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Abstract: Fine-tuned by millions of years of evolution, snake venoms have frightened but also
fascinated humanity and nowadays they constitute potential resources for drug development, ther-
apeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest
advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics
technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes
could be observed. Within this review we focus on the highly venomous and widely distributed
subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was
performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called
Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are
dominated by four major, four secondary, six minor and several rare toxin families and peptides,
respectively. The multitude of different venomics approaches complicates the comparison of venom
composition datasets and therefore we differentiated between non-quantitative and three groups
of quantitative workflows. The resulting direct comparisons within these groups show remarkable
differences on the intra- and interspecies level across genera with a focus on regional differences.
In summary, the present compilation is the first comprehensive up-to-date database on Viperinae
venom proteomes and differentiating between analytical methods and workflows.

Keywords: venomics; proteomics; snakes; vipers; viperinae; toxins; venom; database

Key Contribution: We present the first comprehensive database for 89 Viperinae venom proteomes
of 37 species, from the past two decades. The datasets are categorized into non-quantitative and
quantitative workflows and show intra- and interspecies differences across 11 genera.

1. Introduction

Venoms are one of the major traits directly associated with snakes, however, only a
small number of the over 3800 different species are highly venomous. Around 10% of all
snakes belong to the viper family of Viperidae, which is grouped into three subfamilies
with the clade of Azemiopinae and Crotalinae (‘pit vipers’) being sister to the Viperinae
subfamily, the so called ‘true vipers’ or ‘pit-less vipers’ [1–3]. The evolutionary origin of
Viperinae is still elusive, but dated to the middle Eocene and early Miocene 34–42 MA,
with the oldest known viperine fossil (Vipera antiqua) found in central Europe [1,3–6]. From
then onwards, they split into several lineages and conquered the ‘Old World’. Apart from a
few exceptions, like Madagascar, Ireland, and several Mediterranean islands, these vipers
can be found in South Africa, across Europe, the Middle East, up to Asia and even to the
far eastern islands of Taiwan and Sakhalin. This vast distribution contributed to the name
‘Old World vipers’.
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Each of the 101 true viper species (status: 31 December 2021; reptile-database.reptarium.cz)
are venomous and in combination with their wide distribution range led to an increased
number of encounters with humans. Especially in warm and densely populated regions of
rural communities, interactions are not uncommon, and envenomation is a considerable
burden to the public health. About 5.4 million snakebites are estimated to occur per year
and while each second bite is a so-called ‘dry-bite’ and no venom is injected, the amount of
venom that can be delivered in the other half varies due to several factors [7,8]. The size of
the individual snake and thereby the highest possible volume of injectable venom, the kind
of species, the time since the last meal, and other aspects are responsible for the outcome of
these encounters [7,9–11]. Therefore, snakebite envenomation affect over 2.7 million people
per year, which gives snakebites a great medical importance and concomitantly more global
attention [12–14]. Among the most dangerous true vipers, in terms of highest mortality, are
the African Bitis arietans (puff adder) and Echis ocellatus (West African saw-scaled viper),
as well as two of India’s ‘Big Four’, namely, Echis carinatus (Asian saw-scaled viper) and
Daboia russelii (Russell’s viper) [12,15]. Nevertheless, viperid bites are also a critical health
issue in the Middle East and even Europe [16–19].

In recent decades, advances in bioanalytics facilitated deeper molecular insights into
the composition of snake venoms, which constitute highly complex mixtures of proteins,
peptides, and low molecular components [20]. Ultimately, the full venom composition
is responsible for the different medical outcomes of snakebite envenomation [12]. It was
shown that these multifaceted venoms differ not only between species but are also highly
variable at an intraspecies level. Today, several factors are known to influence the venom
composition of snakes [21,22]. One of the most important factors is the available prey
and the accompanying diet breadth due to various habitats [23–26]. Furthermore, age as
well as regional separation affect the venom, most likely linked to the available diversity
of prey [27–33]. Sex, long-term captivity effects including stress [34–37], environmental
conditions, like temperature, and the defense against primates are under discussion [38,39].
Venoms and their variations are of great scientific interest and can be seen as a model system
for evolutionary biology, reaching from single genes to macroevolutionary contexts [40–42].

The investigation of venom diversity is strongly multidisciplinary, in which omics
technologies, including genomics, transcriptomics, and proteomics, play an increasingly
large role in the field of venom research [43,44]. Nowadays, the bottom-up (BU) and the
top-down (TD) approach have become the gold standard in snake venom proteomics and
the advantages and disadvantages of both have been extensively discussed [45–50]. The
integration of high-resolution mass spectrometry (MS)-based workflows, mostly in combi-
nation with preceding decomplexation steps, plays a decisive role and has continuously
developed over the past decades [51]. Today, de novo and database-dependent annotation
methods allow the identification of toxin families, individual toxins, and various proteo-
forms requiring only minute quantities of venom [52]. In particular, the TD approach is
on the rise and allows precise toxin identification directly from crude venoms and in this
context the applicability of Fourier transform ion cyclotron resonance (FT-ICR) MS most
likely will constitute a decisive step in the coming years [49,53]. While these methods only
allow for a relative quantification of venom components, others like inductive coupled
plasma (ICP) MS can be used for an absolute quantification, using the statistical abundance
of cysteine sulfur in most venom proteins [54,55]. In addition, rather uncommon analytical
tools have been used to investigate viper venoms, such as TD in-source decay (ISD) [56],
venom on-a-chip [57,58], Fourier transform infrared spectroscopy (FTIR) [59], and the
usage of a solid-phase combinatorial hexapeptide ligand library (CPLL) [60].

With constantly evolving technologies, the opportunities to investigate venoms faster
and in more detail are surging. As a consequence, the number of new snake venom studies
is growing rapidly every year. Some publications list several of those quantified venom
proteomes, but Viperinae-related studies in particular constitute only a small part [61–63]. Al-
though no up-to-date database summarizes all of these Viperinae studies in a comprehensive
manner, there are a certain number of publications reviewing Viperinae venoms, that only
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focus on a few genera of high medical relevance or from exclusive areas [19,64–68]. However,
there are many more studies on true vipers containing fully investigated venoms at the
proteomic level. Therefore, we close this gap by providing a comprehensive compilation of
recent venom compositions of Old World vipers and related compositional variations.

2. Viperinae Venoms: A Proteomic Database

For a detailed literature search of the Old World viper venom proteomes, we investi-
gated contributions on all genera, species, and subspecies of the Viperinae subfamily up
to the end of 2020. We included proteomic studies that analyzed the full venom, either
by whole venom analysis or in combination with prior separation steps. In addition, the
studies had to confirm the identity of the toxin or toxin family by MS or Edman degradation.
For detailed workflows and selection criteria, we refer to the Methods section.

In total, we compiled 89 Viperinae venom proteomes from 54 studies, including
37 different species, belonging to 11 genera. The identified proteomes were analyzed
and further classified to their kind of sequence annotation (bottom-up, top-down, Edman
degradation), quantification method, and assigned toxin families (Table 1). The detailed
database of all analyzed proteomes and values of the venom compositions are given in
the Supplementary Materials Table S1. A composition therein corresponds to a single
investigated venom or venom pool of a (sub)species within a study.

