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Abstract. The carboxyl terminus-truncated cadherin 
(nonfunctional cadherin) has no cell adhesion activity 
probably because of its failure to associate with cyto- 
plasmic proteins called ot and/3 catenin. To rescue this 
nonfunctional cadherin as adhesion molecules, we 
constructed three cDNAs for fusion proteins between 
nonfunctional E-cadherin and ot catenin, nEot, nEotN, 
and nEotC, where the intact, amino-terminal and 
carboxy-terminal half of ct catenin, respectively, were 
directly linked to the nonfunctional E-cadherin, and 
introduced them into mouse L cells. The subcellular 
distribution and cell adhesion activity of nEct and 
nEotC molecules was similar to those of intact E-cad- 
herin transfectants: they bound to cytoskeletons, were 
concentrated at cell-cell adhesion sites and showed 
strong cell adhesion activity, nEaN molecules, which 
also bound to cytoskeletons, showed very poor cell 
adhesion activity. Taken together, we conclude that 

in the formation of the cadherin-catenin complex, 
the mechanical association of ot catenin, especially its 
carboxy-terminal half, with E-cadherin is a key step 
for the cadherin-mediated cell adhesion. Close com- 
parison revealed that the behavior of ~ molecules 
during cytokinesis was quite different from that of in- 
tact E-cadherin, and that the intercellular motility, 
i.e., the cell movement in a confluent sheet, was sig- 
nificantly suppressed in ~ transfectants although it 
was facilitated in E-cadherin transfectants. Consider- 
ing that ~ was not associated with endogenous/~ 
catenin in transfectants, the difference in the nature of 
cell adhesion between nEct and intact E-cadherin 
transfectants may be explained by the function of 13 
catenin. The possible functions of/3 catenin are dis- 
cussed with a special reference to its role as a negative 
regulator for the cadherin-mediated cell adhesion 
system. 

C ADH E RIN S are a family of integral membrane proteins 
responsible for Ca2+-dependent cell-cell adhesion. 
They include many subtypes such as E-cadherin/ 

uvomorulin, N-cadherin/A-CAM, P-eadherin, L-CAM, R-cad- 
herin, etc. and are thought to be important regulators for 
various morphogenetic cell behaviors (Takeichi, 1991). 
Many novel observations have been made on the structures 
and functions of cadherins (Nagafuchi et al., 1993). One 
characteristic aspect of cadherins is that the cytoplasmic do- 
main is the most highly conserved in amino acid sequences 
among the family members (Hatta et al., 1988; Suzuki et al., 
1991), and that at least two cytoplasmic proteins called ot and 
/3 catenins are tightly associated with this domain (Ozawa et 
al., 1989). When the carboxy-terminal region of the cyto- 
plasmic domains of cadherins are deleted, these truncated 
cadherins can neither work as adhesion molecules (Na- 
gafuchi and Takeichi, 1988) nor bind to or//3 catenins (Naga- 
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fuchi and Takeichi, 1989; Ozawa et al., 1989, 1990). The 
cadherin molecules localizing at the cell-cell adhesion sites 
are associated with actin-based cytoskeletons (Hirano et al., 
1987), while these nonfunctional truncated cadherins are by 
no means bound to cytoskeletons (Nagafuchi and Takeichi, 
1988; Ozawa et al., 1989). These observations lead to the 
speculation that cadherins interact with actin-based cyto- 
skeletons via catenins, and that this interaction is essential 
for them to act as cell adhesion receptors. 

The first step for the evaluation of this speculation is to iso- 
late cDNAs encoding catenins and to clarify their structures. 
The cDNAs encoding ct catenin and its neural isotype, aN 
catenin, were cloned and sequenced (Herrenknecht et al., 
1991; Nagafuchi et al., 1991; Hirano et al., 1992). The 
deduced amino acid sequence revealed that ot catenin has a 
similarity to vinculin, one of the major constituents of adhe- 
rens junctions (AJ) 1 (Geiger, 1979; Coutu and Craig, 

1. Abbreviations used in this paper: AJ, adherens junctions; DAPI, 4'6- 
diamidino-2-phenylindole dihydrochloride. 
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1988). AJ is characterized by a well-developed plaque struc- 
ture through which actin filaments are densely associated 
(Tsukita et al., 1992). AJ is subclassified into two types, cell- 
to-cell and cell-to-substrate, where cadherins and integrins 
act as adhesion molecules, respectively. In the AJ plaque, 
vinculin reportedly interacts with cytoskeletal components 
such as talin (Burridge and Mangeat, 1984), ct-actinin 
(Wachsstock et al., 1987), paxillin (Turner et al., 1990), and 
vinculin itself (Otto, 1983) to play a key role in linking 
cadherins or integrins to actin-based cytoskeletons (Otto, 
1990). The sequence similarity between ot catenin and vin- 
culin suggests that o~ catenin is also directly involved in the 
molecular linkage between cadherins and actin-based cyto- 
skeletons. Recently, using human lung cancer cells, PC9, the 
expression of a catenin was shown to be required for cad- 
herins to work as adhesion molecules (Hirano et al., 1992; 
Shimoyama et al., 1992; Watabe et al., 1994). 

Molecular cloning and sequence analysis of/3 catenin 
cDNA clarified its similarity to the gene product of ar- 
madillo, one of the Drosophila segment polarity genes 
(Wieschaus and Riggleman, 1987), and to plakoglobin 
(McCrea et al., 1991). Most recently, using the Xenopus em- 
bryogenesis system, the antibody to 13 catenin was reported 
to induce a secondary body axis (McCrea et al., 1993). 
These findings suggest that/3 catenin is involved in the em- 
bryogenesis. 

The cadherin-catenin complex reportedly occurs not only 
in vertebrates but also in Drosophila (Oda et al., 1993; 
Peifer, 1993). This suggests that this complex formation is 
somehow essential for the cadherin functions in general. 
Since cDNAs encoding cadherins and catenins are now avail- 
able, we should apply gene engineering techniques to the 
clarification of the functions of the cadherin-catenin com- 
plex in the cadherin-mediated cell adhesion. 

