher (ρ = 0.366, P<

0.0001). Pairwise population differentiation estimated by θST among all pairs of populations
ranged from 0.043 to 0.592 (S1 Table). Variance in allele frequency between populations (θST)
was significantly different from zero among all North Pacific coast population pairwise com-
parisons (excluding YAB) except one: NAK–AKSI (S1 Table); ρST values were significant
across all but nine pairwise comparisons, all involving comparisons with AKSI or UNGA, the
populations represented by the smallest population sizes (Table 1, S1 Table). Average θST val-
ues were similar across EBS-LME (θEBS = 0.225) and North Pacific (GoA-LME populations,
and YAB (θNPacific = 0.264), but overall ρ was higher in the EBS-LME populations ρEBS = 0.359;
ρNPacific = 0.322). In 37 pairwise comparisons, ρST values were greater than θST values; there
were 29 instances of the reciprocal (S1 Table). The greatest θST (0.592) value among all North
Pacific Alaskan populations occurred between WB and KS; the greatest ρST value (0.795) was
between KS and SCC (S1 Table). Significant differences in the distribution of alleles were
observed overall (χ2 =1, P< 0.0001) and for all pairwise population comparisons (χ2 =
43.928 -1, df = 18–20, P< 0.0001), except AKSI and UNGA (χ2 = 28.564, df = 18, P =
0.0540).Results of the hierarchical AMOVA (S2 Table) indicated that only 6.30% (θp = 0.063,
P = 0.022) of the total genetic variation could be attributed to variation between the two bio-
geographical regions (GoA-LME vs. EBS-LME), while 25.2% (θs = 0.252; P< 0.0001) of the
variance could be explained by differences among populations within the two regions (S2
Table). Among the eight alternative models, θp became significant when KIL was included in
the same grouping as IZL and SCC (Models C, D, and H; S2 Table), with θp maximized in
Model D, in which an eastern and western component of the North Pacific LME was assumed.
However, while AMOVA analyses based on the assumption of SMM also found variance to be
significantly partitioned among populations within regions for all models (e.g., ρs = 0.304, P<

0.001 for Model D), ρp was not significant for any between-region test (e. g., ρp = 0.195, P =
0.054 for Model E). Bayesian clustering confirmed trends of significant population structuring
observed with pairwise θST comparisons: when analyses were not constrained to number of
clusters, the highest posterior probability was obtained for K = 9 (Ln(X/K) = -7670.6, LnP =
1.0; S2A Fig). When constraining cluster number to K = 2, Bayesian analyses confirmed
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AMOVA trends: all of the GoA-LME populations clustered together except KIL, for which the
majority of individuals clustered with the EBS-LME populations; approximately half of the
individuals within AKSI also clustered with the EBS-LME populations (S2B Fig). Constraining
cluster number to K = 3 and K = 4 partitioned out WB as a unique population overall (K = 3)
and within the North Pacific (K = 4), and highlighted increasing levels of admixture within
GoA-LME locales at the eastern end of the Alaska Peninsula (S2C and S2D Fig).

Using the K-means algorithm as implemented in adegenet, the optimal number of clusters
in the principal components transformed microsatellite dataset was 15 (BIC = 243.92), how-
ever this model did not perform significantly better than the null model of 12 populations
(BIC = 246.30, LRT p-value = 0.19, df = 3), and in fact indicated 9–13, 17, and 20 cluster mod-
els did not perform significantly worse than the optimal model. Using 15 inferred clusters,
YAB and WB were largely recovered as inferred populations 7 and 15, while other populations
were divided among many inferred groupings with shared original sample populations, includ-
ing SCC in 2, 4–6, and 8–10, KIL in 1, 4–6, 8–10, and 12 and IZL in 2, 4–6, and 8–10 (S3A Fig).
Membership probability of samples assessed using DAPC also indicates distinctiveness of YAB
andWB, while sample identity was largely shared among SCC, KIL, and IZL populations (S3B
Fig). A scatterplot of the first two discriminant functions of the DAPC, representing 86.5% of
microsatellite variation and 30 principal components, indicates EBS-LME populations cluster
together, and overall show less genetic variation than GoA-LME populations, as suggested by
tighter grouping of individuals in each population. GoA-LME populations, though still largely
grouped together (except WB), show markedly more variation within populations than
EBS-LME populations (Fig 4A), a pattern which remains clear when the first two discriminant
functions of the EBS- and GA-LME populations are analyzed separately by region (Fig 4B and
4C), and represents 91.8% and 82.5% of the variation in the data, respectively. Number of prin-
cipal components retained for the analysis had no significant impact on results, using number
of principal components recommended by both α-scores and cross-validation methods [83].

