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Decoding heterogeneous and coordinated tissue
architecture in glioblastoma
using spatial transcriptomics

Xuejiao Lv,1,2,6 Bo Wang,3,6 Kunlun Liu,4 Mulin Jun Li,4 Xianfu Yi,4,* and Xudong Wu1,5,7,*
SUMMARY

Glioblastomamultiforme (GBM) is one of the most lethal brain tumors, characterized by profound hetero-
geneity. While single-cell transcriptomic studies have revealed extensive intra-tumor heterogeneity, shed
light on intra-tumor diversity, spatial intricacies remain largely unexplored. Leveraging clinical GBM spec-
imens, this study employs spatial transcriptomics technology to delve into gene expression heterogene-
ity. Our investigation unveils a significant enrichment of tissue stem cell signature in regions bordering
necrosis and the peritumoral area, positively correlated with the mesenchymal subtype signature. More-
over, upregulated genes in these regions are linked with extracellular matrix (ECM)-receptor interaction,
proteoglycans, as well as vascular endothelial growth factor (VEGF) and angiopoietin-Tie (ANGPT)
signaling pathways. In contrast, signatures related to glycogen metabolism and oxidative phosphoryla-
tion show no relevance to pathological zoning, whereas creatine metabolism signature is notably exclu-
sive to vascular-enriched areas. These spatial profiles not only offer valuable references but also pave
the way for future in-depth functional and mechanistic investigations into GBM progression.

INTRODUCTION

Glioblastoma multiforme (GBM) is an archetypal example of a heterogeneous cancer and one of the most lethal human malignancies.1,2 Pa-

tients diagnosed with GBM have a median survival between 12.2 and 18.2 months, even with standard treatment of maximum surgical resec-

tion followed by radiotherapy, chemotherapy, and/or immunotherapy.3 This underscores the critical need for extensive research on GBM to

establish a solid theoretical foundation for advancing clinical treatment strategies.

The advent of massively parallel DNA and RNA sequencing has empowered the acquisition of genomic, transcriptomic, and epigenomic

information for cells and tissues. Groundbreaking initiatives such as The Cancer GenomeAtlas (TCGA) and other comprehensive studies have

led to a reevaluation of the World Health Organization’s classification of brain tumors, incorporating molecular features. Integrated analyses

of multi-omics data from these endeavors have delineated three subtypes of GBMs: proneural (PN), classical (CL), and mesenchymal (MES).4

Importantly, the MES subtype is associated with a worse prognosis compared to the other two subtypes, attributed to its heightened inva-

siveness, ability to evade immunosurveillance, and resistance to therapy.1,5,6 This molecular subtyping has gained increasing recognition as a

pivotal prognostic determinant. Notably, these distinct subtypes of tumor cells may coexist within an individual tumor, a phenomenon

referred to as intra-tumoral heterogeneity.4,5

Traditional methods for characterizing intra-tumoral heterogeneity in tumor tissue rely heavily on established histological and molecular

markers, often requiring microscopic evaluations by skilled pathologists. However, over the past decade, the emergence of single-cell RNA-

sequencing (scRNA-seq) techniques have revolutionized the analysis of gene expression heterogeneities in individual cells, offering insights

into cell fate decisions.4,7–9 scRNA-seq datasets have provided intricate details about patterns of cell-cell communications and identified key

regulators of stemness and cell plasticity.10–12 However, the process of sorting single cells from a suspension of dissociated tissues inevitably

results in the loss of spatial information. To address this limitation, Yu et al. conducted single-cell analysis on multi-sector biopsies guided by

precision navigation surgery. This innovative approach provided the first spatial-level analysis of cellular states within human gliomas, offering
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amolecularmap of the interactions between tumor cells and the surrounding stroma cells at a single-cell resolution.10 Despite these advance-

ments, the dissociation of tissue before sequencing remains a challenge, leading to the unavoidable loss of detailed architectural information.

In response to this challenge, the recently developed spatial transcriptomics (ST) method integrates the advantages of traditional spatially

resolved technologies, such as immunohistochemistry (IHC) or in situ hybridization, with the high-throughput RNA-seq analysis. This integra-

tion enables the unbiased mapping of transcripts across entire tissue sections, offering a comprehensive spatial perspective.13,14 ST technol-

ogy has found applications across a diverse range of studies, spanning organ development and investigations into various diseases.15–18

Within the realm of diseases, this technology has been extensively employed to probe into tumor heterogeneity and immune infiltration.17–19

Notably, recent studies have established a spatial correlation between T cell exhaustion andmesenchymal-like gene expression in GBM.18 In

addition, other high-sensitivity ST techniques such as Slide-seq, Slide-seqV2, DBiT-seq, and the 10X Genomics Xenium platform have also

been widely used in the directed spatial analysis of transcription and protein expression.20–23 The spatial information regarding the distribu-

tion and interactions of tumor cells, stromal cells, and immune cells provides an enriched guiding principle for a deeper understanding of

tumor heterogeneity.

Here, we present a spatiotemporal atlas designed to quantify mRNA populations within the spatial context of intact tissue. This atlas sys-

tematically characterizes spatial archetypes and cellular heterogeneity across 16 GBM tissue samples obtained from three GBM patients.

Through the integration of pathological partitioning, we unravel the correlation between cell types and GBM subtypes, shedding light on

the prevalent cell-cell communications within distinct clusters. Additionally, we conduct a comprehensive analysis and comparison of meta-

bolic patterns across various pathological zones. These datasets are poised to provide valuable spatial insights into the expression patterns of

genes of interest within the field, thereby contributing to a deeper understanding of the complex spatial and temporal dynamics underly-

ing GBM.
RESULTS

Exploration of GBM architecture with spatial transcriptomics

To comprehensively analyze the spatial heterogeneity, we collected 16 surgical specimens from three patients with newly diagnosed GBM

and applied ST analysis via 103Genomics Visium platform (Figure S1A). All the three patients did not receive radio- or chemotherapy before

tumor resection. In this study, a spot contains approximately 2–40 cells (Figure S1B). Themedian sequencing depth of a single spot is approx-

imately 30,000 unique molecular identifiers (UMIs) and 3,000 genes (Figure S1B; Table S1).