In the present study, we constructed three cDNAs encod- 
ing the fusion proteins between nonfunctional E-cadherin 
and ct catenin, nEa, nEotN, and nEotC, where intact and 
amino- and carboxy-terminal halves of ct catenin, respec- 
tively, were directly linked to the cytoplasmic end of the non- 
functional cadherin lacking its catenin-binding site. These 
fusion molecules were expressed in mouse L fibroblasts and 
the behavior and functions of these fusion molecules were 
compared with those of intact E-cadherins. The findings ob- 
tained here revealed that the mechanical association of ot 
catenin, especially its carboxy-terminal half, with the cyto- 
plasmic domain of E-cadherin is essential for the cadherin- 
mediated cell adhesion activity, and that/3 catenin may work 
as a kind of negative regulator of the cadherin-mediated cell 
adhesion. We believe that this study will lead to the better 
understanding of how catenins are involved in the molecular 
mechanism of the cadherin-mediated, cell adhesion. 

Materials and Methods 

Cells 
Mouse L cells (Fade et al., 1943) were grown in DMEM supplemented 
with 10% FCS. Their transfectants expressing E-cadherin (ELs8, Naga- 
fuchi et al., 1987; ELB1, Nose et al., 1988), nEa (nF_,~L2; see below), 
nF~N (nF_,~NL28; see below), or nEaC (nE~CL1; see below) were grown 
in the same medium containing 150/~g/ml of G418. 

Antibodies 
The anti-~ catenin monoclonal antibody (tfl8) was obtained and character- 
ized as described previously (Nagafuchi and Tsukita, 1994). Anti-E- 
cadherin monoclonal antibody (ECCD-2, concentrated by ammoniumsul- 
fate precipitation; Shirayoshi et al., 1986) was a generous gift from Dr. M. 
Takeichi (Kyoto University, Kyoto, Japan). 

To obtain anti-/5 catenin mAbs, a cDNA fragment encoding amino acids 
104-664 of mouse ~ catenin (Bntz et al., 1992) was isolated using the PCR 
method. It was then inserted into the BamHI site of pMAL-cRI (New En- 
gland BioLabs, Beverly, MA), and MBP-B catenin fusion protein was pro- 
duced in F~cherichia coli. Fusion protein was purified using preparative 
SDS-PAGE as described previously (Nagafuchi et al., 1991). Using the 
purified fusion protein as antigens, anti-/~ catenin mAb, 21)4, was obtained 
in rats according to the procedure described previously (Nagafuchi and Tsu- 
kita, 1994). 

Constructs and Transfections 
We constructed pBATEa, pBATE~N, and pBATEaC, expression vectors 
for nEa, nEaN, and nEaC molecules, respectively. For this purpose, we 
used two plasmids reported previously; (a) pBATEM2, a/3 aetin promoter- 
based E-cadherin expression vector (Nose et al., 1988), and (b) pSKI02B, 
which contains a 3.0-kb EcoRI fragment of the a catenirdCAPl02 eDNA 
where the whole open reading frame (ORF) of a catenin is included and 
PstI-BglII adaptor is inserted into the PstI site just above the initiation me- 
thionine codon (Nagafuchi and Tsukita, 1994). For the production of 
pBATEa, the ClaI-XbaI fragment of pBATEM2 which encodes 71 aa cat- 
euln-binding domain of E-cadherin polypeptides was replaced with a 3.0-kb 
BglII-Xbal fragment of pSK102B including whole ORE BglH and CfaI sites 
were blunt-ended before ligation. For the pBATEaN construction, pBATE~ 
was digested with ClaI and XbaI, blunt-ended then religated. These rear- 
rangements removed the ClaI-XbaI fragment which encodes the carboxy- 
terminal half of a catenin (aa 509-906). To construct pBATE~C, the ClaI- 
XbaI fragment ofpBATEM2 was replaced with a 1.4-kb ClaI-XbaI fragment 
removed in the pBATEaN construct. 

L cells (5 × 105 cells/3-cm plate) were cotransfected with 1/tg of each 
expression vector and 0.05/~g of pSTneoB (Katoh et al., 1987) for 48 h by 
lipofection method (Life Technologies, Inc., Grand Island, NY). The cells 
were then replated on three 9-cm dishes and cultured in the presence of 400 
/zg/ml of G418 to select stable transfectants. Colonies of G418-resistant 
cells were isolated, recloned, and subsequently maintained in complete 
medium with 150 #g/ml of O418. We isolated several stable clones for each 
transfection experiment. Since nElL2, nE~NL28, and nF_~CL1 clones ex- 
pressed a relatively large amount of nE~, nEoN, and nEaC fusion mole- 
cule, respectively, we mainly used them for the demonstrations in this 
paper. 

Gel Electrophoresis, Immunoblotting, and Total 
Protein Detection 
SDS-PAGE was based on the discontinuous Tris-glycine system of Laemmli 
(1970). Cultured cells were washed in Hepes-buffered saline (HCMF) 
(Takeichi, 1977) supplemented with 1 mM CaCl2 (HMF) then homoge- 
nized and immediately boiled in SDS-sample buffer (2% SDS, 0.125 M 
Tris-HCl, pH 6.8, 0.002 % Bromophenol blue, 5 % 2-mercaptoethanol, and 
20% Glycerol). Immunoprecipitants were also dissolved and boiled in the 
same SDS-sample buffer. The lysate derived from 105 cultured cells or the 
immunoprecipitant derived from 5 x 106 cells were separated by SDS- 
PAGE and transferred to nitrocellulose sheets electropboretically. 

For immunoblotting, nitrocellulose transfers were incubated with mAbs 
(ECCD-2, a18, or 2D4). Antibody detection was performed using an 
Amersham (Arlington Heights, IL) biotin-streptavidin system with bi- 
otinylated anti-rat Ig and NBT-BCIP system. 