The number of reported venom proteomes per genus varies enormously and re-
veals that some genera are given more attention, while others are only analyzed once
(Table 1). For example, well-investigated genera include the Oriental vipers Daboia with
24 venom compositions, followed by Palaearctic Vipers Vipera (18 compositions), and saw-
scaled vipers Echis (16 compositions). Others like the bush vipers Atheris, with 18 species,
only contain three venom proteomes in a single study [69]. Likewise, five out of 18 Bitis
species venom compositions are known (Table 1). From the 13 Viperinae genera, three
are monotypic: Eristicophis was analyzed only once, while the other two, Montatheris and
Proatheris, are the only Old World viper genera not investigated until today [70]. Looking
at the species level, the two viperid members of the ‘Big Four’ experienced the most venom
proteome analyses: Russel’s viper D. russelii (12 compositions) and Indian saw-scaled
viper E. carinatus (11 compositions). They are followed by the Eastern Russel’s Viper D.
siamensis (9 compositions), a former subspecies of D. russelii. An additional 10 species were
investigated twice or more for their venom composition and 23 venoms were described
only once (Table 1).

The first published proteomic Viperinae venom proteome is from 2003 by Nawarak
et al. and belongs to D. siamensis (published as V. russelli siamensis and V. russelli formosen-
sis). The study reports on ten different vipers and elapids and employs a multitude of
analytical techniques. Since then, each year (except for 2013) one or more new Viperinae
venom proteomes was published with a steadily increasing trend (Figure 1A). In the past
three years, one year after the reinstated status of snakebites as a neglected tropical disease
(NTD) by the WHO, 42 of the 89 venoms were published, which nearly equals the number
of all studies in the 15 years prior (Figure 1A) [71]. This reflects the increased awareness in
science and public healthcare due to the increasing work of non-profit and governmental
organizations, as well as the renewed interest in new antivenom approaches [72–74].

2.1. Meta Data of Investigated Snakes

The final venom composition of a study is strongly dependent on the examined
specimens. Regarding this aspect, our analysis summarizes different information about the
investigated snakes (Figure 1B–F).
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Table 1. Complete overview of the 89 Viperinae venom proteomes. The number of studied venom compositions per
genus (grey), species, and subspecies (bracketed) are mentioned. Types of different sequence annotations (black bars) and
quantification (black dot) are marked for each species. The checklist shows identified toxin families, sorted by their general
abundance in the venom of all Viperinae into major, secondary and further toxin families (minor, rare families and peptides).
Abbreviations: svMP (snake venom metalloproteinase), PLA2 (phospholipase A2), svSP (snake venom serine protease),
CTL (C-type lectin-related protein), DI (disintegrins), LAAO (L-amino acid oxidase), CRISP (cysteine-rich secretory protein),
VEGF (vascular endothelial growth factors F), KUN (Kunitz-type trypsin inhibitor), CYS (cystatin), svMP-i (svMP inhibitor),
NP (natriuretic peptides).
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Atheris 3

A. chlorechis 1 � • X X - -
X - - - - - - - - -

X [69]

A. nitschei 1 � • X X X
-

X - - - - - - - - -
X [69]

A. squamigera 1 � • X X X
-

X - - - - - - - - -
X [69]

Bitis 9
B. arietans 4 � � • • • X X X X X X X X X X X X X X X [60,75–77]

B. caudalis 1 � � • X X X X X X X - X - - - - -
X [78]

B. gabonica 2 � � • • X X X X X X X X X - X - - X X [79,80]

B. nasicornis 1 � � • X X X X X X X - - - X - - -
X [78]

B. rhinoceros 1 � � • X X X X X X X - X - X - - X X [78]
Causus 2

C. lichtensteinii 1 � • X - X
- -

X X - - - - - - - - [81]

C. rhombeatus 1 � • X X X
- -

X X - - - - - - - - [81]

Cerastes 6

C. cerastes 5 � � � • X X X X X X X - - - - - X
-

X [76,82–84]

C. vipera 1 � � • X X X X X X - - - - - - X
- - [82]

Daboia 24

D. mauritanica 2 � � • • X X X X X - - X X - - - - X - [85,86]

D. palaestinae 1 � � • X X X X X - - X - X
- - - - - [87]

D. russelii 12 � • • X X X X X X X X X X
-

X X X X [88–95]

D. siamensis 9 � � • • • • X X X X X X X X X X
-

X - - - [68,96–100]

Echis 16

E. carinatus 11 (2) � � � • • • X X X X X X X X X X
-

X X X X [76,101–105]

E. coloratus 1 � � • X X X X X X X - - - - - X
- - [76]

E. leucogaster 1 � • X X X X X X - - - - - - X
- - [106]

E. ocellatus 2 � � • • X X X X X X X - - - - - X
-

X [76,107]

E. pyramidum 1 � � • X X X X X X X - - - - - X
- - [76]

Eristicophis 1

E. macmahoni 1 � • X X X X X X X X - - - - - X - [70]

Macrovipera 5

M. lebetina 5 (2) � � • • X X X X X X X X X X
- - X X - [82,85,108–

110]
Montivipera 3

M. bulgardaghica 1 � • X X X X X X X X - - - - X
-

X [111]

M. raddei 2 � � • X X X X X X X X - X
- - X X X [108,111]

Pseudocerastes 2

P. fieldi 1 � • X X X X
-

X X X X X
- - - - - [70]

P. persicus 1 � • X X X X X X X X X X
- - - - - [70]

Vipera 18

V. ammodytes 5 (3) � � � • • X X X X X X X X X X
-

X X X X [112–115]

V. anatolica 2 (2) � � • X X X X X X X - X X
-

X X X X [56,116]

V. aspis 1 � • X X X X X X X X X X
-

X X
-

X [117]

V. berus 3 � � • • X X X X X X X X X X
-

X X X X [118–120]

V. kaznakovi 2 � � • • X X X X X X X X - X
-

X X X X [28,121]

V. nikolskii 1 � • X X X X
-

X X X X X
-

X - X - [121]

V. orlovi 1 � • X X X X X X X X X X
-

X - X - [121]

V. renardi 1 � • X X X X X X X X X X
-

X - - - [121]

V. transcaucasiana 1 � � • X X X X
-

X X X - X
- - X X X [112]

V. ursinii 1 � • X X X X
- - X - X X

-
X - - - [122]
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ones in some cases were noted as a minimal or total unknown number. Given information in the reports of the investigated 
snakes about (C) the regional origin, (D) the source of the animal, like captured in the wild or kept in captivity, (E) age, 
and (F) sex. Detailed values and locations for each proteome are available in Supplementary Material Table S1. 
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The pool size is a parameter that helps to evaluate whether the study represents an 
average venom of a species, rather a few or only single individuals [22]. The usage of a 
pooled venom sample reduces the biological variance and increases the statistical power 
for the investigated population [123]. On the other hand, the analysis of non-pooled 
venoms from individuals allows for deeper insight into intraspecific variations, including 
the possibility to detect toxins of lower abundances, when signal intensity would 
otherwise be suppressed in a large pool size [22,123]. Interestingly, the exact number of 
pooled individual venoms was only provided for 48 proteomes, while the pool sizes for 
41 proteomes were not specified (Figure 1B). The pool sizes range from a single examined 
specimen to up to 150 individuals, with a median of 8.5 investigated snakes in total, 
revealing a relatively small pool size. In the studies lacking pool size information, 10 out 
of 41 venoms reported at least a minimal pool size: >1, >5 or >10. The remaining 31 
proteomes were without any information. Understandably, most of the latter venom 
samples were derived from commercial venom companies or were listed as derived from 
a serpentarium (Supplementary Material Table S1). 