Each individual sample was processed using the R Seurat24 package and normalized by the sctransform method. Subsequent analysis

employing t-distributed Stochastic Neighbor Embedding (t-SNE) and UniformManifold Approximation and Projection (UMAP) revealed sig-

nificant distinctions among spot obtained from distinct patients (GBM1 vs. GBM2 vs. GBM3). These spots were distinctly mapped to discrete

locations based on their gene expression profiles, as illustrated in Figure S1C. This divergence underscores the pronounced inter-tumor het-

erogeneity within the dataset. Furthermore, scrutiny of spot obtained from serial sections (GBM1-R1-1 to GBM1-R1-4 and GBM1-R2-1 to

GBM1-R2-4) corresponding to specific regions (GBM1-R1 and GBM1-R2, respectively) demonstrated a consistent mapping to the same

t-SNE or UMAP coordinates based on gene expression. In contrast, scrutiny of spot fromnon-serial sections originating fromdistinct sampling

sites (R1 to R4) within the same patients (GBM2 or GBM3) exhibited discrete t-SNE or UMAP coordinates (Figures S1D and 1B). This obser-

vation underscores the intra-tumor heterogeneity. The presence of both inter-tumor and intra-tumor heterogeneity collectively attests to the

heightened diversity inherent in GBM cellular composition.

We conducted a meticulous histopathological analysis on H&E staining images obtained from 16 sequenced samples, delineating path-

ological division into five distinct areas: tumor, necrosis, peritumor, hemorrhage, and blood vessel regions (Figure S1F). Notably, GBM2-R1

showcased comprehensive histopathological features, encompassing all five delineated areas with exceptional clarity (Figure 1B). Conse-

quently, GBM2-R1 was selected as an exemplary case for an in-depth analysis.

Applying BayesSpace25 for integrated clustering analysis on this representative sample, we identified six distinct cellular clusters and

subsequently mapped them back to their spatial locations (Figure 1C; Table S2). Remarkably, these clusters exhibited a noteworthy corre-

spondence with the predefined pathological divisions within GBM2-R1. Particularly, striking is the spatial distribution of spots in Cluster 3,

predominantly situated in regions enriched with blood vessels, tumor periphery, and tumor junction, whereas Cluster 7 spots were identified

in the peritumoral area at the forefront of tumor infiltration into surrounding normal brain tissue (Figures 1B and 1C). Distinctively, Cluster 5

was localized adjacent to blood vessels, displaying the highest cell density, setting it apart from the necrotic areas around the tumor or at the

tumor center (Figure 1B). Additionally, other clusters, namely Cluster 1, 2, and 6, were identified within the tumor center, corresponding to

areas indicative of tumor necrosis. Ultimately, the established clustering criteria were extrapolated to all 16 samples obtained from three

distinct patients (Figures 1D and S2A). The spatial distributions elucidate a comparable consistency between the identified clusters and

the predefined pathological divisions across the entire sample set (Figures S2B and S2C). The coherence observed between gene expression

profile clustering and pathological divisions not only underscores the presence of intra-tumor heterogeneity but also validates the robustness

of the clustering analysis.

In summary, the six identified clusters exhibited distinctive distribution patterns across the sequenced samples. Notably, spots derived

from serial sections of GBM1-R1 encompassed representatives from all six feature clusters, whereas serial sections from the same patient,

GBM1-R2, predominantly featured spots clustered into Cluster 3 and Cluster 7 (Figure 1E). Although spots assigned to Cluster 5 and Cluster

7 were consistently identified across all sequenced samples, their proportional representation varied significantly among samples. Notably,

GBM3-R2�R4 exhibited the highest proportion of spots assigned to Cluster 5 (58.86%–81.21%), whereas GBM1-R2-1�4 displayed the lowest
2 iScience 27, 110064, June 21, 2024
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Figure 1. Exploration of the architecture complexity of GBM through spatial transcriptomics

(A) UMAP (Uniform Manifold Approximation and Projection) plot illustrating the spots from all tissue sections, colored by their respective sample origins.

(B) Histopathological analysis conducted on the hematoxylin and eosin (H&E) stained images of GBM2-R1, providing insights into the histological characteristics.

Scale bars, 1 mm.

(C) Application of the BayesSpace method to perform clustering analysis of GBM2-R1, revealing distinct pathological subareas with the tissue. Individual spots

are represented as dots, colored based on optimized global clusters.

(D) UMAP plot displaying the spots from all sections, with colors indicating the delineation of optimized global clusters.

(E) Depiction of the distribution pattern of the optimized clusters across the 16 sequenced samples.

(F) Heatmap showing the expression patterns of differentially expressed genes across the identified clusters.

(G) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differently expressed genes across the identified clusters, offering insights into the

associated pathways and biology functions.

(H)GeneOntology (GO)analysis conductedon thedifferently expressedgenesacross variousclusters, shedding lighton thedistinct functional rolesof thesegenes.
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values (0%–2.08%; Figure 1E). Cluster 7 similarly demonstrated diverse cellular proportions ranging from 0.06% to 49.12%. Analogously, other

clusters displayed similar distribution trends, with Cluster 3 exhibiting the highest ratio in GBM1-R2 (65.86%–98.45%) and Cluster 1 being

present in all sequenced samples except GBM1-R2 (Figure 1E). These findings collectively underscore the presence of intra-tumoral and in-

ter-tumoral heterogeneity within GBM at the cellular clustering level.