Population relationships and tests of isolation-by-distance. The lowest pairwise genetic
distances (DCE) occurred between populations in the EBS-LME (IZL–SCC: DCE = 0.172); the
largest occurred between a GoA-LME and EBS-LME population (WB–SL: DCE = 0.558; com-
plete data matrix not shown). The neighbor-joining(DCE) tree revealed two main clusters (Fig
3B), supported by a slim majority (51%) of bootstrap replicates. One cluster comprises
GoA-LME populations, and the other EBS-LME populations, with a single exception: KIL clus-
tered more frequently with the EBS-LME populations of IZL and SCC.

We found no significant correlation between Rousset’s genetic [91] and geographic dis-
tances based on microsatellite data for the GoA-LME populations overall (r = 0.248, Z = 79.28,
P = 0.161), or among populations within regions (GoA-LME: r = -0.095, Z = 20.68, P = 0.466;
EBS-LME: r = 0.697, Z = 8.639, P = 0.064). However, significant correlations were observed
between log-transformed genetic distances and geographic distances when all populations
were pooled overall (r = 0.424, Z = -98.64, P = 0.045) and for populations within the EBS-LME
(r = 0.873, Z = -15.12, P = 0.034).

In the 12 populations distributed in a south-north latitudinal gradient, HE and AR corre-
lated inversely with latitude, explaining 73.8% (HE) and 32.7% (AR) of the variance in percent-
age (R2 = 0.738, P< 0.001; R2 = 0.327, P = 0.047, respectively; Fig 5). These results emphasize a
decrease in genetic diversity in a southern to northern latitudinal gradient in eelgrass distribu-
tion along the north Pacific coast of North America.

Gene flow rates and polarity. We tested a 5-population geographic model for EBS-LME
populations (SCC, IZL, TOG, KS, SL), and a 7-population geographic model for GoA-LME
populations (YAB, NAK, PWS, AKSI, UNGA, WB, and KIL), and based on our inference of
partial genetic partitioning between regions and to test for polarity associated with LME-
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specific current patterns. Nem and Θ values calculated in MIGRATE for Bering Sea populations
ranged from 0.265–3.946 migrants per generation, with Θ ranging from 0.969–1.027, and for
Pacific Coast populations ranged from 0.178–3.30 migrants per generation, with Θ ranging
from 0.924–1.074 (S3 and S4 Tables). The full model (all parameters allowed to vary

Fig 4. DAPC scatterplots from Z.marina populations in the EBS- and GoA-LMEs. (A) DAPC scatterplot showing genetic variation in all eelgrass
populations from both the EBS-LME and GoA-LME. (B) DAPC scatterplot of genetic variation among EBS-LME populations only. (C) DAPC plot of genetic
variation among GoA-LME populations only. The first two discriminant functions represent the majority of the genetic variation in each dataset, including
86.5% of the genetic variation among all populations, 91.8% among EBS-LME, and 82.5% among all GoA-LME populations.

doi:10.1371/journal.pone.0152701.g004
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independently) had significantly higher likelihoods than the restricted island model (symmet-
ric inter-population effective migrant rates and Θ) across all marker types, indicating asym-
metric gene flow among populations within each region (GoA-LME = LnL (restricted) =
-2171.298; LnL(full) = -1891.803; LRT = 558.978, df = 49, P< 0.00001; EBS-LME LnL
(restricted) = -inf; LnL(full) = -1153.68; LRT = inf, df = 4, P< 0.00001). Maximum likelihood
estimates based on Markov Chain Monte Carlo simulations suggest that the direction of gene
flow among populations on the Pacific coast is predominantly westward (Fig 6, S4 Table).
However, pairwise comparisons between some nearest-neighbor populations (S4 Table)
showed exceptions, particularly the predominantly eastward gene flow between North Pacific
populations KIL and UNGA, AKSI and WB, and between AKSI andWB (Fig 6). Similar analy-
ses for Bering Sea populations suggested most comparisons involved cyclonic polarity, as
movement was eastward, then northward (S3 Table, Fig 6).