A second important aspect is the origin of the snakes. As mentioned above, the 
venom can differ in a single species between populations or collection areas. Providing 
geographical information is highly recommended to allow comparisons between different 
populations. From all 89 proteomes, we identified 42 which could be directly assigned to 

Figure 1. Meta data analysis for the 89 venom proteome studies of the Viperinae subfamily. (A) Overview of published true
viper venom composition per year and the total number sum in red. (B) Variation of investigated pool sizes. Unknown
ones in some cases were noted as a minimal or total unknown number. Given information in the reports of the investigated
snakes about (C) the regional origin, (D) the source of the animal, like captured in the wild or kept in captivity, (E) age, and
(F) sex. Detailed values and locations for each proteome are available in Supplementary Material Table S1.

The pool size is a parameter that helps to evaluate whether the study represents
an average venom of a species, rather a few or only single individuals [22]. The usage
of a pooled venom sample reduces the biological variance and increases the statistical
power for the investigated population [123]. On the other hand, the analysis of non-
pooled venoms from individuals allows for deeper insight into intraspecific variations,
including the possibility to detect toxins of lower abundances, when signal intensity would
otherwise be suppressed in a large pool size [22,123]. Interestingly, the exact number of
pooled individual venoms was only provided for 48 proteomes, while the pool sizes for
41 proteomes were not specified (Figure 1B). The pool sizes range from a single examined
specimen to up to 150 individuals, with a median of 8.5 investigated snakes in total,
revealing a relatively small pool size. In the studies lacking pool size information, 10 out of
41 venoms reported at least a minimal pool size: >1, >5 or >10. The remaining 31 proteomes
were without any information. Understandably, most of the latter venom samples were
derived from commercial venom companies or were listed as derived from a serpentarium
(Supplementary Material Table S1).

A second important aspect is the origin of the snakes. As mentioned above, the
venom can differ in a single species between populations or collection areas. Providing
geographical information is highly recommended to allow comparisons between different
populations. From all 89 proteomes, we identified 42 which could be directly assigned to a
specific region, whereas 32 only mentioned the country of origin and another 15 venoms
provided neither a region nor a country (Figure 1C).

Finally, captivity is another factor discussed to influence venom composition. We
summarized 40 proteomes that sourced on milked snakes in captivity, 31 from wild captures
and 18 without information (Figure 1D). Commercially available venoms and gifts from
institutes or antivenom manufactures were counted as ‘captivity’ sources if not stated
otherwise. It is worth mentioning that sex as well as age, factors influencing the venom of
snakes, are the least given information in proteomic venom studies. For 60 compositions,
there was no information about the age and for 62 compositions no information about the
sex could be found (Figure 1E,F). Regarding the age, all other proteomes were investigated



Toxins 2021, 13, 427 6 of 26

from adult specimen (21) or different ages (7), and only one study directly compared and
distinguished between the venom from juvenile and adult vipers [28].

2.2. Venom Proteome Data Accessibility

The deposition and storage of MS-based proteomics data in publicly accessible
databases is of increasing importance and consequently several online platforms are nowa-
days available [124,125]. Remarkably, to date, the raw data of only 16 venom proteomes
from 12 studies between 2016 and 2020 have been uploaded and are freely available.
All uploaded proteomes were transmitted to the ProteomeXchange consortium for data
repository either by PRIDE or massIVE [125–127]. The dataset identifiers, if mentioned
in the respective study, are listed in Supplementary Material Table S1. Nevertheless, the
comparatively poor number of uploaded proteome data reflects an enormous deficiency in
general data accessibility within the snake venomics field.

2.3. Identified Toxin Families

Snake venoms are composed of a broad spectrum of enzymatic and non-enzymatic
toxins affecting different biochemical targets. The origins of the components are a multitude
of ancestral genes that were functionalized in the venom gland by duplication and neo- or
subfunctionalization [20,128,129]. More than 20 different enzymatic and non-enzymatic
protein and peptide families were described at the proteomic level from Viperinae venoms
and are listed with their common abbreviations in Table 2. Among enzyme functions, this
predominantly includes hydrolases (EC 3.-.-.-), but also oxidoreductases (EC 1.-.-.-) and
transferases (EC 2.-.-.-).

The identified venom proteins can be classified regarding their average percentual
occurrence into four groups: major, secondary, and minor toxin families as well as the
kind of rare proteins that were observed only in a few proteomes. Toxins were clustered
under their main family nomenclature because many studies did not subdivide respective
observations within a single family into subfamilies, like svMP P-I, P-II and P-III or S49 and
D49 PLA2. Further detailed information, complementing the identified subfamilies, are
listed in Supplementary Material Table S1. Since a detailed examination of each individual
toxin (sub)family would go beyond the scope of this review, a variety of reviews and papers
are provided in the references section of Table 2.

The four major toxin families (svMP, PLA2, svSP, and CTL) dominate the picture of
Old World viper venoms, which explains the hemorrhage and cytotoxic character of most
viper envenomation [12]. Neurotoxic clinical profiles mainly caused by PLA2 are less
common, but frequently reported for certain species [130,131]. In summary, the major toxin
families account for 60–90% of venom compositions, with an average of 75%. The svMP
family is the only consistently described toxin among all studies, while CTL is still present
in 90% of the compositions. Three of the four major toxin families are enzymes, whereas
the secondary toxin families (DI, CRISP, VEGF, and KUN) with the prominent exception
of LAAO, mainly display non-enzymatic functions and represent 6–35% (average 17%) of
venom compositions. Reported in a higher number of studies, the LAAOs showed a lower
percentage compared to DI and are therefore listed behind DI. The minor toxin families
(NGF, 5N, PDE, HYAL, PLB, and the Bitis genus unique CYS) were observed in less than
half of the proteomes and with a total average share of 13%.

A limited number of toxin families was reported only for a single or few species and
grouped as rare toxin families (average < 1%). These included the more abundant QC and
AP, but also various other protease classes and even three-finger toxins (3FTx), which will
be discussed in more detail below. Additionally, the occurrence of peptides is described
in 45 venoms. These polypeptides mostly with masses <8 kDa often represent proteolytic
products of C-type natriuretic precursor peptides including tripeptic svMP-i and the blood
pressure decreasing BPP. In general, peptides as well as minor and rare toxin families are
the least investigated parts of snake venoms, not only in Viperinae [132–134].
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Table 2. Toxin families in the venom proteomes of Viperinae. The proteins and peptides were grouped into families (bold)
according to their general abundance in the venom compositions. LAAO and PLB were reported from more studies but
show lower average percentages in the venoms than DI and HYAL. Enzymes are mentioned by their Enzyme Commission
number (EC). Additional information about the average monomeric mass, number of disulfide bridges (No. of S-S) and
their appearance in the proteomic studies is given. Asterisked entries mark that no exact number was derived from the
literature. A more detailed list of the rare protein families is available in Supplementary Material Table S1.