To further elucidate the pathological significance associated with spot clustered into the six distinct clusters, we performed a differential

gene expression analysis, identifying Differentially Expressed Genes (DEGs) for each cluster. The heatmap in Figure 1F highlights the top 10

representative DEGs per cluster, clearly demarcating distinctive gene expression profiles for each cluster. DEGs enrichment analysis, employ-

ing the Kyoto Encyclopedia of Genes andGenomes (KEGG) pathways, unveiled intrinsic differences among the clusters. Specifically, Cluster 3

exhibited enrichment in pathways of focal adhesion and extracellular matrix (ECM)-receptor interaction (Figure 1G), indicative of its height-

ened plasticity within the tumor microenvironment (TME). Concurrently, Gene Ontology (GO) and Reactome analyses corroborated these

findings, emphasizing the functions of regulation of extracellular matrix structural constituent, collagen binding, extracellular matrix organi-

zation, and degradation of the extracellular matrix (Figures 1H and S3A). In contrast, Cluster 7 demonstrated KEGG enrichment in synaptic

vesicle cycle and antigen processing and presentation (Figure 1H), suggesting a composite phenotype reflecting features of both normal

brain tissues and infiltrating tumor cells. GO and Reactome analyses further supported these observations, revealing enrichments in major

histocompatibility complex (MHC) protein complex binding and transmission across chemical synapses (Figures 1G and S3A). Take

GBM2-R1 as a representative case, we conducted a more intricate analysis focusing on Cluster 3 (associated with blood vessels) and Cluster

7 (representative of the peritumoral region) (Figures S3B–S3D). Subsequent enrichment analysis of DEGs provided a more explicit and pro-

nounced delineation of molecular characteristics. Collectively, these data underscore distinct molecular features discernible among the iden-

tified clusters.
Cellular composition analysis and heterogeneity patterns in GBM

To conduct an in-depth analysis of the cellular composition within the sequenced samples, we use the SingleR to perform cell-type annotation

based on the Human Primary Cell Atlas (HPCA). When comparing GBM1-R1 and GBM2, a comparable distribution of spots designated as

astrocytic was observed (63.27%–68.70% vs. 32.67%–93.04%; Figures 2A and S4A). Remarkably, GBM3 exhibited the highest percentage

of spot classified as astrocytes (96.49%–99.96%), whereas GBM1-R2 displayed the utmost proportion of spot assigned to the tissue stem

cell type (96.53%–98.01%) (Figures 2A and S4A). Despite the consistent presence of all identified cell types across samples from diverse pa-

tients, their relative proportions exhibited considerable variability, even within samples derived fromdistinct regions of the same patient. This

phenomenon underscores the pronounced inter-tumoral and intra-tumoral heterogeneity prevalent in GBM.

A comprehensive examination of cell-type enrichment within distinct clusters was subsequently undertaken for both the merged dataset

and individual samples. Notably, certain cell types, such as tissue stem cells, neurons, and astrocytes, demonstrated a pervasive enrichment

across all six clusters (Figure 2B). Cluster 3 exhibited a pronounced enrichment specifically with the cell type of tissue stem cells. Remarkably,

fibroblasts and mesenchymal stem cells (MSC) manifested exclusive enrichment within Cluster 3 (Figure 2B). Consistent findings were

observed in GBM2-R1 and all other samples (Figures 2B and S4B). The heightened presence of tissue stem cells and MSC within Cluster 3

implies an augmented degree of malignancy and enhanced infiltration capacity. Additionally, Cluster 7 displayed a composite composition

featuring astrocytes, tissue stem cells, and neurons (Figures 2B and S4B), indicative of the frontier regions of tumor infiltration.

Leveraging gene expression profiles, we computed module scores for each defined cluster by employing markers associated with glio-

blastoma subtypes (CL, MES, and PN; Table S3). Notably, the gene expression profiles of spots residing in Clusters 3 and 7 exhibited a sig-

nificant enrichment with theMES subtype across all 16 sequenced samples (0.34–0.60, mean = 0.52 vs.�0.01 to 0.38, mean = 0.23; Figure 2C).

In contrast, neither the PN nor the CL subtype demonstrated a significant enrichment in any spot cluster (�0.18 to 0.24, mean = �0.03 and

�0.08 to 0.11, mean = 0.003 for PN and CL, respectively; Figure 2C). To elucidate spatial heterogeneity, we assessed the expression patterns

of established markers associated with different GBM subtypes. Notably, in GBM2-R1, the expression of MES markers CD44 and vascular

endothelial growth factor A (VEGFA) exhibited a pronounced elevation, followed by the PN markers OLIG2 and EZH2, whereas the CL

markers FGFR3 and CDH4 were observed at comparatively lower levels (Figure S5A), further confirming the intra-tumoral heterogeneity

with regard to spatial distribution.

Furthermore, upon mapping spots with the MES subtype to the H&E staining image, a conspicuous observation emerged, revealing their

predominant localization in regions characterized by a heightened density of blood vessels and situated at the interface between the tumor

and the peritumoral area of pathological classification in GBM2-R1 (Figures 1B and 2D). Additionally, spots exhibiting the MES subtype

demonstrated a positive correlation with the tissue stem cell signature (R = 0.84, p < 2.2e-16; Figure 2E). While there was minimal enrichment

of PN subtype spots, CL subtype spots were only marginally enriched in Cluster 5, positioned within the tumor area adjacent to spots of

Cluster 3. Notably, spots displaying the PN or CL subtype exhibited no significant correlation with the tissue stem cell signature (R =

�0.0024, p = 0.98, and R = �0.17, p = 0.13, respectively; Figures S5B–S5E).