Discussion

Howmany species of Zostera were observed in Alaska?
This study represents the first characterization of macrogeographic population genetic parame-
ters among undisturbed meadows of Z.marina in the extreme high latitude portion of its
Northeast Pacific distribution. As such, it provides a foundational assessment of genetic

Fig 5. Relationship between genetic diversity and latitude.Mean expected heterozygosity (HE) and allelic richness (AR) for each of the 12 populations.
Each point represents a population from this study or from previous studies [38,58]. Regression lines are shown for HE (solid line) and AR (dashed line).

doi:10.1371/journal.pone.0152701.g005
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diversity of eelgrass in the region. Fundamental to assessing genetic structure of Z.marina pop-
ulations, however, is ensuring the samples representing locales within the Northeast Pacific are
indeed Z.marina, particularly given the proposal that Alaska hosts more than one species of
Zostera [14]. The ability to identify units of significant evolutionary divergence is a critical first
step for assessing regional biodiversity, particularly within the context of management and
conservation [98], for clarifying the role of phenotypic plasticity in adaptation [99], and robust
interpretation of population genetics data by ensuring that solely within-species analyses are
conducted. This is particularly pertinent to Z.marina, which demonstrates large phenotypic
plasticity [16,100], contributing to misidentification of specimens. Morphological differences
within and between Zostera species include variation in leaf morphology, particularly leaf
width. As width of leaves are influenced by both genetic and environmental factors [63], they
easily complicate taxonomic assessments [27,51].

The use of sequence data from the nuclear ITS and chloroplastmatK genes has clarified spe-
cies relationships within Zostera [16,51]. For example, large genetic differences, but only subtle
morphological characteristics, differentiate Z.marina and Z. japonica [16], which both occur
along the north Pacific coast of North America south of Alaska [17] and possibly in the Alex-
ander Archipelago of Alaska (i.e. UAMHerb: 248738–41). To date, we have failed to uncover
Z. japonica nuclear ITS and chloroplastmatK sequences among the samples from Nakwasina
and Crab Bay in the Alexander Archipelago (this study and [15], or in 20 other samples assayed
from other coastal Alexander Archipelago locales (GenBank accessions: KT272031-50). The
nonindigenous invasive, Z. japonica, has been found in Humboldt Bay, California, and Bound-
ary Bay, British Columbia [63], suggesting the species is spreading both southward and north-
ward from Puget Sound, where it was thought to have been initially introduced [15].

Further, based on variation in leaf morphology among Zostera specimens collected in
Alaska, Elven [14] considers Z.marina to occur in single-species meadows in southwest and
south Alaska, but admix in northwestern locales with another species, Z. angustifolia. Elven
[14] suggests that Z.marina and Z. angustifolia are separable based on quantitative and quali-
tative vegetative features (width of leaves, number of veins in leaves, degree of branching on
stem, size of stigma, and size of fruit [101–104]), citing as supporting evidence of species dis-
tinction the observation that mixed stands of both Z.marina and Z. angustifolia occur fre-
quently and without observed intermediates. However, the taxonomic status of Z. angustifolia
is disputed; while some authors consider Z. angustifolia to comprise a subspecies [101] or a dis-
tinct species [105,106], others consider it an ecotype of Z.marina [107–109]. Recently, Beche-
ler et al. [63] demonstrated genetically that ‘Z. angustifolia’ found along the coast of Brittany
represented an ecotype of Z.marina (Z.marina v. angustifolia) that occurs in areas with strong
fluctuations in environmental conditions such as salinity, temperature, pH, and oxygen con-
centration at low tide. Similar to Becheler et al. [63], who was unable to distinguish ‘Z. angusti-
folia’ from Z.marina in Brittany, we observed no genetic signatures in samples collected in
Alaska that were consistent with the presence a ‘Z. angustifolia’ taxon that differed from Z.
marina

The nuclear ITS and chloroplastmatK sequences assayed from among our Alaskan samples
were identical to previous assays of Z.marina [16]. Unfortunately, no ITS ormatK sequences
attributed to the disputed taxon Z. angustifolia are archived in public databases, so inference
using data from those loci was not possible. Nevertheless, we failed to find any differences in

Fig 6. Schematic showing direction of instances of significant deviation from symmetry in interpopulational gene flow, based on MIGRATE
analyses. Blue asterisks (*) signify EBS-LME populations; orange asterisks (*) signify GoA-LME populations. Black arrows indicate symmetrical gene flow
concordant with surface current flow; red arrows show asymmetrical gene flow that contrasts with surface current flow. The base map was produced using
ArcGIS version 10.2.2 [32].

doi:10.1371/journal.pone.0152701.g006
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ITS ormatK sequences between vouchered specimens determined to be Z.marina, and the
specimen annotated in UAM as Z. angustifolia (UAMHerb:40475) or among individuals rep-
resenting Alaskan populations within the distributional ranges proposed by Elven [14] for Z.
angustifolia and Z.marina. In future situations in which leaf size is a determining factor in Zos-
tera species determination, we recommend the use of molecular data in tandem with morpho-
logical data to ensure accurate taxonomic classification of specimens; this is particularly
important in cases that expand the distribution of a species.