Abbreviation Snake Venom Toxin Family Enzyme
Class

Monomeric
Size in kDa

No. of
S-S

Observed in
No. of Studies References

Major toxin families
svMP snake venom metalloproteinase EC 3.4.24.- 20–100 4–18 89 [135–139]
PLA2 phospholipase A2 EC 3.1.1.4 13–15 6–8 87 [140–144]
svSP snake venom serine protease EC 3.4.21.- 22–67 6 86 [145–148]

CTL incl. Snaclec C-type lectin-related protein - 13–15 3 80 [149–151]
Secondary toxin families

DI disintegrin - 4–10 4–8 63 [152–155]
LAAO L-amino acid oxidase EC 1.4.3.2 50–70 2 68 [156–158]
CRISP cysteine-rich secretory protein - 20–33 8 63 [159–161]

VEGF vascular endothelial growth
factors F - 10–15 5 48 [162–164]

KUN Kunitz-type inhibitor - 6–7 3 42 [20,165–167]
Minor toxin families

NGF nerve growth factor - 12–37 3 41 [168–170]
5N 5′-nucleotidase EC 3.1.3.5 73–100 4 34 [171,172]

PDE phosphodiesterase EC 3.1.4.1 90–140 16 33 [173,174]
HYAL hyaluronidase EC 3.2.1.35 33–110 5 17 [158,175,176]
PLB phospholipase B EC 3.1.1.5 ~55 2 21 [177]
CYS cystatin - 12–15 2 8 [178–180]

Rare families (selection)
QC glutaminyl cyclotransferase EC 2.3.2.5 33–40 1 17 [181,182]
AP Aminopeptidase EC 3.4.11.- 100–150 * 17 [183–185]

Peptides
svMP-i svMP-inhibitor - 0.3 0 22 [134,186,187]

BPP bradykinin potentiating peptide - 0.5–1.5 0 24 [133,188–190]

other peptides incl. further natriuretic peptides - 1–10 - 24 [133,134,189,191,
192]

3. Venom Variations of Old World Vipers

In addition to the identification of specific proteins and their families in different
viper species, the differences between toxin abundances are of great interest. Furthermore,
knowledge on the venom composition is key to understanding not only the clinical profiles
of snakebite envenomation, but also how environmental pressure possibly shaped venom
compositions. To correlate these, it is important to consider the performed analysis type.
Since the employed quantification approach varies from study to study, and also underlies
other variabilities, this will almost certainly impact the general comparability.

3.1. The Bias of Quantification

A quantification approach in the venomics field gives insight into the abundance
of toxins and toxin families, either in absolute or relative numbers. In accordance with
the aforementioned biological factors, many experimental aspects, such as instrumental
implementation, applied protocols, or databases affect the apparent protein composi-
tion [46,193,194]. For example, a venom study of the south Indian E. c. carinatus underlines
the general importance of a taxonomically specific but not too limited database of protein
sequences for annotation. The identified toxin families and toxin abundances in this E. c.
carinatus composition were significantly dependent on to the selected database, regarding
taxonomic family, genus or species [101].

Although all viper venoms were quantified by relative and label-free (without the
usage of isotope or chemical labels) BU approaches and based on a tryptic digest, some
workflow details strongly vary (Table 1). Relative protein abundances were either calcu-
lated from UV/Vis absorption at a certain wavelength, MS ion counts or by a combination
of both. To minimize the effect of different detection and quantification methods, we
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clustered the quantifying studies into three groups (Figures 2 and 3). A detailed overview
of the applied workflows per venom composition can be found in Supplementary Material
Table S1.
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band intensity and if necessary, the TOP3 relative MS ion intensity. 

In addition to the snake venomics approach, several other two-step quantification 
protocols are in use which are cumulated in a second group. This group consists of a 
preliminary physicochemical decomplexation step, followed by LC-MS/MS analytics. The 
separation by gel-filtration (GF), ion-exchange (IE), RP-HPLC or crude venom 1D-SDS 
PAGE is detected spectroscopically at different wavelengths. In the second step, after an 
enzymatic digest, the tryptic peptide abundance in a fraction/band is quantified by 
spectral intensities (SpI), spectral counting (SpC) or the average of both [195]. The 
combination of various separation methods and a MS-based quantification led to seven 
different protocols, not considering various normalization factors, like the number of 
observed or theoretically expected peptides or the molecular mass of the protein. In order 
to keep this simple, identical wavelength detection methods were summarized (Figure 
3A(a–c)). Additionally, the two 2D-SDS PAGE densiometrically quantified and LC-
MS/MS identified proteomes were also accounted to this group of two-step 
quantifications (Figure 3A(d)). 

A third group of methods uses whole venom in-solution shotgun, short ‘shotgun’, 
approaches without additional decomplexation steps prior to LC-MS/MS analytics. These 
purely MS-based quantifications were calculated by similar SpI or SpC methods, but also 
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two-step quantifications and (B) 8 Viperinae species by whole venom in-solution shotgun approaches, with 13 proteomic
data each. Used quantification methods are mentioned by bold letters: a (GF/EI+MSQ), b (1D SDS PAGE+MSQ), c (RP-
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separated by a dotted line. Origin of investigated specimen are mentioned after the (sub)species name. The study references
are listed behind the corresponding composition. Schematic cladograms of the phylogenetic relationships are based on
phylogenetic studies mentioned in the Materials and Methods (Section 5.2).

The most common method applied to true viper venoms is the so called ‘snake
venomics’ approach, introduced by Calvete et al. in 2007, which is based on a three-level
quantification protocol [46]. Accordingly, the relative abundance of a protein is calculated
hierarchically regarding the reversed phase HPLC (RP-HPLC) peak area, 1D SDS-PAGE
band intensity and if necessary, the TOP3 relative MS ion intensity.

In addition to the snake venomics approach, several other two-step quantification
protocols are in use which are cumulated in a second group. This group consists of a
preliminary physicochemical decomplexation step, followed by LC-MS/MS analytics. The
separation by gel-filtration (GF), ion-exchange (IE), RP-HPLC or crude venom 1D-SDS
PAGE is detected spectroscopically at different wavelengths. In the second step, after an
enzymatic digest, the tryptic peptide abundance in a fraction/band is quantified by spectral
intensities (SpI), spectral counting (SpC) or the average of both [195]. The combination of
various separation methods and a MS-based quantification led to seven different protocols,
not considering various normalization factors, like the number of observed or theoretically
expected peptides or the molecular mass of the protein. In order to keep this simple,
identical wavelength detection methods were summarized (Figure 3A(a–c)). Additionally,
the two 2D-SDS PAGE densiometrically quantified and LC-MS/MS identified proteomes
were also accounted to this group of two-step quantifications (Figure 3A(d)).