For the detection of total protein, the nitrocellulose transfer was in- 
cubated in phosphate-buffered saline supplemented with 0.3% Tween-20 
(PBS-Tween) at 37°C for 30 rain and washed three times in PBS-Tween at 
room temperature. Then the blots were washed with distilled water and in- 
cubated in AuroDye forte (Amersham Inc.) overnight. 

Immunoprecipitation 
Cells harvested from a confluent culture in eight 9-cm dishes were lysed 
in 16 ml of the extraction buffer (0.5% NP-40, 2 mM CaCI2, 2 mM 
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phenylmethylsulfonyifluoride and 20 #g/ml leupeptin in HCMF), and cen- 
trifuged at 100,000 g for 30 min. The cell extract was preabsorbed twice 
with 100/~1 anti-rat Ig agarose beads, then loaded on the column containing 
the same beads preincubated with 1/100 diluted ECCD-2 antibody. The 
column was washed extensively with the extraction buffer, followed by 2 ml 
of distilled water three times, then eluted with 500 #1 of 1 M acetic acid 
two times. This acid ehlate was lyophilized and resolved in a SDS lysis 
buffer to make the sample for electrophoresis. 

Immunohistochemistry 

Cells cultured on cover slips were fixed with 3.5% formaldehyde solution 
in HMF for 15 min at room temperature. For the NP-40 extraction, cells 
were extracted with 0.5% NP-40 in HMF for 15 min before fixation. After 
rinsing with TBS, the fixed cells were treated with 1% BSA in TBS for 30 
rain, and subsequently incubated with ECCD-2 antibodies for 30-60 min 
at room temperature. After extensive washing with TBS, the specimens 
were incubated with fluorescence-labeled second antibodies diluted with 
TBS containing 1% BSA for 30 min at room temperature. After washing 
thoroughly with TBS, the preparation was mounted with paraphenylenedia- 
mine to prevent bleaching. Samples were examined and photographed with 
a Zeiss Axiophot photomicroscope. 

FOr the observation of cells in metaphase, cells were fixed with 2.5% 
glutaraldehyde in HMF for 30 min at room temperature. To visualize the 
chromosomes, 1 #g/mi of 4'6-diamidino-2-phenylindole dihydrochloride 
(DAPI) was mixed in the embedding solution. 

Detergent Extraction of  Cells 

Cultured cells were extracted with 2.5 % NP-40 in HMF, as described previ- 
ously (Nagafuchi and Takeichi, 1988). For SDS-PAGE, 4 x 106 cells were 
lysed in 0.2 rnl of the SDS-sample buffer. 

Cell Dissociation Assay 

Confluent cultured cells (,~4 x 106 cells per 6-cm dish) were treated with 
0.01% trypsin in HMF (TC treatment) or HCMF supplemented with 1 mM 
EGTA (pH 7.5) (TE treatment) for 30 min at 37°C and dissociated through 
10 times pipettings. The extent of  dissociation of cells was represented by 
the index NTc/NTE, where Nrc and NTE are the total particle number after 
the TC and TE treatment, respectively. 

Intercellular Motility Assay 

Cells on a culture dish were labeled with DiI according to the method devel- 
oped by Honig and Hume (1986), and dispersed by trypsin treatment. The 
1 × 103 labeled cells were seeded on a 6-cm dish with a monolayer of 2 
× 106 cells. After 48 h of culture, four sister cells which seemed to be de- 
rived from one seeded cell were examined by fluorescence microscopy. For 
the simplification of description, when the cell line A was seeded on a 
confluent culture of the cell line B, we called this type of experiment A/B 
analysis. For the quantification of intercellular motility, intercellular dis- 
tances of all combinations of two cells (six sets) were measured and added 
up as Dc. As a control experiment, labeled cells were seeded on the same 
dish in the absence of a cell sheet. In this case, the intercellular distances 
were summed up as Dd. The degree of intercellular motility was repre- 
sented as (Dc-Dm)/(Dd-Dm), where Dm is the minimum value of Dc in 
tightly-packed four sister cells in nEc~L/nE~L analysis. At least 24 indepen- 
dent samples were picked up to determine Dc or Dd for each transfectant 
cell line. 

Results 

E-cadherin-a Catenin Fusion Molecules and Their 
Interaction with Endogenous Catenins 
E-cadherin reportedly forms the stable complex with a and 
/3 catenins in vivo through its carboxy-terminal region 
(catenin-binding domain; '~70 amino acid residues) (Fig. 1 
a). The carboxyl terminus-truncated cadherin as shown in 
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Figure 1. E-cadherin-a catenin fusion protein constructs. (a) Struc- 
tures of E-cadherin, a and/3 catenin. The carboxy-terminal 70 
amino acids of E-cadherin (closed box) is responsible for the 
catenin-binding. (b) Nonfunctional cadherin lacking the catenin- 
binding domain. (c-e) Fusion proteins of the nonfunctional 
E-cadherin with the full-length t~ catenin (nEa), the amino-termi- 
nal half ct catenin (nEoN), or the carboxy-terminal half ct catenin 
(nEaC). Both nEa and nEaN molecules contain an artificial amino 
acid sequence (GSAE) at the fusion junction. Note that these fusion 
proteins lack the catenin-binding domain. Three domains of a cate- 
nin (A-C) are regions with similarity to vinculin molecules. A and 
C domain correspond to the talin binding domain and paxil- 
lin/vinculin binding domain in vinculin molecules, respectively. 

Fig. 1 b has no ability to bind to either ot or/3 catenin (Ozawa 
et al., 1989; Nagafuchi et al., 1991). Since this truncated 
cadherin loses its cell-binding function (Nagafuchi and 
Takeichi, 1988), it is called nonfunctional E-cadherin. To 
check whether the covalent association of a catenin molecule 
with the nonfunctional cadherin rescues the nonfunctional 
cadherin as adhesion molecules, we constructed three cDNAs 
for E-cadherin-a catenin fusion molecules, nEa, nEotN, 
and nEaC, where intact and amino- and carboxy-terminal 
halves of a catenin, respectively, were directly linked to the 
carboxy-terminal end of the nonfunctional E-cadherin mole- 
cules (Fig. 1, c-e). 

