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Summary 
NLRP3 inflammasome hyperactivation contributes to neuroinflammation in autoimmune disorders, but the underlying regulatory mechanism 
remains to be elucidated. We demonstrate that compared with wild-type (WT) mice, mice lacking thymic stromal lymphopoietin (TSLP) receptor 
(TSLPR) (Tslpr−/− mice) exhibit a significantly decreased experimental autoimmune encephalomyelitis (EAE) score, reduced CD4+ T cell infiltra-
tion, and restored myelin basic protein (MBP) expression in the brain after EAE induction by myelin oligodendrocyte glycoprotein35–55 (MOG35–55). 
TSLPR signals through Janus kinase (JAK)2, but not JAK1 or JAK3, to induce NLRP3 expression, and Tslpr−/− mice with EAE show decreased 
JAK2 phosphorylation and NLRP3 expression in the brain. JAK2 inhibition by ruxolitinib mimicked loss of TSLPR function in vivo and further de-
creased TSLP expression in the EAE mouse brain. The NLRP3 inhibitor MCC950 decreased CD4+ T cell infiltration, restored MBP expression, 
and decreased IL-1β and TSLP levels, verifying the pro-inflammatory role of NLRP3. In vitro experiments using BV-2 murine microglia revealed 
that TSLP directly induced NLRP3 expression, phosphorylation of JAK2 but not JAK1orJAK3, and IL-1β release, which were markedly inhibited 
by ruxolitinib. Furthermore, EAE induction led to an increase in the Th17 cell number, a decrease in the regulatory T (Treg) cell number in the 
blood, and an increase in the expression of the cytokine IL-17A in the WT mouse brain, which was drastically reversed in Tslpr−/− mice. In addition, 
ruxolitinib suppressed the increase in IL-17A expression in the EAE mouse brain. These findings identify TSLP as a prospective target for treating 
JAK2-NLRP3 axis-associated autoimmune inflammatory disorders.
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UVB, ultraviolet radiation b.

Introduction
Experimental autoimmune encephalomyelitis (EAE), which 
is mediated by myelin-specific autoreactive T helper cells, is 
a classical animal model of autoimmune encephalitis, which 
includes multiple sclerosis (MS), a disease characterized by 
typical demyelination and neurodegeneration-associated 
symptoms [1]. Although drugs targeting several immuno-
logical pathways have shown beneficial effects in patients 
with demyelinating diseases, no cure is currently available [2].

Nucleotide-binding domain, leucine-rich repeat con-
taining protein family, pyrin domain containing 3 (NLRP3), 
and the interleukin (IL)-1β pathway have been shown to 
be crucial for the development of EAE by participating in 
neuroinflammation [3, 4]. NLRP3 is activated in two ways: 
by stimulation of pathogen recognition receptors that acti-
vate nuclear factor κB (NF-κB) pathways and by stimuli such 
as lysosomal rupture, adenosine 5ʹ-triphosphate (ATP), and 
reactive oxygen species (ROS) [5]. Activation of the NLRP3 

inflammasome leads to the production of cleaved caspase-1, 
which cleaves proIL-1β/pro-IL-18 into mature IL-1β/IL-18 
and induces massive cell pyroptosis-related cytokine release 
and systemic inflammation [6]. The potential mechanisms by 
which NLRP3 causes neuroinflammation include mediation 
of Th1 and Th17 responses [7] and induction of chemotactic 
immune cell migration to the central nervous system (CNS) 
[8]. NLRP3-dependent IL-1β maturation has been detected 
in the lesions and cerebrospinal fluid (CSF) of MS patients 
[9] and correlates strongly with cortical lesion load [10]. 
Conversely, mice lacking IL-1 or with impaired IL-1 signalling 
show accelerated EAE development and worse EAE severity 
[11]. There are only a few available IL-1-targeting drugs for 
the treatment of autoimmune disorders [12, 13]. Janus kinase 
(JAK)-signal transducer and activator of transcription (STAT) 
signalling is critical for T helper cell polarization and auto-
immune neuroinflammation [14, 15]. In fact, several JAK in-
hibitors targeting a specific JAK or a wide range of JAKs have 
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been used over the past decades as promising alternatives to 
traditional disease-modifying antirheumatic drugs for the 
treatment of several autoimmune diseases [16, 17]. Moreover, 
JAK mediates IL-4 receptor signals to prime Th2 response-
dominant symptoms, such as itch in atopic dermatitis [18], 
in which cytokine IL-4 production is closely regulated by 
the function of thymic stromal lymphopoietin (TSLP) [19]. 
Despite the high expression of TSLP and its role in JAK-STAT 
signalling, it is unclear whether TSLP functions via NLRP3 to 
induce autoimmune inflammation and if so, whether JAK is 
involved in this process.