A third group of methods uses whole venom in-solution shotgun, short ‘shotgun’,
approaches without additional decomplexation steps prior to LC-MS/MS analytics. These
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purely MS-based quantifications were calculated by similar SpI or SpC methods, but also
the exponentially modified protein abundance index (emPAI) and accurate proteome-wide
label-free quantification by delayed normalization and maximal peptide ratio extraction
(MaxLFQ) were used [196,197]. The only study comparing two shotgun quantifications
is from Kovalchuk et al. who showed that MaxLFQ and SpI-based quantifications render
analogous percentual values [121].

All the above-mentioned differences underline the general challenge and complexity
of such quantification protocols, which has here a particular focus on the snake subfamily
of Viperinae. Considering other non-Viperinae venom studies would reveal even further
workflows with major and minor differences. Another bias is the depth and compre-
hensiveness of the published analyses. While some studies mark non-annotated peaks
or peptide-containing venom parts and include them in their calculation of the relative
composition, others report only on the identified proteins. Others in turn, use a preliminary
mass cut-off filter or a protocol-based detection limit, as e.g., one-step shotgun approaches
only consider identified peptides. However, this type of calculation introduces a consid-
erable bias into the true abundances of proteinaceous venom components. Accordingly,
interstudy comparisons should always be handled with reservation if different quantifi-
cation protocols are applied. The usage of more uniform protocols, or at least the online
accessibility of raw data for individual reanalysis, as already mentioned, would be an
important step to increase the comparability of quantitative data in the venomics field.
Nevertheless, the comparison within the quantification groups allows for detailed insight
into the venom compositions and trends of single species and genera.

3.2. Snake Venomics

The first group of snake venomics approaches includes 42 proteomes from 24 species.
In two studies the identical venom pool sample was used and the more recent composition
was included for direct comparison [82,85]. The remaining 41 proteomes are shown as
a joint genus-wide comparison and the individual (sub)species level, related to their
phylogenetic relationships (Figure 2). To avoid the statistical impact of highly investigated
species due to several compositional datasets, a single species proteome was generated
by their summed proteomes normalized to the total number of snake venomics studies
for this species. These normalized proteomes were then handled equally to calculate the
average genus compositions (Figure 2A).

The abundance of single toxin families can strongly differ between genera. However,
as already mentioned, svMP and PLA2 in particular dominate the overall picture of the Old
World viper venoms (Figure 2A). Other toxin families seem abundant in or even exclusive
to some specific genera, like LAAO, CRISP, KUN, and CYS, which will be discussed in the
following sections (Supplementary Material Figure S1). The mentioned bias of peptides
and not-annotated venom parts are highlighted for the Vipera and Montivipera genera, with
a high impact on the relative abundances of the other toxin families.

The dominance of smaller molecular masses and peptides, with often unknown physi-
ological effects, described in only parts of the Old World vipers, shows that peptidomics
of the non-classically defined toxins families is still an emerging field [198]. In particular,
the combination with TD measurements or intact mass profiling (IMP) can compensate for
existing gaps and give a detailed view on the venom content in the low molecular mass
range [52,53].

3.3. Clade of African Adders

The venom of the African adders, Bitis genus, is mainly composed of different svMP
(28%), like dimeric svMP-PIII, and compared to all other Viperinae they show the highest
amount of svSP (22%) and CTL (12%) (Figure 2A). Members of the Bitis genus are the only
Old World vipers containing CYS (4%) in their venoms (Supplementary Material Figures S1
and S2). While this protease inhibitor family is more prominent in the evolutionary distinct
elapid venoms, CYS was also observed in the venom gland transcriptomes of species of
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the Viperinae subfamily E. coloratus, V. kaznakovi, and V. anatolica senliki [28,56,78,199]. The
venom of B. caudalis is the only Bitis species that lacks on CYS and is dominated by a diversity
of PLA2 (60%), forming high aggregate multimers compared to the monomeric ones in the
other Bitis venoms (4–20%) [78]. This might be also due to the fact that the small B. caudalis
belongs to the dwarf adder Calechidna subgenus, while the others are large-bodied adders of
the subgenera Bitis and Macrocerastes [200]. Like B. caudalis, the venom of B. arietans is more
divergent compared to all other Bitis species [78]. The major difference between B. arietans
and the other Bitis venoms is the occurrence of the long-chain DI Bitistatin (18%) compared
to the dimeric DI (2–9%) [75,78]. Studies also mark strong variations in the neutralization
effect by polyspecific antivenoms against this genus [201–203].

3.4. Clade of Echis and Cerastes

With 15 proteomes from 7 species, the sister-groups Echis and Cerastes have been well
studied by the snake venomics approach and allow for a good comparison of inter- as well
as intraspecific aspects. Interestingly, the venoms of these vipers, on average, have the
highest amounts of svMP and LAAO, while they are exclusively missing VEGF and KUN
(Figure 2A).

Saw-scaled vipers, Echis genus, are known for their wide distribution from the western
African coast, over the Arabian Peninsula to Sri Lanka and Bangladesh [5]. The intragenus
and -species venom variations have been investigated in detail for E. carinatus [23,76,103].
Among all other vipers Echis on average displays the highest svMP content (50%), with
strong percentual variations between the different species and regions of origin. E. ocellatus
and E. c. sochureki, showed by far the highest svMP content (69–70%) of all Viperinae
species. This is contrasted by only 27% svMP for the south Indian E. carinatus and Malian
E. leucogaster venom (Figure 2B). This svMP dominance recently made them the target for a
new antivenomic approach employing various metal chelators as complexants for cations of
the active site from the zinc-dependent svMP [106]. Further, svSP (4%) showed the lowest
abundance in the Echis genus and even further proteases were only observed as a very
minor component, e.g., aspartic protease (<0.2%, rare protein families) (Supplementary
Material Table S1). Overall, the venom profiles of the south Indian E. carinatus venoms
with the large share of LAAO and CTL can be separated from the western distributed
Echis species.

The North African desert vipers, Cerastes genus, have a simpler venom profile con-
sisting of only seven toxin families (four majors, three secondaries) and several smaller
peptides (Table 1). The venoms are based on svMP (46%) and PLA2, the latter with 18 ± 2%
are nearly similarly abundant in all six Cerastes proteomes, albeit with remarkable differ-
ences in CTL and LAAO contents (Figure 2). With five different proteomic compositions
dedicated to C. cerastes, this species is the best investigated by snake venomics approaches.
Comparing the three regions of origin (Morocco, Tunisia, and Egypt) essentially covering
North Africa, it seems that different venom populations of C. cerastes exist with a contact
zone around Tunisia: an eastern lineage with a high amount of CTL (9–24%) and a western
lineage with an increased amount of svMP (56–63%) and lower CTL (2–3%) [84]. The
appearance of such kind of west and east lineages was already observed at a phylogenetic
level of C. cerastes [204,205]. Remarkably, however, the immunorecognition capabilities
of two antivenoms were similar for the C. cerastes venoms of all three regions and a low
cross-reactivity against C. vipera, with a composition more similar to the western, than
the eastern, C. cerastes [83]. The sole appearance of CRISP in the Tunisian venoms of C.
cerastes as well as C. vipera, suggests a more complex distribution of venom differences in
the Cerates genus. Due to a still comparatively low number of studies, this assumption
needs to be further investigated.