Microsatellite markers are of limited use for determining species [110–112], due to their
particular mode and rate of mutation and attendant size homoplasy, high level of within-spe-
cies variation, and increased likelihood of null alleles in species-level comparisons. Thus, we
relied solely on sequence information from the nuclear and chloroplast genome to uncover
species-level diversity. However, in some cases, fragment data from microsatellite loci can be
used to support phylogenetic inference drawn from sequence data, and can uncover potential
cryptic species by revealing genetic characteristics such as diagnostic alleles [113], or linkage
disequilibrium and deviations from HWE, expected when analyzing assemblages comprising
individuals from more than one species, or hybrid zones [114,115].

We found no evidence from the microsatellite analyses suggesting more than one species
occurred among our samples; we found no global or population-wide signature of linkage dis-
equilibrium or deviations from HWE in microsatellite loci, expected if our population samples
included individuals belonging to different species. Becheler et al. [63] suggested that ‘Z. angu-
stifolia’ represents an ecotype that manifests ‘above a perturbation threshold’ (p. 2402) in
extreme expression of phenotypic plasticity and facilitates survival of Z.marina in stressful and
fluctuating environments. Although many (if not all) of the locales assayed in our study argu-
ably fall under the category of “stressful and fluctuating,” our research was not designed to spe-
cifically test their hypothesis. Nevertheless, our results are in accord with Becheler et al. [63] in
that we failed to uncover deep (species-level) divergence among assayed samples that would be
expected if two species (Z.marina and Z. angustifolia) were sampled from the same locale.
Thus, it is possible that specimens recently attributed to Z. angustifolia in Alaska are, as in Brit-
tany, an ecotype of Z.marina, rather than a discrete species. Combined, our data suggest that,
currently, a single species of Zostera, Z.marina, occurs in Alaska, and as elsewhere is character-
ized by wide phenotypic plasticity even within the same sampling locale (i.e. Wide Bay). Cer-
tainly, however, given the importance of comprehensive sampling to uncover the presence of
rare, cryptic species or recent invaders, further sampling and ongoing monitoring is warranted.

Genetic differentiation and structure. Significant within-species structuring was evident
among almost all locales studied, as demonstrated by the analyses of variance in allele frequen-
cies using traditional F-statistics as well as Bayesian clustering analyses, with at least nine clus-
ters among the 12 locales analyzed. Further, this divergence is in general not extremely recent
[75,116]; RST (ρ) values are larger than overall FST (θ) values, and for 54% of all pairwise com-
parisons, ρ values are larger, and typically substantially so, than θ values. This pattern is
repeated within regions: ρST values were greater than θST values in 11 of 21 pairwise population
comparisons within the GoA-LME, and in eight of the 10 pairwise population comparisons
within the EBS-LME. Interestingly however, θST exceeded ρST values in a small majority of
between-region comparisons (53%), involving mostly populations occurring near the tip of the
Alaska Peninsula.

Studies of eelgrass populations in the northwestern North Pacific [21], along the southern
Pacific coast of Baja California and the Gulf of California [38], certain sites in Puget Sound,
Washington [58] and San Francisco Bay, California [117], and in Atlantic ecosystems [37],
show that eelgrass in both the Pacific and Atlantic display pronounced population structuring,
sometimes even among sites within the same lagoon. Given the perennial habit of Z.marina
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along most of the north Pacific coast of North America, and the observation that movement of
dislodged vegetative material is the main adaptation the fruits have for dispersal [17,107], a
finding of significant structuring is not surprising. The apparent low propensity for dispersal,
corroborated by repeated findings of pronounced population structuring, has implications
when assessing the impact of catastrophic anthropogenic or natural perturbations on local Z.
marina populations and the success of restoration programs. However, most of these studies
have been conducted in areas already heavily impacted by anthropogenic activity, which can
increase population isolation via fragmentation [118], complicating interpretation of results
within the context of species-specific evolutionary strategies across different marine
ecosystems.

Although we observed significant genetic structure among the high latitude populations in
both the EBS- and GoA-LMEs, regional (inter-LME) differentiation was only significant if we
forced KIL, located along the Pacific coast of the western Alaska Peninsula and therefore within
the GoA-LME, to group with populations in the EBS-LME (Models C, D, and H; S2 Table). As
in other regions along the Pacific coast of North America [38], we found that the Alaska Penin-
sula likely limits, to some degree, gene flow among eelgrass populations between the two
LMEs, since among AMOVAmodels tested, the highest significant θp value was observed
when populations were generally partitioned into three regional groupings, corresponding to
1) populations in the Bering Sea (but also including KIL); 2) populations along the southern
portion of the Alaska Peninsula; and 3) populations farther east, along the Gulf of Alaska and
the northernmost Pacific coast (Alexander Archipelago). However, given the close relationship
of KIL with Bering Sea populations, this boundary appears to be semipermeable for eelgrass
populations around the tip of the Alaska Peninsula, where currents flow from the GoA-LME to
the EBS-LME. Nevertheless, under the SMM, these partitions were not identified as significant,
suggesting observed differentiation among these three regions is an evolutionarily shallow phe-
nomenon, with connectivity still maintained by low levels of gene flow [75].