The expression vectors for nF~, nEaN, and nEo~C were 
introduced into mouse L cells, which have little endogenous 
cadherin activity. Cells stably expressing these molecules 
(nElL,  nEotNL, and nEaCL cells, respectively) were se- 
lected and examined by SDS-polyacrylamide gel electro- 
phoresis followed by immunoblotting with anti-E-cadherin 
mAb, ECCD-2, specific for the extracellular domain of 
E-cadherin molecule (Fig. 2). The nEct fusion molecule mi- 
grated as a "~200 kD polypeptide, as would be expected from 
its construct. The nEaN and nEaC fusion molecules had the 
apparent molecular masses of •155 and 145 kD, respec- 
tively. As Fig. 2 shows and as previously reported (Naga- 
fuchi et al., 1987), no endogenous E-cadherin was detected 
in L cells (lane/),  while EL cells (lane 2), L cell transfec- 
tants with the full-length E-cadherin cDNA, expressed intact 
E-cadherin molecules with the molecular mass of 124 kD. 

Next, we analyzed the interaction of intact E-cadherin, 
nEon, nEaN, or nEo~C with endogenous a and/3 catenins in 
each transfectant. As reported previously, when we per- 
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Figure 2. Expression of fusion proteins 
in stable transfectants. Total lysates 
from L (lane 1), EL (lane 2), rtE~xL 
(lane 3), nEaNL (lane 4), or nF_~CL 
cells (lane 5) were separated by SDS- 
PAGE (7.5%) and immunoblotted with 
anti-E-cadherin mAb, ECCD-2. Parent 
L cells lack the expression of E-cad- 
herin, and stable transfeetants expressed 
E-cadherin (124 kD), nEot (200 kD), 
nEc, N (155 kD), and nEotC (145 kD) 
molecules, respectively. Several minor 
bands with lower molecular mass, 
which may be degradation products of 
E-cadherin or fusion proteins, were de- 
tected. The positions of molecular mass 
markers are indicated on the fight (kD). 

formed the immunoprecipitation from EL cells with anti- 
E-cadherin mAb, ECCD-2, both endogenous e¢ and B cate- 
nins were coimmunoprecipitated with intact E-cadherin 
molecules (Fig. 3, lane/)  (Nagafuchi et al., 1991). In con- 
trast, under the same immunoprecipitation conditions from 
nEaL, nE~NL, or nE~CL cells, E-cadherin-a catenin fu- 
sion proteins were immunoprecipitated showing no associa- 
tion either with o~ or B catenins (Fig. 3, lanes 2-4). As re- 
ported previously (Ozawa et al., 1989; Nagafuchi et al., 
1991), plakoglobin, another well-characterized cadherin- 
associated 83-kD protein (Knudsen and Wheelock, 1992; 
Peifer et al., 1992; Piepenhagen and Nelson, 1993), was 
hardly detected in immunoprecipitates from L cell transfec- 
tants expressing E-cadherin (data not shown). 

In the previous study using anti-or catenin pAb, we showed 
that the o~ catenin protein expression is induced by the in- 
troduction of intact E-cadherins into L cells, but not by non- 
functional E-cadherin (Nagafuchi et al., 1991). The immu- 
noblotting using anti-or catenin mAb, od8, confirmed this 
induction (Fig. 4 A, lanes I and 2). This induction was not 
detected when nEotN or nEaC molecules were expressed in 
L cells (Fig. 4 A, lanes 4 and 5). This induction appeared 
to occur in nEotL cells (Fig. 4 A, lane 3), but whether the 
102-kD rnAb al8-positive band is really endogenous ot cate- 
nin or a degradation product of nEot remains to be eluci- 
dated. In immunocytochemical analysis using od8 antibody, 
no concentration of ot catenin was observed in nEaCL cells 

Figure 3. Total protein profiles of the 
immunoprecipitates with anti-E- 
cadherin mAb, ECCD-2. For each 
immunoprecipitation, extracts from 
5 x 106 EL (lane 1), nEotL (lane 
2), nEaNL (lane 3), or nEotCL 
(lane 4) cells were used. Only from 
EL cells were both ot (¢x) and/3 cate- 
nins (/3) coimmunoprecipitated with 
E-cadherin, in the immunoprecipi- 
tates from the other transfectants nei- 
ther a nor/3 catenins were detected. 
Most of the lower molecular mass 
bands are derived from immuno- 
globulin. 

Figure 4. ~ and B catenin proteins in whole cell lysates. Immuno- 
blots of L (lane 1), EL (lane 2), nEcxL (lane 3), nEetNL (lane 4), 
or nEotCL (lane 5) cells with anti-a eatenin mAb, ot18 (A) and 
anti-B catenin mAb, 2D4 (B). In A, since the epitope for mAb ~18 
is located at the amino-terminal half of ~ catenin, not only a catenin 
(c0 but also the fusion proteins containing the amino-terminal half 
of c~ catenin (nE, and nEc~N in lanes 3 and 4) were recognized. 
Both c~ and/3 catenin expression was markedly induced by the exog- 
enous intact E-cadherin expression (A and B, lane 2), whereas this 
induction was not observed in cells expressing fusion proteins. 
Only in the case of nEceL cells, did the ¢x catenin expression appear 
to be significantly induced (A, lane 3), but it is not clear whether 
this 102-kD band is really endogenous ct catenin or a degradation 
product of nEc~ molecules. 