3.5. Clade of Eurasian Vipers

Four genera (Daboia, Vipera, Macrovipera, and Montivipera) constitute the group of
Eurasian vipers. With several subgenera, species, and subspecies, their taxonomic assign-
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ments have been thoroughly discussed [206]. Their venoms are highly diverse, and except
for some rare toxins like PLA2 inhibitors or CYS, comprise representatives of each toxin
family (Table 1 and Figure 2). The VEGF (1–6%) are restricted to Eurasian vipers, with
only a low occurrence in Bitis venoms (0.2%) (Supplementary Material Figure S1). Most
secondary toxin families are highly abundant in one genus or another compared to all Old
World vipers: Daboia compositions have the highest occurrence of KUN (6%), Vipera of
CRISP (6%), and Macrovipera venoms are richest in DI (13%). This finding of clear inter-
genus differences may be an indicator of evolutionary developments in the compositions
(Figure 2A). Furthermore, large variations in the major toxin family ratios between the
genera, especially among LAAO, DI, and CRISP are notable (Figure 2B). A problem for
the direct comparison of compositions however is the percentage of neglected venom
components. Previous discussed genera rarely include non-annotated peaks into their
calculations of the venom composition and thus discriminate sizable amounts of peptides,
mostly not visible on SDS-gels. In contrast, more recent studies on Vipera and Montivipera
venoms, performed by Intact Mass Profiling overcome this bias and reflect a more accurate
picture of the compositions.

The Daboia vipers can be phylogenetically divided into a western Mediterranean
group and an eastern tropical Asian group, with two species each [206]. The compari-
son shows that also their venom compositions cluster well according to these lineages
(Figure 2B). While the Mediterranean D. mauritanica and D. palaestinae are rich in svMP,
increased in their DI and CTL content, and appear more closely related to Macrovipera
venoms, the Asian D. russelii and D. siamensis venoms are high in PLA2. In particular,
PLA2 are a protein family with various physiological profiles, such as cytotoxic and neuro-
toxic activities. This is also the reason for similar diverse pathological courses and lethal
potential reported for Daboia envenomation, which are often grouped according to their
geographic variations [95,98,207]. The physiological effects of PLA2 in the Asian Daboia
venom reach from strongly anticoagulant but weakly lethal (e.g., RVV-VD) to neurotoxic
and highly lethal (e.g., Drk-a1); hence neurotoxic effects are only clinically significant for D.
russelii bites from south India and Sri Lanka [95,208]. Interestingly, the svMP RVV-X and
the svSP RVV-V can be found in the venom of both Asian Daboia species, however, they
have not been reported for the Mediterranean Daboia venoms. This might be because both
venoms of D. mauritanica (former Macrovipera mauritanica) and D. palaestinae (former Vipera
xantina palaestinae) were studied in comparison to other snake genera. A reanalysis with
a more recent Daboia database would likely yield better insight in terms of comparability.
Nevertheless, the venom of D. mauritanica is described with high similarities to the M.
lebetina transmediterranea venom [85]. The east–west venom dichotomy within the Daboia
genus is supported by the following points: The prominent DI (8–14%) in the Mediter-
ranean Daboia spp. (Viperistatin) were only observed in traces (1%) for the Asian Daboia
spp. (Russelstatin). Additionally, the KUN content with 2–18% is more abundant in D.
russelii and D. siamensis compared to the other two (>3%) with several unique sequences
between the analyzed regions [95].

The common vipers, Vipera genus, comprise 21 different species and a multitude of
subspecies. The taxonomic diversity is also reflected by their venom compositions. The
genus has the highest CRISP (6%) and lowest DI (>1%) occurrence among all Viperidae,
and while some representatives have a high svMP content, others are rich in PLA2, svSP
or CRISP (Figure 2B). Apart from this frame, some species show high PLA2-based venom
compositions, e.g., V. a. montandoni and V. transcaucasiana (45–52%; e.g., Vaspin, Vipoxin,
and Ammodytin variants), with a high level of VEGF (10–11%) which therefore resembles
the D. siamensis venom. However, both toxin families are less abundant in the other five
proteomes. Interestingly, the amount of svMP increases with a decreasing level of PLA2,
and for both V. b. berus proteomes an increasing svSP content is observed. On the other
hand, the two V. anatolica venoms are notable with their rich CRISP (10–16%) composition,
low in LAAO and the lack of VEGF (Supplementary Material Figure S1).
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From an analytical point of view the Vipera genus experienced the most TD investiga-
tions, which might be a reason for the high number of annotated peptides (Table 1). This
includes a remarkable amount of svMP-i (6%), like the tripeptides pEKW and pENW,
known for their occurrence in svMP-rich venoms. Interestingly, despite their low level of
svMP, svMP-i were also identified in the proteomes of V. a. montandoni and V. transcau-
casiana. For V. a. montandoni the svMP-i content is 11%, almost six times higher than the
svMP content (2%) [112,187]. Furthermore, the V. kaznakovi study is the only one looking at
the venomic specimen level of the analyzed pool, and thus highlights differences between
individual snakes on the level of svSP and CTL as well as LAAO and PLA2, regarding
age and sex [28]. This underlines the importance of adequate venom pool sizes of sev-
eral specimens and is thus highly recommended for future venom proteomics studies
in general.

The venom of the large Palearctic vipers, Macrovipera genus, has been quantified for
only two M. lebetina subspecies: the northwest African M. l. transmediterranea and the Asian
endemic M. l. obstusa. The surprisingly low venom similarity is mainly based on the DI
contents, formed by either the dimeric Lebein or short Obustatin [108]. The svMP, as the
most abundant toxin family, is for M. l. transmediterranea composed of PIII, while PI leads in
M. l. obtusa. Compared to M. l. transmediterranea, both M. l. obtusa compositions show strong
differences in the amount of PLA2, svSP, and CTL (Lebecetin) (Supplementary Material
Figure S1). The large geographic distance between these subspecies’ populations seems to
be a reason for these striking differences. The D. mauritanica (former Macrovipera mauritanica)
distributed in northwest Africa shows a higher venom similarity to the co-localized M. l.
transmediterranea, with the main content of svMP (64–68%) mostly contributed by svMP-
PIII, and the occurrence of VEGF in both venoms which has not been described for M.
l. obtusa.

The Middle East mountain vipers, Montivipera genus, consists of eight species in total.
However, with only two studied species it is one of the least investigated genera. The
genus is rich in PLA2, svMP P-III, and like the Vipera venoms has a high CRISP level (5%).
Remarkably, a high peptide content of 20% was reported, which mainly constitutes the
directed cleavage products of natriuretic precursor peptides like CNAP in the molecular
mass range of 3–4 kDa. The listing of all molecular masses obtained from IMP, like in
other Turkish Vipera venom studies, leads to these high peptide numbers. Moreover, the
Montivipera compositions should be handled with reservation due to the dominance of
non-annotated proteins (>13%) (Figure 2B).