Notably, quiescent cancer stem cells present different transcriptional characteristics from proliferating counterparts. More importantly,

quiescent GBM stem cells drive the initiation, expansion, and recurrence of tumors after chemotherapy.26 Accordingly, we analyzed Cluster

3 based on the concept of quiescent cancer stem cells defined by the research of Xie et al. and found that the quiescent cancer stem cell

signature was significantly enriched in both the integrated analysis of 16 samples and the standalone analysis of GBM2-R1 (Figure 2F). These

findings collectively demonstrate that the enrichment of tissue stem cell types andMES subtypes in the GBM sample, specifically in Cluster 3,

aligns molecularly with the malignant nature of the disease.
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Figure 2. Characterizing inter-tumoral and intra-tumoral heterogeneity in GBM

(A) Distribution of major cell types across patients.

(B) Examination of the enrichment patterns of distinct cell types within various clusters observed in all samples and in the specific case of GBM2-R1.

(C) Relationships based on the correlation analysis between the defined clusters and the GBM molecular subtypes.

(D) Spatial mapping illustrating the distribution of MES subtypes within the GBM2-R1 sample.

(E) Correlation analysis unraveling the associations between the MES subtypes and tissue stem cell types within the context of GBM2-R1. p value was calculated

using two-sided Student’s t test.

(F) Violin plot analysis of quiescent cancer stem cells in Cluster 3.

(G) Violin plot analysis of three signatures (MES-Hyp, MES-Ast, MES-mal) in Cluster 3.
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According to recent studies, diverse MES states exist in glioblastoma with distinct functional, genetic, and environmental associations,

leading to variations in clinical prognosis.27,28 To determine how these MES states are prevalent in our work, we initially analyzed our data

using 10GBMMES signatures summarized by Chanoch-Myers.We found that Cluster 3 is highly enriched forMES_CORE andMHCI isoforms,

both in the integrated analysis of 16 samples and in the separate analysis of GBM2-R1. Notably, MHCII is also significantly enriched in the

integrated analysis of the 16 samples (Figures S6A and S6B). Subsequently, we analyzed the data with three GBM signatures defined by

Greenwald and observed enrichment of all three signatures (MES-Hyp, MES-Ast, andMES-mal) (Figure 2G). Nevertheless, MES-Hyp is signif-

icantly enriched in the integrated analysis of 16 samples, whereas MES-mal is significantly enriched in GBM2-R1. Therefore, the marked dif-

ferential enrichment of MES subtypes within Cluster 3 signifies a profound level of intra- and inter-tumoral heterogeneity in GBM. These data

prompt us to conduct amore comprehensive investigation into how distinctMES subtypes influence the pathogenesis and prognosis of GBM

in the future.
iScience 27, 110064, June 21, 2024 5



ll
OPEN ACCESS

iScience
Article
CellChat reveals spatial crosstalk signaling network in GBM

Intercellular communication is paramount for the proper functioning ofmulticellular organisms, with cells exchanging information through the

secretion of soluble factors or direct interactions.29 Tumor cells reside in a complex TME composed of diverse stromal cells, including immune

cells and fibroblasts, as well as the extracellular matrix.30 Communication between tumor and non-tumor cells, facilitated by ligand/receptor

cross-talks within the glioma TME, has been shown to promote tumor aggressiveness.10 Additionally, communication among non-tumor cells

is characterized by the predominant influence of the CXCL family of chemokines and their associated receptors, particularly noticeable inM2b

macrophages and neutrophils.10 The TME and intercellular communication among TME components are increasingly acknowledged as a

pivotal facilitator in the progression of GBM, exerting a critical influence on tumor development.10,31–33

To delineate spatially specific ligand-receptor interactions between clusters, we conducted crosstalk signaling network analysis using

CellChat,34 a tool capable of quantitatively infer and analyze intercellular communication networks from single-cell RNA sequencing

(scRNA-seq) data.34 Among the 58 distinct ligand-receptor pairs identified across different clusters in the 16 samples, the ligand-receptor

interaction networks involving VEGF, ANGPT, PERIOSTIN, TGFb, and PDGF were significantly enriched in GBM patients (Figure 3A;

Table S4). Notably, the senders and receivers were distinct for each ligand-receptor interaction. The signaling of VEGF was predominantly

received by Cluster 3 while being emitted by all clusters (Figures 3A and S7A). In contrast, the signals of ANGPT, PERIOSTIN, TGFb, and

PDGF were primarily sent by Cluster 3 and received by all clusters (Figures 3A and S7B). The intricate sender-receiver pairs underscore

the frequent intercellular communication within the TME and emphasize the necessity of spatial information in the study of GBM.

The VEGF signaling pathway, along with its downstream ANGPT signaling pathway, has been implicated not only in angiogenesis and

vascular permeability but also in the initiation, progression, and recurrence of tumors, as well as in the generation and preservation of cancer

stem cells (CSCs).35,36 In accordance with previous research, Cluster 3 spots, displaying a significant degree of malignancy, exhibit an enrich-

ment of VEGF signaling. Given the notable enrichment of both VEGF and ANGPT signaling in our samples, crucial in tumor progression, we

conducted an in-depth analysis of the VEGF signaling pathway in theGBM2-R1 sample (Figure 3B). Unsurprisingly, our analysis aligns with the

comprehensive results from all samples. The findings suggest that in GBM2-R1, spots within Cluster 3, situated in the vascular-enriched area,

predominantly receive VEGF signaling. Moreover, all six clusters could potentially function as signal transmitters (Figure 3B). Regarding

ANGPT signaling, Cluster 3 spots emerge as the primary source of ANGPT ligands, in addition to serving as the primary recipients of this

signaling (Figures 3B and S7B). The reception of VEGF and transmission of ANGPT by Cluster 3 not only align with the upstream-downstream

dynamics of these two signaling pathways but also imply the aggressive nature and potential promotion of tumor development within

Cluster 3.