(data not shown). Interestingly, immunoblotting with anti-/3 
catenin mAb, 2124, revealed that in L cells the expression of 
B catenin was hardly detected, and the expression level of B 
catenin was significantly elevated only in EL cells, but not 
in either nEaL, nEotNL, or nEotCL cells (Fig. 4 B). Con- 
sidering that among the nonfunctional cadherin, intact 
cadherin, nEot, nF_~N, and nEotC, only intact cadherin mol- 
ecules have the site for catenin binding, the introduction of 
the catenin-binding sites into L cells may be required for the 
induction of the expression of not only a but also/3 catenin 
proteins. 

The immunoprecipitation experiments gave us no infor- 
mation about cadherins and their fusion proteins at cell-cell 
contacts which were resistant to the NP-40 extraction. How- 
ever, considering that in nEotL, nEcxNL, and nEotCL cells 
the expression level o f ,  and/3 catenin remained very low 
without significant induction, we can conclude that the NP- 
40-resistant fusion molecules at cell-cell contacts were not 
associated with endogenous ot and/3 catenin. 

SubceUular Distribution and Cell Adhesion Activity 
of  E-cadherin-a Catenin Fusion Molecules 

As we previously reported (Nagafuchi et al., 1987, 1988), 
immunostaining with anti-E-cadherin mAb, ECCD-2, re- 
vealed that in the colony of EL cells, intact E-cadherin mole- 
cules were concentrated at the cell-cell adhesion sites in a 

linear fashion (Fig. 5, a and b), and these concentrated mole- 
cules were resistant to the NP-40 treatment showing their 
cytoskeleton binding (Fig. 5 c). As Fig. 5, d- f  show, the be- 
havior of nEot molecules in nEotL cells is similar to that of 
intact E-cadherin; their linear concentration and cytoskele- 
ton binding. Furthermore, in these characteristics, the be- 
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Figure 5. Subcellular distribution of E-cadherin and E-cadherin-c~ catenin fusion proteins in EL (a-c), nEctL (d-f), nF_~NL (g-i), and 
nEo~CL (j-l) cells. Phase contrast images of each cell line (a, d, g, and j),  and accompanying immunofluoreseence images of nonpermeabi- 
lized cells with anti-E-eadherin rnAb, ECCD-2 (b, e, h, and k). In c,f, i, and l, cells were treated with NP-40 before the ECCD-2 immuno- 
staining. Note that the distribution pattern of nEc~N molecules in NP-40-treated cells (i) is clearly different from that of other molecules. 
Bar, 50/xm. 

havior of nF_~C molecules was also indistinguishable from 
that of intact E-cadherins (Fig. 5, j - l ) .  In sharp contrast, 
nEaN molecules, which appeared to be concentrated at the 
cell-cell borders (Fig. 5 h), aggregated as large dots after the 
NP-40 treatment (Fig. 5 i). The immunoblot analysis showed 
that about half of the intact E-cadherin and E-cadherin-o~ 
catenin fusion proteins was not extractable by NP-40 from 
their transfectants (Fig. 6). It was repetitively reported that 
most of the nonfunctional E-cadherin molecules with lack of 
catenin binding site could be extracted with this detergent 
(Nagafuchi and Takeichi, 1988, 1989; Ozawa et al., 1989). 

TO quantitatively compare the cell adhesion activity of 
E-cadherin-c~ catenin fusion molecules with that of intact 
E-cadherin, we performed a cell dissociation assay (Fig. 7). 
In this assay, for each transfectant, cells were treated with 
trypsin in the presence or absence of Ca 2+ (TC or TE treat- 
ment, respectively) (Takeichi, 1977), dissociated by several 
times of pipetting, and then the number of particles, whether 
they are cell clusters or single ceils, were counted (NTc or 
NrE, respectively). Since cadherin-mediated adhesion is 
reserved after TC but not after TE treatment, the value of 
NTC is expected to be smaller than that of NTE when cells 
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Figure 6. Detergent extraction of 
E-cadherin or E-cadherin-ct catenin 
fusion proteins. Soluble (S) and in- 
soluble (I) fractions derived from 2 
x 105 EL (lane 1), nEaL (lane 2), 
nEtxNL (lane 3), or nEc~CL (lane 4) 
cells were separated by SDS-PAGE 
(7.5%) and immunoblotted with 
anti-E-cadherin mAb, ECCD-2. 
About half of the intact E-cadherin 
(E) and fusion proteins was detected 
in the insoluble fractions. Bands with 
smaller molecular size detected in 
some lanes are probably products of 
degradation. 

have cadherin activity. In the parent L cells with no cadherin 
activity, both in the presence and absence of Ca 2+, cells 
were completely dissociated, so that the index Nrc/NrE was 
almost 1.0 (NrE = Nrc) (Fig. 7 a). This means that in L cell 
transfectants this index reflects the adhesion activity of 
E-cadherin or E-cadherin-ot catenin fusion molecules; the 
stronger their adhesion is, the smaller this index becomes. 
As Fig. 7, b and c show, ~ molecules had strong cell adhe- 
sion activity, which is resistant to trypsin digestion only in 
the presence of Ca 2+ to the same extent as did intact E-cad- 
herin molecules on EL cells. For EL and nF~L cells, the 
above indexes were 0.12 and 0.08, respectively. Interestingly, 
nEaCL cells also showed strong cell adhesion (index = 0.05; 
Fig. 7 e), whereas the nEotNL cells were easily dissociated 
even in the presence of Ca 2÷ (index = 0.76; Fig. 7 d). 

In summary, considering their subcellular distribution, the 
cytoskeleton-binding ability and the cell adhesion activity, 
both nEo~ and nE~C molecules were indistinguishable from 
intact E-cadherin. Only nEo~N molecules did not work well 
as adhesion receptors and showed peculiar subcellular distri- 
bution. 