TSLP is an IL-7-related cytokine that acts on cells of various 
lineages, including macrophages, dendritic cells (DCs), and 
T cells [20]. By promoting the expression of major histo-
compatibility complex (MHC)-II and co-stimulatory mol-
ecules such as CD40, CD80, and CD86 and the production 
of chemokines, TSLP strongly enhances DC maturation and 
function [21]. In fact, MS and EAE have been reported to be 
associated with single-nucleotide polymorphisms (SNPs) in 
the IL-7Rα gene [22]. Binding of TSLP to the TSLP receptor 
(TSLPR) initiates intracellular JAK/STAT signalling to induce 
the production of IL-2, TNF, and IL-6 to potentiate inflam-
matory responses. Targeting these cytokines has been shown 
to be effective in alleviating EAE and other autoimmune dis-
eases [23–26]. It was reported that directly blocking JAK/
STAT signalling pathways with tofacitinib inhibits NLRP3 
inflammasome and IL-1β production in neutrophils [27]. 
However, whether TSLPR signalling is capable of controlling 
the initiation of inflammation in EAE remains unclear.

In this study, we show that Tslpr−/− mice presented reduced 
myelin oligodendrocyte glycoprotein peptide (MOG35–55)-
induced EAE severity due to decreased phosphorylation of 
JAK2 and expression of NLRP3 and suppression of the Th17 
response. Inhibition of JAK by ruxolitinib mimicked the effects 
of TSLPR deficiency. In addition, ruxolitinib and the NLRP3 
inhibitor MCC950 both reduced inflammatory cell and CD4+ 
cell infiltration, decreased IL-1β and TSLP levels, and restored 
myelin expression in the brain tissues of EAE mice. Furthermore, 
an increased Th17 response was accompanied by a decrease in 
the number of regulatory T (Treg) cells in blood, while TSLPR 
deficiency and ruxolitinib reversed this phenomenon after EAE 
induction. These findings reveal that TSLP plays an essential 
role in the positive regulation of JAK2-NLRP3 axis-driven 
neuroinflammation in autoimmune disorders.

Materials and methods
EAE induction and scoring
Tslpr−/− mice and wild-type (WT) mice were bred under 
specific pathogen-free (SPF) conditions. Tslpr−/− mice were 
purchased from Shanghai Biomodel Organism Science & 
Technology Development Co., Ltd. Female Tslpr−/− and 
WT mice (10−12 weeks old) were immunized subcutane-
ously with MOG35–55 (Beyotime, China) and 4 mg/ml heat-
inactivated Mycobacterium tuberculosis H37Ra (BD) on Day 
1 to induce EAE as described previously [28]. Pertussis toxin 
(200 ng/mouse; List Biological Laboratories Inc.) was injected 
intraperitoneally on Day 0 and Day 2. The mice were sacri-
ficed on Day 15, and brain tissues were collected for western 
blotting and immunohistochemistry. EAE-induced paralysis 
in mice was scored as follows: 0, no disease; 1, tail weak-
ness; 2, paraparesis; 3, paraplegia; 4, paraplegia with forelimb 

weakness; and 5, morbidity or death. To evaluate the con-
tribution of the NLRP3 inflammasome and JAK to CNS in-
flammation, 50  mg/kg MCC950 (dissolved in DMSO) was 
injected intraperitoneally [29] or ruxolitinib (90 mg/kg/day) 
was administered orally [30] after MOG35–55 immunization.

CNS inflammation
To assess inflammatory infiltrates, brain tissues were har-
vested, fixed in 4% formalin, and stored at room tempera-
ture. The brain tissues were subjected to histological analysis, 
including HE staining, staining for NLRP3 and CD4 staining, 
and Luxol Fast Blue (LFB) (Servicebio, China) staining, to 
assess inflammatory cell infiltration, the number of CD4+ T 
cells, and the myelin sheath.