Notably, both ANGPT- and VEGF-targeting drugs have demonstrated efficacy in inhibiting tumor growth and reducing tumor burden. The

synergistic application of agents targeting both pathways has yielded significantly enhanced anti-tumor and anti-angiogenic effects.37,38 In a

granular examination, ligand-receptor analysis pinpointed VEGFA and VEGFB as the primary transmitters of the upstream VEGF signaling

pathway in our samples, with VEGFR1 and VEGFR2 emerging as the principal receptors (Figure 3C). Given the prominent expression of

the VEGFS ligand-receptor pair in the spots within our samples, we substantiated the involvement of receptor-ligand interactions in tumor

progression using theGBMcell lineU87. Utilizing short hairpin RNA (shRNA) constructs targeting VEGF receptor 1 and 2 (VEGFR1/2) to disrupt

the ligand-receptor interaction, the Transwell assay revealed a substantial attenuation in the migration capability of U87 cells (Figure 3D).

Furthermore, the knockdown of VEGFR1/2 significantly abrogated the sphere formation capacity of U87 cells (Figure 3E). In light of the pre-

ceding signaling pathway enrichment analysis and the corresponding experimental validations, it becomes evident that the pronounced

enrichment of upstreamVEGF and downstreamANGPT signaling pathways play a pivotal role in sustaining the highmalignancy traits of GBM.
Deciphering metabolic landscapes in GBM

Metabolic reprogramming emerges as a distinctive hallmark of cancer, endowing cells to generate ample energy andbiosynthetic precursors,

thereby propelling malignant cellular proliferation.39,40 A previous study highlighted the intricate link between metabolic reprogramming

steering gliomagenesis and aberrations in amino acid, lipid, and peptide metabolism.40 To elucidate metabolic alterations in GBM patients,

we conducted metabolomic profiling, referencing the altered metabolic pathways identified in Prabhu AH’s publication (Table S5).40 Our

analysis of ST RNA-seq data revealed prominent enrichment of glycogen metabolism and oxidative phosphorylation (OXPHOS) in all six

distinct clusters among the 16 sequenced samples from three patients, regardless of their pathological location (Figure 4A). This suggests

that the heightened Glycogen metabolism in tumors is harnessed to sustain cancer cell growth. Notably, the observed OXPHOS enrichment

aligns with previous findings indicating the frequent upregulation of this metabolic pathway in cancer tissues. Despite the simultaneous

enhancement of glycolysis, OXPHOS serves to provide ATP, thereby promoting tumor proliferation, survival, and genomic stability.41 Simi-

larly, glycolysis and gluconeogenesis were prominently enriched in all spots, irrespective of their pathological location (Figure 4A). This dis-

covery corresponds with earlier research indicating that the upregulation of glycolysis and gluconeogenesis pathways facilitates the rapid

synthesis of metabolic intermediates essential for macromolecular biosynthesis.42 Furthermore, it enhances the reduction of harmful reactive

oxygen species (ROS), thereby sustaining cell proliferation and viability.41,42 Consequently, our findings underscore a pronounced cancer-

specific metabolic profile in malignant GBM.

Creatine, a naturally occurring nitrogen-containing organic acid present in mammals, facilitates sustained energy for cell growth through

the interconversion between creatine and phosphocreatine.43 Recent evidence indicates a role for creatine in promoting cancer progression

and metastasis.44–47 In our GBM ST-seq analysis, we observed enrichment of creatine metabolism in various cell populations, with the excep-

tion of spots classified as Cluster 3 (Figures 4A and 4B). Notably, in GBM2-R1, the enrichment of creatine metabolism in Cluster 3 spots
6 iScience 27, 110064, June 21, 2024



VEGF
CHEMERIN
VISFATIN
SPP1
ANGPT
PERIOSTIN
CXCL
TGFb
PDGF
BMP
GRN
EDN
LIFR
ACTIVIN
TWEAK
ncWNT
CCL
OSM
IL16
IGF
OX40
PSAP
CSF
CX3C
ANNEXIN
APELIN
GALECTIN
FGF
SEMA3
MIF
GDF
CALCR
ANGPTL
PTH
WNT
IL1
GALANIN
COMPLEMENT
HGF
EGF
GAS
PROS
MK
PTN
NPR1
NRG
KIT
ENHO
IL6
PACAP
IL2
IL10
OPIOID
CCK
PARs
TNF
HH
UCN