CeU-CeU Adhesion of EL, nEt~L, and nEt~CL Cells 
during Cytokinesis 
Intact E-cadherin forms a stable complex with ot and/3 cate- 
nins, while nEo~ and nE~C molecules were not associated 
with endogenous/3 catenin (see Figs. 1 and 3). However, as 
far as we had examined, the behavior and functions of nF,, 
and nF_~C molecules appeared to be indistinguishable from 
those of intact E-cadherin. Given that/3 catenin plays some 
important role in cadherin-mediated cell adhesion, the na- 
ture of cell adhesion of EL cells should be distinguished from 
that of nEo~L and nEo~CL cells in some respects. A close 
comparison between EL cells and nF_~L (or nF~CL) cells 
revealed two clear differences in their cell adhesion behavior. 

The first difference was found on their cell adhesion be- 
havior during cytokinesis. Prior to cytokinesis, EL cells 
were rounded up, so that at a low magnification by phase 
contrast microscopy, the cells in metaphase were easily 
identified. In contrast, in the confluent cell sheets of nF_~L 
and nEaCL cells, the cells in metaphase were hardly 
identified at a low magnification, although the density of 
dividing cells in these cell sheets was shown by DAPI stain- 
ing to be similar to that in EL cells (data not shown). Thus, 
the dividing cells from each transfectant were observed at 
higher magnification by phase contrast microscopy (Fig. 8). 
In metaphase, EL cells were rounded up, and their cell adhe- 
sion to the surrounding cells appeared to be mostly dis- 
rupted, leaving very fine cellular processes in the newly de- 
veloped intercellular gaps. In contrast, nF_~L and nEaCL 
cells in metaphase were rather flattened, and appeared to 
fairly retain cell adhesion with surrounding cells, nE~ and 
nEtxC molecules were highly concentrated at these retained 
cell adhesion sites (data not shown). 

Intercellular Motility of Transfectants 
The second difference between EL and nEotL cells was in 
their stability of cell-cell adhesion. Time-lapse videomi- 

Figure 7. Cell dissociation assay of L (a), EL (b), nEotL (c), nEo~NL (d), and nEotCL (e) cells. The confluent cell sheet of each cell 
line was treated with 0.01% trypsin in the presence (TC treatment; top) or absence (TE treatment; bottom) of Ca 2÷, then dissociated by 
several times of pipetting. The cell dissociation index (NTc/NrE; see Materials and Methods in detail) is shown in parentheses. The lower 
the value of this index, the higher the activity of cell adhesion, nEc~NL cells (d) were easily dissociated even in the presence of Ca 2÷, 
although some small clusters of cells were observed (arrow head). Bar, 100 #m. 
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Figure 8. EL (a and a'), hEaL (b and b'), and nEt~CL (c and c') cells at the mitotic phase. Ceils were fixed with glutaraldehyde and 
observed by phase contrast microscopy (a-c), and the localization of chromosomes in each cell was presented by the DAPI staining (a'-c'). 
In metaphase, EL cells were rounded up and their cell adhesion with the surrounding cells was mostly disrupted (a). By contrast, nEuL 
(b) and nEt~CL cells (c) in metaphase were rather flat, retaining cell adhesion with surrounding cells. Bar, 50 #m. 

croscopy revealed that EL cells repeatedly attach to and de- 
tach from the neighboring EL cells when they move actively 
especially after cytokinesis. By contrast, in nEotL cells, the 
cell-cell adhesion once established was hardly disrupted 
even after cytokinesis. To quantitatively describe this differ- 
ence, we analyzed the intercellular motility of each cell line, 
i.e., the cell mobility ability in a confluent sheet: when the 
cell migration ability on the plastic dish is constant, the in- 
tercellular motility is thought to be influenced by the nature 
of cell adhesion. Here we developed a simple assay system 
for the quantification of the intercellular motility of each 
transfectant (Fig. 9 A). 

In this system, a single cell labeled with a fluorescent dye 
(DiI) was seeded on a confluent culture of nonlabeled cells, 
and after a 48-h culture (two times the doubling time) the cell 
scatter property of four labeled sister cells was analyzed 
measuring the mass distance among these four cells. For the 
simplification of description, when the cell line A was seeded 
on a confluent culture of the cell line B, we called this type 
of experiment A/B analysis. First we compared the intercel- 
lular motility between the EL/EL and L/L analysis (Fig. 9 
B). In the EL/EL analysis, four sister cells were fairly scat- 
tered (Fig. 9 B, a). This indicated that the reposition of EL 
cells actually occurred even within a confluent cell sheet. In- 
terestingly, in the L/L analysis, the intercellular motility was 
significantly smaller than that in the EL/EL analysis (Fig. 9 

B, c). Taking into consideration that EL and L cells showed 
a similar scattering property on a plastic dish in the absence 
of a cell sheet (Fig. 9 B, b and d), we have concluded that 
E-cadherin molecules expressing on the cell surface facili- 
tate the intercellular motility (see Fig. 11). 

Next, we compared the intercellular motility between EL, 
nEaL, and nEaCL cells, all of which showed strong cell 
adhesion activity (see Fig. 7). In sharp contrast to the 
elevated intercellular motility in the EL/EL analysis (Fig. 10, 
a and b), both the nEotL/nEaL and nEotCL/nEctCL analyses 
revealed that four labeled sister cells failed to scatter, form- 
ing a densely packed colony in a cell sheet (Fig. 10, d, e, g, 
and h). Considering that both EL, nEtxL, and nEtxCL ceils 
exhibited the same scattering property on a plastic dish (Fig. 
10, c,f, and i), we concluded that nEct and nEc~C molecules 
suppressed the intercellular motility, while intact cadherin 
molecules facilitate it (see Fig. ll). Fig. 11 summarizes the 
quantitative results of the intercellular motility assay, where 
the index was calculated as described in Materials and 
Methods. 