Flow cytometry
Mouse blood was collected from the retro-orbital plexus 
in sodium citrate anticoagulant tubes. Peripheral blood 
mononuclear cells (PBMCs) were isolated with Mouse 1× 
Lymphocyte Separation Medium (DAKEWE, China) ac-
cording to the manufacturer’s instructions. The cells were 
collected, and the following monoclonal antibodies were 
used for flow cytometry analysis (Beckman Coulter): mouse 
CD4 (RM4-5, Biolegend) and CD25 (3C7, Biolegend). For 
intracellular staining, the cells were cultured in RPMI 1640 
(Gibco) supplemented with 10% FBS and 1% penicillin-
streptomycin (PS, Gibco) and then stimulated for 4  h with 
phorbol 12-myristate 13-acetate (50 ng/ml; Sigma-Aldrich), 
ionomycin (500 ng/ml; Sigma-Aldrich), and brefeldin A (1 μg/
ml, Merck). The cells were fixed with BD Cytofix/Cytoperm 
(BD), and the cell membrane was permeabilized with BD 
Perm/Wash buffer (BD) according to the manufacturer’s in-
structions. For staining of the nuclear factor Foxp3, the cells 
were stained using a Foxp3 staining buffer set (eBioscience) 
according to the manufacturer’s instructions.

Cell stimulation
BV-2 mouse microglia (ATCC) were cultured in DMEM sup-
plemented with 10% FBS and 1% PS. Confluent cells were 
pretreated for 30 min with 7.5 nM MCC950 (Selleck, USA) 
[29] or for 4 h with 10 nM ruxolitinib (MCE, USA) [31] be-
fore exposure to 10 ng/ml TSLP (Peprotech, USA) for an add-
itional 24 h [32].

Western blot analysis
NLRP3 expression (CST, USA), JAK1 phosphorylation 
(ABSIN, China), JAK2 phosphorylation (CST), JAK3 phos-
phorylation (CST), basic myelin protein expression (MBP), 
β-actin expression, GAPDH expression, and β-tubulin ex-
pression (Servicebio, China) in mouse brain tissues and BV-2 
cell lysates were assessed by western blotting as previously 
described [33].

ELISA
IL-1β (Biolegend), TSLP (Biolegend), and IL-17A (Biolegend) 
levels in mouse brain tissue homogenates or the BV-2 cell 
supernatant were evaluated by ELISA according to the 
manufacturer’s instructions.

Statistical analysis
Unpaired two-tailed Student’s t-test was used to statistically ana-
lyse all data (GraphPad Prism version 5.0; GraphPad Software). 



TSLP promotes neuroinflammation via JAK2-NLRP3 axis, 2022, Vol. 207, No. 1 115

P < 0.05 was considered statistically significant. The data are 
expressed as the mean ± standard error of the mean (SEM).

Results
Tslpr−/− mice with EAE show decreased 
neuroinflammation
Mice treated with MOG35–55 developed EAE, presenting with 
tail weakness, limb numbness, and paralysis, which resem-
bled the symptoms of humans with MS [34]. Because an-
drogens have been reported to be protective in EAE [35], 
we administered MOG35–55 to female C57BL/6 mice to con-
struct an EAE model (Fig. 1A). To investigate the role of 
TSLPR in CNS autoimmunity, the clinical EAE scores of 
Tslpr−/− and Tslpr+/+ mice were determined. After EAE in-
duction, Tslpr+/+ mice developed typical monophasic EAE 
symptoms, manifested by ascending paralysis, 10–12 days 
after MOG35–55 immunization (Fig. 1B). In contrast, Tslpr−/− 
mice showed delayed onset of paralysis at 11–13 days and 
less severe symptoms than Tslpr+/+ mice. However, the EAE 
scores of both groups peaked on Day 15 (Fig. 1B). In add-
ition, immunohistochemical analysis of brain tissues from 
Tslpr+/+ and Tslpr−/− mice showed that on Day 15 after EAE 
induction, there were significantly fewer infiltrating CD4+ 
lymphocytes in the brain tissues of Tslpr−/− mice than in 

those of Tslpr+/+ mice (Fig. 1C). Importantly, the western blot 
results revealed that the expression of myelin basic protein 
(MBP) was reduced in Tslpr+/+ mice injected with MOG35–55 
compared to those not injected with MOG35–55. However, 
compared with Tslpr+/+ mice with EAE, Tslpr−/− mice with 
EAE showed restored expression of MBP (Fig. 1D).