The combination of unexpected net eastward gene flow among certain populations occupy-
ing the Gulf of Alaska (KIL, WB, UNGA and AKSI; Fig 5) and lack of a significant isolation-
by-distance signal suggests that net current movement may play a less than central role in the
dispersal of eelgrass among certain Alaskan populations. The variation in strength of flow and
current polarity seems insufficient to explain the large amount of genetic connectivity between
the EBS- and GoA LMEs seen among SCC, IZL, and KIL, and the distinctiveness of WB, which
as a clearly isolated lagoon is relatively protected from net ocean current movement (and there-
fore likely gene flow) that connects other GoA-LME eelgrass populations. Seasonal divergences
in net current polarity along the Pacific Coast of the Alaska Peninsula may account for some
the observed disparities; in summer, surface currents along the Pacific coast of Alaska develop
into weak, closed, anticyclonic patterns [119,120], at approximately 5.1–25.5 cm�s-1, displacing
the winter net northward flowing Alaska Current to the west [121]. However, summer flows
are weak and the strength of the circulation varies annually [119]. In contrast, net surface flows
along the Alaskan coast in the Bering Sea are predominantly to the north and northwest, with
only weak sporadic current flowing southward along the west coast of the Bering Strait [122].
Strength of flow through the strait apparently varies by a factor of five within the space of
weeks. Current velocities along the northern coast of the Alaska Peninsula, where the densest
meadows of eelgrass in North America occur [12,13], range from 5–34 cm�s-1 in the channels,
and from 0–18 cm�s-1 in the meadows [123].

In Z.marina populations in Europe, genetic distance increases with increasing geographic
distance [57], and genetic characteristics of populations in the GoC-LME in Mexico has been
explained, at least partially, relative to currents and oceanographic mixing patterns [38]. Gene
flow and population dynamics for marine organisms, such as seagrasses, can certainly be
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influenced by the distance between populations, currents and oceanographic mixing patterns
[124], and as discussed may account for the genetic isolation of the locally isolated sampling
locale in Wide Bay. However, gene flow may also be facilitated by birds, fish or humans [125–
129]. Izembek Lagoon is a fall staging site for large numbers of migrating birds, including over
90% of the Pacific population of brant (Branta bernicla nigricans), which feed exclusively on
eelgrass prior to embarking on long-distance flights to wintering areas in Mexico [130,131],
and numerous duck species which are known to feed on seeds of eelgrass in the fall
[29,125,132]. Thus, waterfowl may play a major role in the short-distance dispersal of eelgrass
in IZL [126,132], and this may also be true for nearby populations along the southern portion
of the Alaska Peninsula, particularly WB, which appears to receive gene flow from both the
east and the west. Clearly, the relationships among populations occupying habitats along and
on the tip of the Alaska Peninsula, whether on the Bering or North Pacific side, are complex,
and additional investigation of this region, including investigation of mechanisms of dispersal
other than ocean currents, is warranted. As a result, we are presently designing research to
address the potential of short-distance dispersal mechanisms on the distribution of genetic var-
iation in eelgrass of Alaska.