Discus s ion  

Cadherins tightly interact with at least two cytoplasmic pro- 
teins called o~ and/3 catenins. This cadherin-catenin complex 
is now speculated to be a functional unit for Ca2+-depen - 
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Figure 9. Intercellular motility of L and EL cells. (A) An in vitro 
assay system for intercellular motility. A single fluorescent dye- 
labeled cell (closed circle) is put on a confluent sheet of nordabeled 
cells. During 2 d, this cell divides twice to produce four labeled 
sister cells, and the degree of scattering of these four cells is ana- 
lyzed by fluorescence microscopy. When the cell line A was labeled 
and put on the sheet of the cell line B, this assay is called A/B analy- 
sis. (B) Scattered four sister cells of EL/EL analysis (a) and L/L 
analysis (c). In a and c, the fluorescence microscopic image of 4 
sister ceils (in white) were superimposed on the phase contrast im- 
age of a confluent cell sheet. Note that the degree of intercellular 
motility of EL cells is significantly larger than that of the L cells. 
EL and L cells show a similar scattering property on a plastic dish 
in the absence of a cell sheet (b and d, respectively). Bar, 100 #m. 

dent cell-cell adhesion, because E-cadherin lacking its 
carboxy-terminal 70 amino acids has no cell adhesion activ- 
ity or catenin-binding activity (nonfunctional cadherin) 
(Nagafuchi et al., 1993). If  the catenin-binding is really re- 

quired for the cell adhesion ability for E-cadherin, the cell 
adhesion function should be recovered by the covalent as- 
sociation of some parts of catenins with nonfunctional 
cadherin. Along this line, in the present study, we con- 
structed cDNAs encoding E-eadherin-ot catenin fusion mol- 
ecules and introduced them into mouse L cells. 

Functions o f  oe Catenin 

The function of oe catenin was recently analyzed by the use 
of the human lung cancer cell line, PC9. PC9 ceils showed 
very poor cell-cell adhesion activity, although they ex- 
pressed a large amount of E-eadherin on their surface. Im- 
munoprecipitation and immunoblotting revealed that these 
cells expressed fl catenin normally, but lacked the expression 
of o~ catenin (Shimoyama et al., 1992). When ot or aN cate- 
nin, the neural isotype of t~ catenin, was introduced into 
these cells, transfectants aggregate in very tight fashion 
(Hirano et al., 1992; Watabe et al., 1994). These observa- 
tions indicate that the expression of a catenin is indispensa- 
ble for the cell adhesion activity of E-cadhedn molecules, 
although its molecular mechanism remained unclear. 

The present analysis with E-cadherin-ot catenin fusion 
proteins gave some insights into this molecular mechanism. 
We have found that the nonfunctional cadherin can be res- 
cued as adhesion molecules by the covalent association of the 
full length of the oe catenin molecule with its carboxy- 
terminal end. Considering that this fusion molecule, nEa, 
has the oe catenin sequence within itself and has no ability 
to bind to the endogenous catenins, we can conclude that fl 
catenin is not involved in this rescue. Actually, in PC9 cells 
lacking the ct catenin expression, E-cadherins are associated 
with fl catenin and this E-cadherirdfl catenin complex does 
not work well as adhesion molecules (Shirnoyama et al., 
1992). Therefore, we can conclude that in the complex for- 
marion between E-cadherin, ot and fl catenins, the mechani- 
cal association of E-cadherin with c~ catenin is a key step for 
cadherin-mediated cell adhesion activity. 

The nonfunctional cadherin was easily extracted by the 
NP-40 treatment (Nagafuchi and Takeichi, 1988; Ozawa et 
al., 1989), while nEo~ concentrated at ceil-cell adhesion 
sites was resistant to this treatment, indicating that ot catenin 
molecule has an ability to bind to cytoskeletons. The o~ cate- 
nin molecule has a similarity in amino acid sequence to vin- 
culin. Vinculin reportedly binds to several distinct cytoskel- 
etal proteins such as talin (Burridge and Mangeat, 1984), 
ct-actinin (Wachsstock et al., 1987), paxillin (Turner et al., 
1990), and vinculin itself (Otto, 1983). What kind of cyto- 
skeleton is directly associated with ot catenin remains to be 
elucidated. 

The analysis of nEaN and nEaC molecules, where non- 
functional E-cadherin was covalenfly connected with the 
amino-terminal and carboxy-terminal half of ot catenin re- 
vealed more details of o~ catenin functional domains. Judging 
from the sequence similarity between ot catenin and vinculin 
(Nagafuchi et al., 1991), the amino- and carboxy-terminal 
half domain of ot catenin correspond to the talin-binding do- 
main (Jones et al., 1989) and paxillin/vinculin-binding do- 
main in vinculin molecules (Molony and Burridge, 1985; 
Turner et al., 1990), respectively (see Fig. 1). Actually, both 
nEc~N and nEc~C were resistant to the NP-40 treatment, al- 
though the subeellular distribution of their NP-40-insoluble 
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Figure 10. Intercellular motility in 
EL/EL (a and b), nEc~LInE~L (d 
and e) and nE~CL/nEaCL (g and h) 
analyses. In a, b, d, e, g, and h, the 
fluorescence microscopic image of 
four sister cells (in white) were su- 
perimposed on the phase contrast 
image of a confluent cell sheet. As 
compared to the EL/EL analysis, the 
intercellular motility in nF_~L/nEeeL 
and nEe~CL/nEotCL analyses was 
mostly suppressed. These cell lines 
have a similar scatter property on a 
plastic dish in the absence of a cell 
sheet (c, f, and i, respectively). Bar, 
100 t~m. 
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Figure 11. The degree of intercellular motility of L cell transfeetants. The higher value in abscissa (intercellular motility index; [Dc- 
Dm]/[IXI-Dm]; see Materials and Methods in detail) represents the higher degree of intercellular motility. At least 24 independent samples 
were piekod up to determine the intercellular motility index for each analysis. The degree of intercellular motility in L/L analysis is sig- 
nificantly smaller than that of EL/EL analysis and greater than that of nF_~L/nF_axL or nEe~CL/nF_xxCL analysis (P < 0.001). EL*; another 
clone of the EL cell line (ELs8). 
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forms was completely different. Considering that nEotC, but 
not nEotN, showed strong cell adhesion activity typical to 
cadherin-mediated cell adhesion system, we can conclude 
that; (a) ot catenin interacts with cytoskeletons at least in two 
distinct manners, at its amino- and carboxy-terminai half do- 
mains, and (b) the mechanical association of E-cadherin with 
the carboxy-terminal half of ot catenin is indispensable to cell 
adhesion activity characteristic to cadherin-mediated adhe- 
sion system. 