TSLPR signals via JAK2 and NLRP3
The development of EAE requires NLRP3 [8]. As pre-
sented above, TSLPR deficiency results in reduced CD4+ 
T lymphocyte infiltration during EAE development. Thus, 
we examined whether TSLPR signalling in EAE requires 
NLRP3 inflammasome activation. The results showed 
that the phosphorylation of JAK2 and expression of 
NLRP3 were increased in MOG35–55-treated mice com-
pared to control mice (Fig. 2A). No significant difference 
was observed in the phosphorylation of JAK1 or JAK3 
(Fig. 2B). Immunohistochemical analysis of brain tissues 
from Tslpr+/+ and Tslpr−/− mice showed that the number 
of NLRP3+ cells in the brain was markedly increased in 
Tslpr+/+ mice injected with MOG35–55 compared to those 
not injected with MOG35–55, while a significant reduction 
in the number of NLRP3+ cells in the brain tissue was ob-
served in Tslpr−/− mice compared to Tslpr+/+ mice after EAE 
induction (Fig. 2C).

Fig. 1. TSLPR deficiency alleviates neuroinflammation in an EAE model. (A) Schematic diagram of the EAE induction protocol by subcutaneous injection 
of MOG35–55 in mice. (B) The EAE score of Tslpr−/− and Tslpr+/+mice (n = 5 each group). (C) CD4 staining in the brain tissues of Tslpr−/− and Tslpr+/+ mice 
after EAE induction (n = 3 each group). (D) Expression of MBP in the mouse brain (n = 3 each group). The data are presented as the mean ± SEM (∗P < 
0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Scale bar, 50 μm.
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NLRP3 is involved in JAK2-associated 
neuroinflammation
Binding of TSLP to TSLPR activates JAK, specifically JAK1 
and JAK2 but not JAK3, in primary T cells [33, 36]. To fur-
ther explore the role of JAK2 in mediating neuroinflammation, 
we applied a JAK inhibitor, specifically a selective and orally 
bioavailable JAK1/2 inhibitor widely used for the treatment of 
myelofibrosis, to block JAK signalling. Oral administration of 
ruxolitinib to EAE mice resulted in significant reductions in 
inflammatory cell in filtration, as determined by HE staining 
(Fig. 3A); CD4+ T cell in filtration (Fig. 3B); restoration of the 
myelin sheath, as determined by LFB staining (Fig. 3C); and 
MBP expression, as indicated by western blotting (Fig. 3D). 
The expression of NLRP3 in the brain was decreased in EAE 
mice treated with the JAK inhibitor ruxolitinib compared with 
those not treated with the JAK inhibitor (Fig. 3D). ELISA 
showed that JAK inhibition reduced IL-1β levels in the brain, 
further confirming NLRP3 hyporeactivity (Fig. 3E). ELISA also 
showed that TSLP levels in the brain were reduced after in JAK 
inhibitor-treated EAE mice compared to EAE mice not treated 
with the JAK inhibitor (Fig. 3F). Together, our data demon-
strate that JAK2 mediates neuroinflammation via NLRP3.

NLRP3 inhibition alleviates neuroinflammation
To evaluate the role of NLRP3 in neuroinflammation in EAE, 
MCC950, a potent and selective small-molecule inhibitor 

of NLRP3, was used to block canonical and non-canonical 
NLRP3 activation [29]. Intraperitoneal injection of MCC950 
into EAE mice resulted in significant reductions in inflam-
matory cell infiltration, as determined by HE staining (Fig. 
4A); CD4+ cell infiltration (Fig. 4B); restoration of the myelin 
sheath, as determined by LFB staining (Fig. 4C); and MBP 
expression, as determined by western blotting (Fig. 4D). The 
levels of IL-1β (Fig. 4E) and TSLP (Fig. 4F) in the brain were 
also reduced in NLRP3 inhibitor-treated EAE mice compared 
to EAE mice not treated with the NLRP3 inhibitor.