C
3−

>
C

3
C

7−
>

C
3

C
3−

>
C

7
C

3−
>

C
5

C
3−

>
C

6
C

3−
>

C
1

C
3−

>
C

2
C

6−
>

C
3

C
5−

>
C

3
C

1−
>

C
3

C
2−

>
C

3
C

7−
>

C
7

C
7−

>
C

5
C

6−
>

C
7

C
6−

>
C

5
C

6−
>

C
6

C
6−

>
C

1
C

6−
>

C
2

C
5−

>
C

7
C

1−
>

C
7

C
2−

>
C

7
C

5−
>

C
5

C
1−

>
C

5
C

2−
>

C
5

C
7−

>
C

1
C

7−
>

C
2

C
1−

>
C

1
C

5−
>

C
1

C
2−

>
C

1
C

2−
>

C
2

C
1−

>
C

2
C

5−
>

C
2

C
7−

>
C

6
C

1−
>

C
6

C
5−

>
C

6
C

2−
>

C
6

Occurrence

0 5 10 15

PGF - VEGFR1

VEGFB - VEGFR1

VEGFA - VEGFR2

VEGFA - VEGFR1R2

VEGFA - VEGFR1

Li
ga

nd
-re

ce
pt

or
pa

ir

GBM1-R1
1 2 3 4

GBM1-R2
2 3 4

GBM2
1 3 4

GBM3
2 3 42

0.2

0.4

0.6

Scr shVEGFR1 shVEGFR2 shNRP1 shNRP2

VEGF Signaling Pathway（GBM2-R1）

0.00

0.25

0.50

0.75

1.00

C
on

tr
ib

ut
io

n

Sender Receiver

Sender

0.00

0.25

0.50

0.75

1.00

C
on

tr
ib

ut
io

n

Receiver

ANGPT Signaling Pathway（GBM2-R1）

Cluster1 Cluster2 Cluster3

Cluster5 Cluster6 Cluster7

Scr shVEGFR1 shVEGFR2 shNRP1 shNRP2

0.00
0.05
0.10
0.15

0.4
0.6
0.8
1.0

VEGFR1

0.0

0.5

1.0

1.5

VEGFR2

0.0

0.5

1.0

1.5
NRP1

0.0

0.5

1.0

1.5
NRP2

****

U87 Scr shVEGFR1 Scr shVEGFR2 Scr shNRP1 Scr shNRP2

****

****
**

U
87

U87

0 20 40 60 80 100

−4
−3

−2
−1

0

Dose (Number of cells)

lo
g 

fra
ct

io
n 

no
nr

es
po

nd
in

g

Group U87Scr
Group U87shNRP1
Group U87shNRP2
Group U87shVEGFR1
Group U87shVEGFR2

Contribution

200μm 200μm 200μm 200μm 200μm

100μm 100μm 100μm 100μm 100μm

Figure 3. Spatial crosstalk signaling network in GBM

(A) Heatmap representing the comprehensive analysis of ligand-receptor pairs between clusters across all sequenced samples. In total, 58 distinct ligand-

receptor pairs were identified.

(B) Focused cluster-based examination of ligand-receptor interactions involving VEGF and ANGPT within the context of GBM2-R1.

(C) Systematic analysis of ligand-receptor pairs pertaining to VEGF across all sequenced samples.

(D) Utilizing Transwell assays, GBM cell line U87 was subjected to shRNA-based targeting of VEGF receptor 1 and 2 (VEGFR1/2) and scramble-RNA to

disrupted the ligand-receptor interaction, respectively. Top: migrated cell was quantified and compared. Bars represent mean G SD, n = 3. p value was
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Figure 3. Continued

calculated using two-sided unpaired t test. **p < 0.01; ****p < 0.0001, n = 3. Bottom, representative images of three independent experiments are provided.

Scale bars, 200 mm.

(E) Extreme limiting dilution analysis was performed using GBM cell line U87 treated with shRNA targeting VEGF receptor 1 and 2 (VEGFR1/2) and scramble-RNA

to disrupt the ligand-receptor interaction, respectively. Probability estimates and frequency calculations were computed using the ELDA software.59 Scale bars,

100 mm.
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(enriched with the MES subtype) was markedly lower compared to adjacent Cluster 5 spots with the CL subtype (Figures 4A and 4B). Further-

more, the enrichment of creatinemetabolism in the cell population defined asCluster 7, situated at the peritumoral region,may be associated

with its potential to promote tumor infiltration and metastasis.

As elucidated earlier, we identifiedmetabolic distinctions amongGBM subtypes, prompting a correlation analysis to unveil key metabolic

pathways specific to a subtype. Here, we focused on MES subtype, known for its heightened malignancy in GBM. The correlation analysis,

centered on altered metabolic pathways in GBM patients with the MES subtype and utilizing 16 sequenced samples from three patients, un-

veiled a positive association between the MES subtype and several pivotal metabolic pathways. Specifically, the lysophospholipid pathway,

amino sugar and nucleotide sugar metabolism, nicotinate and nicotinamide metabolism, folate metabolism, galactose metabolism, taurine

and hypotaurine metabolism, and porphyrins metabolism were markedly and positively correlated with the MES subtype (Figure 4C). Zoom-

ing in on the metabolic signaling pathways that exhibited a substantial positive correlation with the MES subtypes, the correlation analysis of

the selected seven metabolic signaling pathways present in the peritumor region demonstrated non-significant correlations with CL subtype

spots situated in the rapidly proliferating tumor areas. Conversely, these pathways showed a negative correlation with PN subtype spots,

which were sparsely distributed within the tumors (Figure S8A). These findings underscore the intrinsic disparities among the PN, CL, and

MES subtypes when viewed through the lens of metabolism.

Although the previouslymentioned pathways exhibited positive correlations with theMES subtype, they displayed diverse patterns across

samples (Figure S8B). Notably, Folate metabolism, a pathway associated with vitamins, was prominently enriched in Cluster 7 among the 16

sequenced samples. In contrast, nicotinate and nicotinamide metabolism showed significant enrichment in Cluster 3 within GBM1-R1-1 to

GBM1-R1-4 but exhibited no enrichment in any cluster of GBM2-R1. Furthermore, amino sugar and nucleotide sugar metabolism, as well

as porphyrins metabolism, were not enriched in any spot clusters of GBM2-R4. These findings underscore the presence of both inter- and

intra-tumor metabolic heterogeneity.