3.6. Other Quantification Workflows

In this section, two other groups of quantifying venomics studies will be discussed:
the manifold ‘two-step quantification’ and the ‘shotgun’ approaches (Figure 3). Both
approaches, which differ in their workflows and quantification, were less frequently used
for the analysis of Viperinae venoms. Even if a direct comparison is not recommended,
general trends can be observed within the genera (Figures 2B and 3).

For example, the relative shares of toxin families within a genus are mostly similar
across the different quantification groups: KUN are dominant in Daboia, and were only
detected in low abundance in Bitis, Echis, and Vipera (Figure 3). Moreover, VEGF are nearly
non-existent in Echis and CYS are exclusive to Bitis. The biggest variations in the MS-based
quantified compositions are the lower svMP occurrence in Echis, and the remarkably higher
content of KUN in Daboia venom, compared to the venom analysis by the snake venomics
approach (Figures 2 and 3). However, it cannot be excluded that this might be also an effect
caused by the different investigated populations or venom pools.

3.7. Two-Step Quantifications

The second venom analysis group is various and consists of an application mixture
by physicochemical separations, followed by a subsequent spectroscopically detection at
specific wavelengths, and are combined with different MS quantification methods, like
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previously discussed, except the 2D SDS PAGE. Hence, due to these different workflows,
comparisons within this group had to be considered with some reservation (Figure 3A).

Both venoms of E. c. carinatus show the occurrence of similar toxin families [101,104].
Compared to Echis, the two Vipera venoms (V. berus berus, V. ursinii), quantified by 2D SDS
densiometry, are lower in CTL, DI, and KUN, but enriched in CRISP and LAAO [120,122].
Interestingly, these Vipera venoms differ strongly in an intragenus correlation. In detail, the
Slovak V. b. berus venom is dominated by PLA2, while the Russian populations analyzed
by the snake venomics workflow have a significantly higher svMP and svSP occurrence.
The V. ursinii follows this trend of svMP-based Vipera venoms, like the more closely related
V. kaznakovi and V. anatolica.

Toxin families within the Daboia genus are dominated by PLA2 and svMP, whereas the
CTL content varies in strong dependence on the region of origin [68,89–93]. Interestingly, it
seems that the amount of svSP slightly increases from the western to the eastern Daboia
distributions and that KUN are less abundant in the most southern Asian populations
(D. russelii: south India, Sri Lanka; and D. siamensis: Indonesia) (Supplementary Material
Figure S2A). Both tendencies on the content of svSP and KUN have also been observed in
other quantification approaches of Daboia (Figures 2B and 3B).

3.8. Whole Venom in-Solution Shotgun

The third group comprises purely MS based in-solution shotgun approaches. Like the
others, this group shows clear differences between the single genera and underpins most
of the previously mentioned trends (Figure 3B).

The composition of B. arietans obtained by shotgun proteomics is rich in DI (26%) but
does not contain any PLA2. This finding, as well as the nearly complete absence of svMP
and the high abundance of 3FTx (15%) is uncommon within venoms of this genus [77].
Even 3FTx have been extensively characterized from Elapidae, only few are described
for Viperinae, like D. russelii and V. nikolskii, and the occurrence in such high amounts is
considered as atypical and a rare toxin family in viper venoms [190,209–213].

The Echis venoms were mostly investigated for E. c. sochureki [102,105]. It shows that
the three Iranian populations are highly similar, and that the west Indian E. carinatus venom
resembles the Iranian rather than the northwest Indian composition of E. c. sochureki. The
northwest Indian derived venom from Rajasthan differs with a high PLA2 content of 62%
from all other E. carinatus studies. This implied significant differences in median lethal
doses between E. carinatus populations as well as antivenom neutralizing potency with
regard to marketed polyvalent antivenoms [102].

The composition of the East Asian D. siamensis venom follows a Daboia pattern in all
three quantification groups [99] (Figures 2B and 3). With a commonly low content of CRISP
(<1%) in all Daboia studies, D. russelii is the only genus member whose venom displays a
higher CRISP level (1–7%) (Supplementary Material Figure S2B).

The venom compositions of all five Vipera are characterized by a mixture of mostly
acidic and basic PLA2 (24–65%), while their svMP levels (1–16%) are lower compared to
the other studies quantified by group one snake venomics [117,121]. The PLA2-dominated
Russian V. nikolskii venom is similar to the previously mentioned Slovak V. b. berus, with
variations in the secondary toxin families and a notable low abundance of >1% svMP [120].
This underlines the close relationship often referred to the Nikolsky’s Viper as a subspecies
V. berus nikolskii [206]. Within the Russian Vipera the genetically closest related V. orlovi
and V. kaznakovi also show the highest similarity. They differ in the PLA2 to svSP ratio,
with a larger svSP abundance for V. orlovi (Figure 3B). The Russian V. kaznakovi shows
strong differences to the Turkish specimens collected closely to the Turkish-Georgian
border. In addition to the different quantification methods applied, the recently described
polyphyletic character of Georgian and Russian V. kaznakovi populations within the Pelias
group might be another reason for this intraspecific variation [206].
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3.9. Non-Quantified Venom Compositions

The last group comprises 21 Viperinae venoms, which was not quantified by any of
the aforementioned methods but also includes studies that purely counted 2D-SDS PAGE
spots or summarized numbers of identified sequences. Due to the protein intensities,
non-quantified images of SDS gels or chromatograms give a rough estimate about the
quantitative compositions. Several other compositions belong to rarely described snake
venoms in the literature. These four rarely investigated genera (Atheris, Causus, Eristicophis,
and Pseudocerastes) contribute eight different species in three studies. Further venomics
studies would be interesting for these underinvestigated proteomes.

The venoms of night adders, Causus genus, are of great interest. These (semi-)fossorial
snakes are outliers in regard to morphological and ecological aspects of the classical
viperid scheme, and their venom compositions are uncommon [81,214]. They consist
mainly of LAAO and svMP, with low amounts of svSP and CRISP. The venom of C.
lichtensteinii includes only four toxin groups and the C. rhombeatus venom has additionally
a few PLA2. Variations at the proteoform level showed remarkable differences in cross
reactivity antivenom tests against both species [81]. Nevertheless, night adders have the
simplest reported venom composition of all Old World vipers until now, regarding the
identified toxin families, and are the only genus lacking single standing DI (Table 1). It is
worth mentioning that the peptidome (MW < 10 kDa) is still unknown and might include
additional and novel toxins.

The African bush vipers, Atheris genus, have a dominating PLA2 and DI content
in their venom with a strong species-specific diversity at high molecular toxins range
(30–70 kDa), like svMP and svSP [69]. Size-exclusion chromatograms reveal a higher
correlation between A. squamigera and A. nitschei than to A. chlorechis. However, since
only three of the 18 Atheris species have been examined at the proteomic level, most of the
venom compositions are still unknown.