TSLP induces NLRP3 expression in a JAK-
dependent manner in vitro
Microglia are the principal immune cells of the brain and have 
been identified as risk factors for neurodegenerative disease 
[37, 38]. To study whether TSLP induces NLRP3 expression 
and cytokine release, we used BV-2 cells, commonly employed 
mouse microglia, and found that NLRP3 expression was in-
creased in BV-2 cells stimulated with TSLP compared to in 
BV-2 cells in the control group (Fig. 5A). To verify whether 
the expression of NLRP3 depends on JAK signalling, as seen 
in the in vivo experiments, we first evaluated JAK1, JAK2, 
and JAK3 phosphorylation in BV-2 cells. The results showed 
that TSLP stimulation led to increased JAK2 phosphorylation 
but not JAK1 or JAK3 phosphorylation (Fig. 5B). An increase 
in NLRP3 expression led to substantial release of IL-1β, 

Fig. 2. TSLPR signalling activates JAK2 and NLRP3 in EAE. (A) Expression of NLRP3 and phosphorylation of JAK2 in the brain tissues of Tslpr−/− and 
Tslpr+/+ mice after EAE induction (n = 3 each group). (B) Phosphorylation of JAK1 and JAK3 in brain tissues of Tslpr−/− and Tslpr+/+ mice after EAE 
induction (n = 3 each group). (C) NLRP3 staining in brain tissue (n = 3 each group). The red arrows indicate NLRP3+ cells. The data are presented as the 
mean ± SEM (n = 3, ∗P < 0.05, ∗∗P < 0.05). Scale bar, 50 μm.
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which was significantly reduced when cells were pretreated 
with MCC950 to inhibit NLRP3 (Fig. 5C). Further results 
revealed that ruxolitinib suppressed TSLP-induced NLRP3 
expression (Fig. 5D). This suppression of NLRP3 expression 
was accompanied by decreased release of IL-1β (Fig. 5E).

TSLP is involved in Th17 immune response in EAE
An extensive Th17 immune response contributes to 
neuroinflammation in EAE [39], while induction of Treg cells 
ameliorates EAE [40]. We thus analysed Th17 cells and Treg 
cells in peripheral blood by flow cytometry. The number of 
Th17 (CD4+IL-17A+) cells was increased in mice immunized 
with MOG35–55 compared to control mice (Fig. 6A). In con-
trast, the number of Treg (CD4+CD25+Foxp3+) cells in the 
blood was deceased after EAE induction (Fig. 6B). However, a 
significant decrease in the number of Th17 cells was observed 
in Tslpr−/− mice compared to WT mice after EAE induction. 
Notably, this decrease in the number of Th17 cells was ac-
companied by an increase in the number of Treg cells in the 
blood (Fig. 6A and B). The expression of the cytokine IL-17A 
in the mouse brain was evaluated. As anticipated, IL-17A ex-
pression was increased in mice with EAE compared to control 

WT mice, while TSLPR deficiency led to a decrease in the ex-
pression of IL-17A by nearly half (Fig. 6C). Furthermore, we 
observed that inhibition of JAK2 by ruxolitinib significantly 
decreased IL-17A levels in the brains of WT mice after EAE 
induction (Fig. 6D).

Discussion
Activation of NLRP3 is a tightly regulated process and a 
key step in autoimmunity in the CNS. In this study, we re-
port three novel findings that broaden our understanding 
of NLRP3-associated neuroinflammation. First, by using 
Tslpr−/− mice, we demonstrated that TSLP signalling regu-
lates neuroinflammation and paralysis in mice. Second, we 
showed that TSLPR signals via JAK2 to activate NLRP3-
associated neuroinflammation in the context of EAE. Third, 
we found that manipulation of the Th17/Treg balance is in-
volved in TSLP-induced neuroinflammation. Taken together, 
the findings of the current study identify novel functions of 
TSLP-dominant JAK pathways upstream of NLRP3, which 
represent promising targets for the treatment of autoimmune 
disorders.