Levels of genetic diversity
Other studies [20,21,37,38,58,117,133] have reported a wide range of genotypic diversity
among eelgrass populations, ranging from complete monoclonality (in Europe) to maximal
diversity (Mexico). Levels of genetic variation at the microsatellite loci used to study the popu-
lations of Z.marina along the northern Gulf and Bering Sea coasts of Alaska are lower relative
to those observed at the same loci in eelgrass populations to the south. For example, average
heterozygosity (HE) in eelgrass populations in Baja California was approximately 0.6, and
mean number of alleles (A) approximately 5.5 [38] and those values are similar to values
reported from populations of Z.marina in the north Atlantic and Europe [57] and Japan [21].
However, average heterozygosity in Alaskan populations at the same loci was approximately
0.4, and mean number of alleles was 4.1, and we observed a strong inverse correlation between
genetic diversity with increasing latitude. Sampling regimes or sample selection used in this
study were comparable to those employed by Muñiz-Salazar et al. [38] and Wyllie-Echeverria
et al. [58]; thus we do not attribute the disparity in levels of genetic diversity to differences in
sampling, except for KS for which samples may have been collected at< 20m intervals. Coyer
et al. [96] posit that southern populations along the Pacific coast, particularly in the California
Bight, show increased diversity due to introgression between Z.marina and another proposed
species, Z. pacifica. The genetic criterion used by Coyer et al. [96] to distinguish between these
two species was based on their failure to amplify a single microsatellite locus, CT20, in the pro-
posed Z. pacifica (and not based on any diagnostic differences in sequences from the nuclear
and chloroplast genome). The potential presence of another species in that region cannot
account for our observation of increased genetic diversity at lower latitudes; all genotypes from
all individuals used in our comparative analyses, including those from California (MON),
amplified a product at CT20. As well, we observed no global signal of linkage disequilibrium,
expected in cases of recent introgression [63], within any of the lower latitude populations used
in our comparisons (i.e. Baja California populations [38]; MON, http://dx.doi.org/10.5066/
F7GQ6VTK).

The observed pattern of reduced genetic variation in Alaskan eelgrass populations is consis-
tent with observations in other seagrass species, such Posidonia oceanica L., an endemic Medi-
terranean seagrass [134]. Like P. oceanica, Z.marina is characterized by a clonal reproduction
habit, reproducing in two ways: sexually by means of flowers (albeit functionally
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hermaphroditic rather than moneoecius [135]), and asexually via extensive vegetative propaga-
tion [136]. While both perennial and annual meadows of Z.marina inhabit coastal regions
along the southernmost portion of the species’ range and in disturbed meadows along the mid
portion of the Pacific coast [117], in Alaska, eelgrass is characterized by perennial life history,
reproducing sexually during the short summer months, but also growing actively through
clonal reproduction. Thus, it is not surprising that the majority of allelic variation characteriz-
ing eelgrass meadows in Alaska was distributed among, and not within, populations [137].

We have already pointed out that different populations of Z.marina demonstrate a remark-
able level of morphological and physiological variability, and leaf width and length often corre-
lates with habitat [17,108,138,139]. This is evident with our finding that a specimen
determined to be Z. angustifolia (UAMHerb: 40475) based on morphological characters (dis-
cussed earlier) nevertheless possesses identical chloroplast and nuclear sequences with Z.
marina from elsewhere in the North Pacific, suggesting the specimen is actually Z.marina.
Here, we found no evidence of large genetic differences among individuals taken from the
same site, but at different locations within the tidal zone. Results from our population genetics
assessment–i.e. lower to moderate levels of genetic diversity, and relatively higher levels of
clonality in northern when compared to southern populations (e.g., Baja California and Sonora
[38])–support the hypothesis of a life history in which perennial plants reproduce by vegetative
propagation, but in which vegetative reproduction is augmented by seasonal flowering; the per-
centage of flowering to non-flowering Z.marina shoots is lower in Alaskan populations [44].
Thus sexual reproduction may play a less important role in the life cycle of these northern
meadows, with vegetative reproduction more dominant, resulting in decreased levels of genetic
variation, than for eelgrass meadows in the southern portion of the species’ range where higher
levels of genetic variation at the loci examined characterize all populations [38,39]. Even in
southern meadows characterized by perennially and low incidence of flowering, such as San
Quintin [140], reproductive shoots appear earlier and persist longer, relative to northern popu-
lations, and reproductive shoots represent up to 10% of the total shoots in eelgrass meadows.
Nevertheless, seed densities of approximately 4,000 seeds m-2 reported from San Quintin [140]
are lower than seed densities reported from more northern lagoons, estimated at between 6,862
seeds m-2 at Hole in the Wall (outer coast of Washington State) to from 700 to 15,000 m-2 at
IZL [44]. Thus the decreased levels of genetic variation and increased clonality observed in
Alaskan populations relative to southern populations cannot be fully explained in terms of
reproductive strategies alone. Also consistent with low levels of genetic variability of the north
is that Alaskan populations represent the leading edge of populations expanding out of south-
ern refugia subsequent to climate amelioration following the last Pleistocene glacial period
[52].