The three Middle Eastern vipers of Eristicophis and Pseudocerastes show extreme venom
variations [70]. The venom of E. macmahoni, from the monophyletic leaf-nosed viper genus,
is such an example for a broad diversity of its composition. On a 2D SDS gel it showed >160
proteoform spots, belonging to a mixture of all major and secondary toxin families, except
for KUN, and without any minor nor rare toxin families. Kallikrein-like svSP and PLA2
spots are of dominant intensity and pattern. The two false horned vipers, Pseudocerastes
genus, are different to Eristicophis in their venom compositions, regarding the lower number
of 38–44 2D gel spots, with nearly no proteins in the range of 16–60 kDa [70]. The hemotoxic
P. persicus venom is dominated by svMP P-III, PLA2, and CTL, while it is known for P.
fieldi that its bite causes strong neurological effects [215,216]. Accordingly, neurotoxic PLA2
are most abundant followed by VGEF, NGF, and KUN, in addition to a few other toxins
in traces.

The proteomic analysis of B. arietans, B. gabonica, and the Turkish M. l. obtusa, revealed
similar toxins families, with regards to earlier discussions of these genera [60,79,109].
The Vipera genus was further investigated by four compositions of the two European
Nose-horned viper subspecies V. a. ammodytes and V. a. meridionalis. They are rich in
PLA2 (Ammodytins), followed by svSP, LAAO, CRISP, VEGF like Vammin and two recent
studies described KUN in V. a. ammodytes venom as well [113–115]. They correspond to
V. a. montandoni and V. transcaucasiana, which are discussed as subspecies V. ammodytes
transcaucasiana, and underline the leading PLA2 trend in this clade [206].

The non-quantifying Daboia studies underline the division into an Asian and Mediter-
ranean venom group, such as the svMP- and DI-rich Moroccan D. mauritanica venom [86].
In contrast, the venoms of the Indian D. russelii and D. siamensis (Myanmar and Taiwan)
are dominated by PLA2, svSP, and KUN [88,97,100]. The earliest study from Nawarak et al.
is difficult to classify since the databases in 2003 were much more limited in snake toxin
sequences than they are today. Therefore, only PLA2 and a few proteases, including svMP,
were described in addition to many unspecific hits [96]. Nevertheless, the two profiles of
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D. siamensis (formerly described as D. russelii subspecies) were similar and clearly set apart
from other viper venoms of the Crotalinae subfamily and Elapidae.

4. Outlook

The in-depth analytical characterization of venom proteomes helps to assess the
compositions in relation to geographic locations and trends between genera and lower
taxon. This further aids in efforts for the development of more effective antivenom strate-
gies [22,76,217]. Nowadays, after an envenomation, the administration of a mono- or poly-
clonal antivenom is the only effective clinical treatment. However, this classical antibody
approach shows technical and safety issues, like impurities and batch-to-batch differences,
particularly with regards to venom variations as a highly limiting factor [21,203,217,218].
Recent considerations in the next-generation antivenomics field are directed to overcome
these obstacles by shifting the focus from species-specific, serum-derived to key toxin tar-
geting, recombinant antibodies or the usage of non-antibody-based strategies [21,74,219].

We showed that the majority of Old World viper venoms are composed of a few toxin
families (Tables 1 and 2). Therefore, a general target-based approach would help to treat
the major clinical profiles of envenomation. For example, small molecule inhibitors specific
against svMP (Batimastat and Marimastat), PLA2 (Varespladib) or svSP (Nafamostat),
the three most common toxin families in Viperinae, were already successfully tested
against certain viperid venoms [15,220–222]. However, for many new potential antivenom
therapies, clinical trials for their use against snakebites have not yet been carried out.
Even so, several of these drugs have been advanced up to phase III in other indications
or already have a validated safety profile in humans [220,223]. The development of such
hybrid antivenoms composed of oligoclonal antibodies mixed with a universal toxin-
family small molecule inhibitor cocktail, e.g., metal chelators, could be a new kind of
broad-spectrum snakebite therapeutics [21,223]. The benefits of a global and not regionally
limited ‘universal snake antivenom’ are manifold. The cost reduction due to big batch
sizes and the international need would increase the availability in rural regions and tackle
snakebites as a NTD.

A considerable number of viper genera were minimally investigated or not inves-
tigated at all, and it is estimated that still most of their venom compositions are un-
known [102,224]. In the case of Viperinae, this particularly applies to the diverse Atheris,
Bitis, and Vipera. Furthermore, in order to obtain more details about the venom composi-
tions and variations, it is not only important to study more species, but also to investigate
regional populations. For example, it would be interesting to analyze variations from a
species like V. berus, whose populations can be several thousand kilometers apart. This
gigantic distribution area also spans different climatic zones and offers a wide range of
potential prey, factors which may have an impact on the venom composition.

In the coming years, it is expected that the number of Old World viper venom pro-
teomes will exceed 100. Hence, the systematic compilation in databases and review articles,
that summarize and list these data become of ever greater importance in the growing
field of venomics. The investigation of further compositions and their variations in detail
will help in the development of better snakebite treatments, provide new insights into
venoms as an evolutionary model system, and eventually lead to the discovery of medically
important treats in human healthcare.

5. Materials and Methods

To identify relevant publications for this review we investigated the genera, species,
and subspecies of Old World vipers (Squamata: Serpentes: Viperidae: Viperinae) by an
online search using the following search engines/databases and keywords, including a
time limitation up to 31 December 2020.
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5.1. Online Search and Selection Criteria

The PubMed database (https://pubmed.ncbi.nlm.nih.gov/) of the National Center of
Biotechnology Information (NCBI) was used with “<species>/<subspecies>”. Google (https:
//www.google.com/) as well as Google Scholar (https://scholar.google.com/) were used
with “snake venom composition (<genus>/ <species>/ <subspecies>)”, “snake venom pro-
teomics (<genus>/<species>/<subspecies>)” and “snake venomics (<species>/<subspecies>)”.
Additionally, the online databases of VenomZone (https://venomzone.expasy.org/) and
the Snake Venomics Display were consulted [63]. The results were screened manually for
proteomic studies. This includes the references of identified studies.

Publications showing only (RP-)HPLC profiles and/or crude venom 1D SDS-PAGE
images, often in context of single fraction analysis against e.g., cancer cells or in antivenom
studies, were excluded, if no proteomic analysis was performed. This also includes single
toxin studies or partial venom characterizations.

5.2. Taxonomic Status and Phylogentic Relationships

The current genus, species, and subspecies status are based on The Reptile Database
(http://reptile-database.reptarium.cz, accessed on 31 December 2020) and a list of all
searched taxa can be found in Supplementary Material Table S2. For a proteome published
under a since revised taxonomic name, it has been changed to reflect The Reptile Database
status. The Supplementary Material Table S1 includes the (sub)species name of the original
publication as well as the revised name for this review. The phylogenetic relationship
between members of the Viperinae subfamily are mainly based on the study of Alencar
et al. (2016) and for the Eurasian vipers (Daboia, Vipera, Macrovipera, Montivipera) on the
recent work of Freitas et al. (2020) [1,206]. Further references were consulted for intragenus
aspects [2,3,200,225,226].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13060427/s1, Table S1: Database of 89 Old World viper venom proteomes, Table S2: List
of all searched taxa for the detailed literature search, Figure S1: Single toxin families by the snake
venomics approach, Figure S2: Single toxin families by various quantification methods.
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