Fig. 3. MOG35–55-induced neuroinflammation depends on JAK2 signalling. (A) HE staining of the mouse brain after induction of EAE in the absence or 
presence of ruxolitinib. (B) CD4 staining in the mouse brain (n = 3 each group). (C) LFB staining of mouse brain. (D) Expression of NLRP3 and MBP in 
the mouse brain (n = 3 each group). (E) Analysis of IL-1β levels in the mouse brain (n = 4 each group). (F) Analysis of TSLP levels in the mouse brain (n = 
4 each group). The data are presented as the mean ± SEM and were obtained from a high-power field (HPF) (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Scale 
bar, 50 μm.
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Generally, the Th17 response is believed to cause neuronal 
death or an inflammatory response in autoimmune disorders 
[39, 41]. In addition, recent studies have shown that type 3 in-
nate lymphoid cells (ILC3s) produce IL-17 in autoimmune dis-
orders, such as ankylosing spondylitis [42], and can maintain 
neuroinflammation by supporting T cell survival [43]. In this 
study, we found that BV-2 also produced IL-17A after TSLP 
stimulation (data not shown). Thus, both neuroinflammation 
and demyelination are largely believed to be mediated by the 
adaptive immune system via Th17 cells and by the innate im-
mune system via ILC3- and even microglia-related responses. 
Based on the data of the current and previous studies showing 
a critical role for TSLP in DCs [21, 44] and ILC3 function 
[45], we speculate that microglia and ILC3s, in addition to 
Th17 cells, play important roles in promoting autoimmune 
inflammation-associated demyelination. The precise role of 
TSLP in IL-17A+ cell-mediated neuroinflammation and de-
myelination needs to be further investigated.

Despite previous findings that Treg cell formation requires 
TSLP [46, 47], we found that compared to EAE induction, 
which led to a decrease in the number of Treg cells, TSLPR 
deficiency led to an increase in the number of Treg cells in the 
blood, which is consistent with the reduction in Treg function 

observed in MS in a previous study [48]. Our data suggest 
that TSLP-producing cells are a more general means by which 
immune responses are facilitated, as they suppress the Treg 
cell response. In addition, these changes in the number of Treg 
cells in the blood after deletion of Tslpr correlate with allevi-
ation of neuroinflammation and restoration of myelin expres-
sion, which is in agreement with a previous study showing 
that EAE symptoms are ameliorated in Tslp−/− mice [49]. In 
fact, the epithelial cell-derived cytokines TSLP, GM-CSF, and 
IL-25 have been shown to be master initiators of type 3 in-
flammation via their effects on a variety of cells, including 
Th17 cells, ILC3, and mast cells [50–52]. These cytokines are 
believed to rapidly bind to membrane receptors to generate 
innate immune responses and therefore prime adaptive im-
mune cells. Strikingly, two recent studies have demonstrated 
that TSLP directly activates neurons [32, 53]. Our current 
data showing that TSLP is highly regulated in the brain in the 
context of EAE are consistent with the findings of a previous 
study [54] and further demonstrate that TSLPR signalling ac-
tivates NLRP3-mediated inflammation through phosphoryl-
ation of JAK2 in response to MOG35–55 administration. Thus, 
we speculate that the cytokine TSLP may act as a master regu-
lator of neuroinflammation in immune cells in the brain.

Fig. 4. NLRP3 regulates neuroinflammation in EAE. (A) HE staining of the mouse brain after induction of EAE in the absence or presence of MCC950. 
(B) CD4 staining in the mouse brain (n = 3 each group). (C) LFB staining of the mouse brain. (D) Expression of MBP in the mouse brain (n = 3 each 
group). (E) Analysis of IL-1β levels in the mouse brain (n = 4 each group). (F) Analysis of TSLP levels in the mouse brain (n = 4 each group). The data are 
presented as the mean ± SEM and were obtained from a HPF (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). Scale bar, 50 μm.
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In immune cells, cytokine signalling by the JAK-STAT 
pathway causes transcriptional changes to promote cellular 
activation. However, although JAK inhibitors have been re-
ported as alternative immunotherapies in patients with auto-
immune disorders such as neuromyelitis optica [55], our data 
indicated that application of the JAK1/2 inhibitor ruxolitinib 
failed to induce typical neuroinflammation following MOG35–