Pacific origin of extant Z.marina populations?
The evolutionary origins of seagrasses remain obscure, but given the low number of seagrass
species, Green and Short [141] suggest that the group might be of recent evolutionary origin
(although see den Hartog [107]). Biogeographic evidence points to the tropical Indo-Pacific as
the center of origin for seagrasses, but the northern Pacific (particularly the northwestern
Pacific) as the origin for temperate (Phyllospadix and Zostera) species [5,142]. Although Kato
et al. [62] placed the divergence of the four Zostera species to between three and six million
years ago (mya), based on an ITS clock for algae and other green plants [143], Olsen et al. [37]
estimate that Z.marina originated in the Pacific between eight and 20 mya, during the Neogene
epoch. Olsen et al. [37] screened North Atlantic and a small number of northeastern Pacific
(Padilla Bay, WA; and Auke Bay, southeastern Alaska) populations of Z.marina and observed
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higher levels of genetic diversity within the Pacific populations. Although eastern Pacific and
western Atlantic populations appear to be connected, western Pacific and eastern Atlantic pop-
ulations of eelgrass appear less so, prompting Olsen et al. [37] to argue in favor of an eastern
Pacific origin for western Atlantic Z.marina via a trans-Arctic connection, as hypothesized for
a number of marine taxa (see [144]). However, as pointed out by Olsen et al. [37], glacial-inter-
glacial cycling of the late Quaternary likely facilitated extirpation-recolonization cycles (i.e.
Provan and Bennett’s [145] expansion-contraction model of Pleistocene biogeography) that
may have greatly impacted the distribution of genetic variation in contemporary high-latitude
eelgrass populations.

The Pleistocene was characterized by worldwide climate change associated with glacial
cycles, and while the fossil record reflects these changes for terrestrial species [146–148], the
fossil record has been less informative for arctic and subarctic marine species [149]. Expansion
and retraction cycles of ice sheets in the northern continents dramatically affected the distribu-
tion of terrestrial floral and faunal species there (see [52,150] for reviews), with many species
shifting ranges, often to more southerly and warmer refugia, when large expanses of the boreal
zone were covered with ice sheets and permafrost. Under the expansion-contraction model
and given Hewitt’s ‘southern richness, northern purity’model [52], repeated range contrac-
tions and northern extinctions of thermophilic species throughout the Pleistocene, coupled
with survival of populations only in unglaciated southern portion of species’ ranges, would
result in a phylogeographic pattern in which northern populations would harbor less genetic
diversity than southern populations. Following climate amelioration, these populations
expanded northward as they tracked changing environments. Under this model, a pattern of
low genetic diversity coupled with a small number of alleles or haplotypes over large geo-
graphic areas in high latitudes would signal a recent (post-Pleistocene) range expansion from a
more southern refuge.

Although marine deposits from interglacial periods are fossil-rich and easily accessible, gla-
cial fossil records from arctic and subarctic marine species are largely inaccessible due to sea
level rise during the Holocene [149]. As a result, molecular approaches to the study of genetic
variation in marine species have significantly impacted our understanding of the consequences
of past episodes of global climate change on marine species and populations in this region.
Molecular surveys of marine organisms across high latitudes have yielded a number of models
relating patterns of genetic differentiation to potential historical isolating events, particularly
Quaternary glaciation, including expansion of species from northern periglacial refugia along
the European continent (reviewed in [151]) and the northwest [152] and northeast
[144,153,154] Pacific Ocean. Along the coast of Alaska, advancing ice sheets and lowered sea
levels coupled with expanded shoreline habitat during the LGM is thought to have fractured
contiguous populations of certain cold-adapted intertidal species, such as brown algae Fucus
distichus [144], or cryptic warm-adapted species held in refugia near or south of Washington
State [155–157], generating a number of small, relatively isolated refugial populations. How-
ever, a pattern of significant latitudinal clines, with low genetic diversity at relatively high
northern latitudes, consistent with Hewitt [52] and Provan and Bennett [145], has also been
observed in a number of marine taxa (Balanophyllia elegans [158]; Nucella ostrina [154]),
including possibly eelgrass in the North Pacific coast of North America.

Marko [154] posits that low levels of genetic variation in high latitude marine species–sug-
gestive of recent colonization from southern refugia–is more common among intertidal species
that live relatively high on the shore, as exposure time to cold stress in air would be longer than
for species that live lower in the shore. Our analyses show that at least two measures of genetic
diversity at microsatellite loci is inversely correlated with latitude in eelgrass; this and the com-
plete lack of variation in both thematK and ITS genes in both high latitude LMEs (this study
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and [15] fails to support a northern high latitude refugium hypothesis. Given their greater
genetic diversity, populations in more southern locales along the Pacific coast of North Amer-
ica may represent a late Pleistocene refugial origin of contemporary northeast Pacific eelgrass
populations, but thematK variant characterizing the north was not observed in populations
south of Humboldt Bay, or reported elsewhere. The distribution ofmatK haplotypes along the
temperate Pacific coast is suggestive of one or two broad biogeographic breaks (sharp intraspe-
cific genetic discontinuities). The first is suggested by the distribution ofmatK haplotypes that
corresponds to a break, well-supported based on distribution of other marine species, near
Cape Mendocino in northern California [159]. The second break is suggested by the distribu-
tion of ITS haplotypes at or near Point Conception and the Los Angeles region in southern Cal-
ifornia, hypothesized for eelgrass based on analyses of microsatellite loci in populations along
the Baja California peninsula [38], as well as a number of other marine species [160]. Clearly,
additional sampling is required to test the conformation of the distribution of genetic differen-
tiation in Z.marina to these biogeographic breaks.