Subsequently, we managed to establish the correlation between metabolic with pathological heterogeneity. Blood vessels within tumors

supply nutrients and oxygen but often fail to meet the increasing demands of a growing tumor. The proximity to blood vessels influences

tumor characteristics, with cancer cells near vessels showing intensemetabolism, defying theWarburg principle through oxidative phosphor-

ylation.48 Here, we focused on the vessel-enrichedCluster 3.We stratified spots perpendicular to Cluster 3 into layers of five consecutive spots

to explore metabolic changes relative to vessel proximity. As shown in Figure S9A, three layers were delineated by Cluster 3: ‘‘inner’’ (I) and

‘‘outer’’ (O). Unsupervised clustering analysis revealed significant distinctions among spots within distinct layers (Figures S9B and S9C). We

then examined changes in hypoxia signaling pathways vertically relative to vessel proximity. And we found that Cluster 3 has the lowest

hypoxia signaling enrichment, increasing toward the peritumoral brain parenchyma and tumor center (Figure S9D). Similarly, glycolysis,

gluconeogenesis, and oxidative phosphorylation show trends mirroring hypoxia signaling, being lowest in Cluster 3 and increasing toward

the tumor core and peritumoral regions (Figures S9E–S9G). These findings suggest significant alterations in oxygen supply and metabolism

occur at the microscopic level with changing distances from blood vessels.

mTOR signaling, a metabolic regulator responding to cellular energy and key metabolite availability, plays a crucial role in tumorigenesis

and cancer cell characteristics.49,50 Functional evidence also support the mTOR dependence in tumor aggressiveness and resistance.48

Accordingly, we assessed mTOR pathway enrichment relative to vessel distance perpendicular to Cluster 3. Figure S9H indicates enrichment

in all clusters except C3I1 and C3I2, with the outer direction of Cluster 3 exhibiting the most significant enrichment. This region, bordering

peritumoral infiltration, shows heightenedmTOR activity, suggesting enhancedmigratory or invasive capabilities (Figure S9I). Cluster 3, rich in

tissue stem cells andGBMMES subtypes, further underscores the association betweenmTORenrichment and invasive behavior in this region.
DISCUSSION

Tumor heterogeneity poses a significant challenge in the treatment of GBM. In this study, we conducted genome-wide transcriptome mea-

surements on three GBM samples characterized by high heterogeneity, achieving a spatial resolution of 55 mm. Through sequential compar-

isons from the peritumoral region to the center of necrosis, we observed that, irrespective of the location within the tumor area—whether near

the tumor periphery or at the necrotic site—MES subtypeswith highermalignancy were notably enriched in the perivascular area of the tumor.

This observation suggests a potential association with vascular metastasis to adjacent normal brain regions. The necrotic area within the tu-

mor arises from the tumor’s rapid proliferation, leading to the depletion of nutrients or oxygen supply within the tumor mass. The positive

correlation betweenMES subtypes and tissue stem cells present in Cluster 3, aggregated around blood vessels, may contribute to enhanced

tumor cell proliferation and infiltration into the adjacent peritumoral area.

MSCs are ubiquitously found in various tissues, including brain tissue, where they are predominantly located in close proximity to blood

vessels.51 Glioma-associated MSCs have been implicated in facilitating tumor invasion by promoting new angiogenesis and preserving the

stemness of tumor stem cells.52 Consistent with prior research, our analysis of ST data unveiled that MSC cell subtypes were exclusively
8 iScience 27, 110064, June 21, 2024
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Figure 4. Deciphering metabolic landscapes in GBM

(A) Bubble plot depicting the comprehensive landscape of altered metabolic programs observed in GBM patients. Each bubble represents a specific metabolic

program, and its size corresponds to the magnitude of alteration.

(B) Barplot providing a detailed view of the altered metabolic programs within the specific context of GBM2-R1.

(C) Correlation analysis conducted to establish the relationships between the altered metabolic pathway observed in GBM patients and the MES subtype within

the GBM2-R1 sample.
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identified in spots belonging to Cluster 3, positioned adjacent to blood vessels. Fibroblasts, which may originate fromMSC cells, exhibit sig-

nificant similarities to mesenchymal stem cells when activated. They play a pivotal role in promoting tumor initiation, proliferation, invasion,

epithelial-mesenchymal transition, metastasis, and alterations in tumor metabolism.53 Intriguingly, our cell-type analysis disclosed that fibro-

blasts were exclusively present in spots belonging to Cluster 3, aligning with the distribution of MES cells. With the enrichment of stem cell

signatures andMES subtypes in the cell population defined as Cluster 3, the presence of MSCs and fibroblast cell typesmay contribute to the

promotion of tumormalignancy. Therefore, amore in-depth analysis of cell types, particularly focusing on the fibroblast population, holds the

potential to provide a clearer understanding of the contribution of the GBM stroma to tumor progression.
iScience 27, 110064, June 21, 2024 9
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We conducted a comprehensive analysis of cell-cell communication between distinct spot clusters. Spots situated in the perivascular area,

grouped into Cluster 3 and enriched with tissue stem signatures and MES subtypes, exhibited a significant enrichment of VEGF signals and

functioned as the primary recipients of VEGF signals. Notably, these spots also emitted robust ANGPT signals that exerted an influence on

adjacent spots. Both VEGF and ANGPT signals are well established as critical factors in promoting tumor angiogenesis and malignant pro-

gression.35,37,38,54 Considering that VEGF-mediated signaling occurs in tumor cells and contributes to pivotal aspects of tumorigenesis, such

as the function of CSCs and tumor initiation, the observed reduction in cell migration and self-renewal abilities after VEGFR knockdown un-

derscores the angiogenesis-independent tumor-promoting role of the VEGF signaling pathway. Furthermore, the enrichment of VEGF,

CXCL, transforming growth factor b (TGF-b), CCL, and interleukin-16 (IL-16) signals in spots classified as Cluster 3, which were found to be

fibroblast-distributed across all analyzed samples, suggests that fibroblasts enriched in this region may play a tumor-promoting role consis-

tent with cancer-associated fibroblasts.