55 injection, as observed in the EAE mouse brain. Also, this de-
crease in neuroinflammation after treatment with ruxolitinib 
was accompanied by restored expression of MBP. Thus, we 
predict that alterations in classic JAK-mediated NLRP3 
inflammasome activation, especially decreased IL-17A levels, 
as a reflection of the Th17 immune response, are sufficient 
to explain neuroinflammation and demyelination. One pre-
vious study showed that JAK1 mediates sensory neuronal re-
sponsiveness, which can be enhanced by cytokines such as 
IL-4 [18]. Our data are consistent with this study and fur-
ther demonstrate that JAKs have novel functions in neurons 
and regulate the myelination/demyelination balance, at least 
through NLRP3-mediated pathways. However, we note that 
this alteration in MBP expression does not exclude the role 
of JAK2 or other pathways in modulating the transcription 
or posttranscriptional modification of MBP within the CNS. 
Future studies are required to better understand how changes 
in the JAK-STAT pathway impact myelin expression and 
neuroinflammation in autoimmune disorders.

Clinical application of ruxolitinib, a non-selective JAK1/2 
inhibitor, has been reported to alleviate neurologic disability 
in neuromyelitis optica [55]. In fact, other JAK inhibitors, 
such as tofacitinib and baricitinib, have shown significant 
clinical efficacy in autoimmune disorders in clinical trials 
[56, 57]. Previously, changes in neuroinflammation following 
JAK inhibition were attributed to the anti-inflammatory role 
of the Th17 response [41]. Recently, a study demonstrated 
that transient receptor potential (TRP) plays a critical role 
in EAE by mediating axonal and neuronal degeneration [58] 
and that the JAK-STAT pathway determines TRP expression 
[59, 60], which indicates the involvement of TRP in JAK 
pathway-mediated neuroinflammation. Based on studies by 
our group and others, we speculate that the amelioration 
of neuroinflammation in EAE mice treated with ruxolitinib 
may be mediated, at least in part, by disruption of these 
signals in the CNS and that such treatments may alleviate 
neuroinflammation in autoimmune disorders. Strikingly, 
recent studies have provided experimental and clinical evi-
dence for the efficacy of evobrutinib, the first Bruton’s tyro-
sine kinase (BTK)-inhibiting molecule to be developed, and 
reported that impairment of encephalitogenic T cells reduces 
disease severity in clinical and mouse models of MS [61, 62]. 
Given that our current study demonstrates a direct role for 
JAK in neuroinflammation, whether blockade of a combin-
ation of TSLP, JAK, and BTK can synergistically alleviate 

Fig. 5. TSLP directly induces NLRP3 expression via JAK. BV-2 cells were cultured in RPMI 1640, pretreated with or without MCC950 (7.5 nM) for 30 min 
or ruxolitinib (10 nM) for 4 h and stimulated with TSLP (10 ng/ml) for 24 h. (A) Expression of NLRP3 in BV-2 cells in the presence or absence of TSLP. (B) 
Phosphorylation of JAK1, JAK2, and JAK3 in BV-2 cells stimulated with TSLP. (C) Analysis of IL-1β levels in the supernatant of BV-2 cells pretreated with 
MCC950 and stimulated with TSLP (n = 3 in each group). (D) Expression of NLRP3 in BV-2 cells pretreated with ruxolitinib and stimulated with TSLP. (E) 
Analysis of IL-1β levels in the supernatant of BV-2 cells pretreated with ruxolitinib and stimulated with TSLP (n = 3 in each group). For western blotting 
data, the results of one of three experiments are presented. The data are presented as the mean ± SEM (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).
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neuroinflammation in autoimmune disorders such as MS 
needs to be further investigated.

In conclusion, our data establish and highlight the capability 
of TSLPR-JAK signalling inhibition to control disease-driving 
neuroinflammation associated with NLRP3 in inflammatory 
demyelination in the CNS. This was specifically demonstrated 
by using ruxolitinib, a non-selective JAK inhibitor that has 
been tested in clinical trials of several autoimmune diseases, 
but the immunological effects of this inhibitor may be similar 
to those of other JAK inhibitors in clinical development. Thus, 
the mechanistic data provided here will be instrumental in 
facilitating how this molecule is integrated into current treat-
ments for autoimmune disorders.
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