We suggest that extant populations in the Northeast Pacific likely reflect a leading edge north-
ward Holocene expansion of populations held in temperate LGM refugial populations (either the
Northwest Pacific, or Northeast Pacific populations south of the ice sheets), that, to date, appear to
have reached only as far north as 66.52° N (Cowpack Inlet, N. arm of Shishmarf Inlet, Seward Pen-
insula, UAM 40475), the northernmost documented occurrence of the species in the Northeast
Pacific. Olsen et al. [37] cite the long-distance dispersal of bathroom toy ducks from the northeast-
ern North Pacific to Iceland [161] as evidence of an ongoing trans-Arctic oceanic pathway for
long-distance colonization of North Atlantic by Northeast Pacific eelgrass populations. However,
under that model, we would expect the most common northwest Pacific (Japan)matK haplotype
(matK2), which is fixed in Alaskan populations, to be present in the North Atlantic. To date, vari-
antmatK2 (Zmm1 [AB125354] of Kato et al. [62]) has not been reported outside the north Pacific.
However,matK haplotypes found in California andMexico (matK4), but not in Alaska, are identi-
cal to those in samples collected from Atlantic and, at lower frequency, in Japanese waters [62,96].
Thus, our results lend little support for a trans-Arctic oceanic pathway from the northeast North
Pacific to the Atlantic, at least during the Holocene. We cannot yet rule out long-distance Pacific to
Atlantic dispersal of eelgrass by migrating ducks, geese, or other waterbirds.

Supporting Information
S1 Fig. Distribution of two ITS alleles and fivematK alleles. Z.marina samples collected
from locales in the EBS-, GoA-, CC- and GoC-LMEs along the Pacific Coast of North America,
and Japan. GenBank accession numbers containing sequence data from a representative of
each haplotype are provided, selected from GenBank accession numbers KU704921-KU70
5084 (matK), and KU704817-KU704920 (ITS). Asterisks (�) indicate locales for which
sequence data from Talbot et al. [16] are included (GenBank accessions: KU562104-KU5621
18; KU596406-KU596418). NB = Notuke Bay, Hokkaido, Japan; LF = Lake Furen, Hokkaido,
Japan; MOR =Morro Bay, California; EPB = Estero Punto Banda; BSQ = Bahia San Quintin;
LOL = Laguna Ojo de Liebre; SI = San Ignacio; BC = Bahia Concepcion; IST = Canal del Infier-
nillo, SON = Punta Chueca, Sonora.
(TIF)

S2 Fig. Plot of results of Bayesian clustering analysis using BAPS5.1 [81] under admixture
analysis. (A) 9 genetic clusters estimated from the microsatellite data under admixture models
for K = 1–20, and clusters when analyses were constrained to partition clusters when (B) K = 2,
(C) K = 3, and (D) K = 4. Individual samples are represented by a single vertical line along the
x-axis, according to sampling locale, which are delineated from other sampling locales by a
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black vertical line.
(TIF)

S3 Fig. Optimal clustering and membership probability by population. (A) Comparison of
sampled populations to the optimal number of clusters in these data. Inferred by k-means
(k = 15). (B) Plot of membership probability of each individual to each sampled population
using DAPC. Implemented in adegenet (k = 12) [79].
(TIF)

S1 Methods. Detailed methods of laboratory and data analyses.
(DOCX)

S1 Table. Pairwise θST (below the diagonal) and ρST (above the diagonal) values among pop-
ulations occupying the Bering Sea and North Pacific coasts of Alaska.
(DOCX)

S2 Table. Analyses of molecular variance (AMOVA) for hypothesized groupings, based on
fragment data from ten microsatellite loci.
(DOCX)

S3 Table. Pairwise estimates of directional gene flow (Nem) andΘ for each population,
using 10 microsatellite loci, among EBS-LME populations.
(DOCX)

S4 Table. Pairwise estimates of directional gene flow (Nem) andΘ for each population,
using 10 microsatellite loci, among GoA-LME populations.
(DOCX)
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