Possible Functions of B Catenin 
To our knowledge, nF_~ and nEo~C molecules are the first 
functional cadherins which do not associate with fl catenin. 
Therefore, the comparison between intact E-cadherin and 
nEo~ or nEaC is expected to provide some information on 
the functions of B catenin in the cadherin-mediated adhesion 
system. 

The difference between nF_aL and EL cells was clearly and 
quantitatively shown in their ability in intercellular motility. 
The comparison of EL/EL with L/L analysis revealed that 
intact E-cadherin facilitated the intercellular motility. Time- 
lapse videomicroscopy revealed that the cell adhesion of EL 
cells was very dynamic and that they repeatedly attach to and 
detach from the neighboring EL cells when cells have high 
mobile activity especially after cytokinesis (data not shown). 
This repetitive attachment and detachment may allow EL 
cells to move around in the EL cell sheet. In contrast, the 
nEotL/nEotL analysis revealed that the scattering of four sis- 
ter cells in the cell sheet was completely suppressed. Time- 
lapse videomicroscopy showed that the cell adhesion of 
nEotL cells was very stable and that the cell adhesion once 
established appeared to be rarely disrupted (data not shown). 
This may be the reason why nEotL cells hardly move around 
inside the nEctL cell sheet. Therefore, in the normal E-cad- 
herin-odB catenin complex, there seems to be an inside-to- 
outside regulation mechanism not only to support but also 
to suppress the cadherin cell adhesion function, and the nEo~ 
molecule may lack the latter mechanism. Considering that 
the nEct molecule has no ability to bind to/3 catenin, it is 
reasonable to speculate that B catenin is directly involved in 
this downregulation mechanism. In this line, it should be 
noted that the degree of dysfunction of E-cadherin has re- 
cently been reported to have a good correlation with the level 
of tyrosine phosphorylation of B catenin (Matsuyoshi et al., 
1992; Behrens et al., 1993; Hamaguchi et al., 1993). The 
molecular mechanism by which B catenin regulates the 
cadherin function remains to be elucidated. 

We also found that in metaphase the EL cells disrupted 
their cell-cell adhesion with neighboring cells and that the 
nEotL cells retained it. This can be rationalized as follows. 
When cells tend to round-up in metaphase, the dynamic cell 
adhesion of EL cells was disrupted and allow cells to round- 
up. By contrast, the stable cell adhesion of nEtxL cells is 
hardly disrupted, which prevents the cells from rounding up. 

What is the physiological role of the dynamic aspect of cell 
adhesion in which B catenin may be involved? The intercellu- 
lar motility was observed in vivo in the process of mor- 
phogenetic rearrangement of cells in embryonic tissues. For 
example, during gastrulation in early Xenopus embryo, cells 
expressing cadherins are able to change their relative posi- 
tions when they intercalate during epiboly and convergent 
extension (Gumbiner, 1992; Schneider et al., 1993). There- 

fore, we speculate that/$ catenin plays an important role in 
the embryogenesis by endowing cadherins with the dynamic 
aspect. 

/~ catenin is thought to be a vertebrate homologue of the 
Drosophila armadillo product (McCrea, 1991). The ar- 
madillo product plays a pivotal role in the determination of 
the segment polarity, and resides on the wingless signaling 
pathway (Wieschaus and Riggleman, 1987; Perrimon, 
1994). Furthermore, in Xenopus, the antibody to/~ catenin 
was reported to induce a secondary body axis (McCrea et 
al., 1993). It is not clear whether or not these morphogenetic 
functions of/~ catenin are related to cadherins, although ex- 
pression of Wnt-1, the vertebrate homologue of wingless 
product, has been reported to modulate the cadherin- 
mediated cell-cell adhesion (Bradley et ai., 1993; Hinck et 
al., 1994). Recently, it was also reported that B catenin 
directly binds to the tumor suppressor APC protein (Rubin- 
feld et al., 1993; Suet ai., 1993). The whole picture on the 
function of ~ catenln remains to be elucidated. 

It was reported that plakoglobin, a homologue of/$ cate- 
nin, also associates with cadherin (Knudsen and Wheelock, 
1992; Peifer et al., 1992; Piepenhagen and Nelson, 1993) 
and that B catenin and plakoglobin form mutually exclusive 
complexes with cadherin competing for the catenin-binding 
domain (McCrea and Gumbiner, 1991; Hinck et al., 1994). 
Since plakoglobin was hardly detected in experiments using 
L cell-based cadherin transfectants (Ozawa et al., 1989; 
Nagafuchi et al., 1991) and our fusion protein constructs 
lack the catenin-binding domain, we did not discuss its pos- 
sible function here. Furthermore, at the cell-cell contacts, 
various proteins other than catenins or plakoglobin are 
thought to associate with the cadherin to make the cadhe- 
rin-catenin complex resistant to the NP-40 extraction (Tsu- 
kita et al., 1992). Therefore, we should keep it in mind that 
the discussion on the possible function ofB catenin here may 
be somehow oversimplified. 

In summary, the data presented in this study favor the idea 
that/3 catenin works as a kind of negative regulator for the 
cell adhesion activity mainly exhibited by the mechanically 
associated E-cadherin and ot catenin. If this is the case, many 
questions remain to be solved. What type of cytoskeletai 
proteins are directly associated with a catenin, especially 
with its carboxy-terminal half?. How can 15 catenin regulate 
the cell adhesion function of the cadherin-ot catenin system? 
Studies are being conducted in our laboratory to answer 
these questions. 
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