Metabolic reprogramming stands out as a hallmark of cancer and holds promise as a therapeutic target.55–57 Our transcriptome-based

metabolic enrichment analysis unveils that themetabolic pathway enrichedbyGBMcells, characterized as theMES subtype, is mutually exclu-

sive with the GBM cell subpopulation defined as PN, aligning with findings from Prabhu AH’s article.40 Despite the diverse molecular path-

ways propelling gliomagenesis, metabolic programs designed to sustain the aggressive phenotype of this malignancy appear to be

conserved within its intricate tumor ecosystem.39,40,55,58 In the ST-seq dataset under investigation, we observed the metabolic pathways

commonly altered across both inter- and intra-tumoral compartments, including glycogen metabolism, glycolysis and gluconeogenesis,

and OXPHOS. These metabolic changes were uniformly enriched in all cell types, irrespective of their pathological classification. In contrast,

creatine metabolism was selectively enriched in specific spot populations, notably excluding spot classified as Cluster 3, primarily found in

vascular-rich regions. These observed alterations in tumor metabolism suggest that tumors adeptly adapt to their microenvironment by

orchestrating nutrient shuttling, thereby ensuring sufficient nutritional support for tumor growth and progression.

Our data analyses provide valuable insights into cell-type composition, cell-cell communication, and cell metabolism. However, a limita-

tion of our study is the relatively small sample size, as we collected samples from only three GBM patients who had not undergone chemo-

therapy or radiotherapy before surgery. A more extensive dataset, encompassing samples from a larger cohort of GBM patients, both with

and without prior chemotherapy or radiotherapy, is crucial for a thorough investigation and enhanced clinical applicability. Additionally, our

experimental approach has limitations in that the captured and sequenced cells in each spot encompass multiple cells, ranging from approx-

imately 2 to 40 cells per spot. This introduces bias in defining the cell type or GBM subtype for each spot, hindering our ability to finely map

cell-cell communications. A parallel single-cell RNA-seq analysis conducted alongside the ST datasets on the corresponding samples would

contribute to a more accurate definition of cell types. Addressing these limitations would further enhance the robustness and applicability of

our findings.

In summary, we harnessed the power of ST-seq technology to construct a comprehensive genome-wide spatial transcriptome map of

GBM.Our findings revealed profound global and local intratumor heterogeneity within tumors and TME, as elucidated through cell subtypes,

cell communication, and metabolic analyses. Notably, tumor clusters originating from different patients or distinct tumor locations within the

same patient showcased distinctive spatial patterns and transcriptomic diversities. These results provide invaluable insights into the intricate

biology of GBM, shedding light on the complex interplay of cellular elements and signaling pathways within the tumor landscape. Such in-

sights hold significant implications for the development of innovative therapeutic strategies geared toward addressing the diverse molecular

and spatial characteristics of GBM, ultimately propelling the field toward more effective treatment approaches.
Limitations of the study

This study aims to unveil spatial intricacies of inter- and intra-GBM heterogeneity. We collected samples from only three GBM patients who

had not received chemotherapy or radiotherapy prior to surgery. A more extensive dataset, incorporating samples from a larger cohort of

GBM patients, both with and without prior chemotherapy or radiotherapy, is crucial for a thorough investigation. Furthermore, our experi-

mental methodology presents limitations, as the cells captured and sequenced in each spot comprise a range of 2–40 cells per spot. This

introduces bias in defining cell types or GBM subtypes for each spot, impeding our ability to finely map cell-cell communications. A concur-

rent single-cell RNA-seq analysis conducted alongside the ST datasets on the corresponding samples would enhancer the precision of defi-

nition of cell-type definitions.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tumor tissue of treatment-naive GBM patient Tianjin Huanhu Hospital N/A

Chemicals, peptides, and recombinant proteins

Hematoxylin, Mayer’s (Lillie’s Modification) Agilent S330930-2

Bluing Buffer, Dako Agilent CS70230-2

Eosin Y solution, aqueous, 0.5% (w/v) in water Millipore Sigma HT110216-500ML

Tris-base solution Thermo Fisher Scientific BP152-500

Glycerol Millipore Sigma 104094

SSC Buffer 20X Concentrate Millipore Sigma S6639-1L

Visium Spatial Gene Expression

Slide & Reagent Kit

10x Genomics 16 rxns PN-1000184

Potassium Hydroxide Millipore Sigma P4494-50ML

Low TE Buffer (10 mM Tris-HCl

pH 8.0, 0.1 mM EDTA)

Thermo Fisher Scientific 12090-015

Tris 1M, pH 7.0, RNase-free Thermo Fisher Scientific AM9850G

Ethanol, Pure (200 Proof, anhydrous) Millipore Sigma E7023-500ML

2-Propanol (Isopropanol), R 99.5% Millipore Sigma I9516-25ML

Methanol, for HPLC, R 99.9% Millipore Sigma 34860

Acetic acid, R 99.9% Millipore Sigma A6283

SPRIselect Reagent Kit Beckman Coulter B23318

Qiagen Buffer EB Qiagen 19086

KAPA SYBR FAST qPCR Master Mix (2X) KAPA Biosystems KK4600

Hydrochloric Acid Solution, 0.1N Fisher Chemical SA54-1

Deposited data

Spatial transcriptomics RNA-sequencing data This paper GEO: GSE253080

Experimental models: Cell lines

U87 American Type Culture Collection N/A

Experimental models: Organisms/strains

GBM patient 1 Tianjin Huanhu Hospital Male; 74 years old; WHO grade 4;

IDH wild type

GBM patient 2 Tianjin Huanhu Hospital Female; 72 years old; WHO grade 4;

IDH wild type

GBM patient 3 Tianjin Huanhu Hospital Female; 53 years old; WHO grade 4;

IDH wild type

Oligonucleotides

VEGFR1 knockdown: 50-GAGAGACTTAAAC

TGGGCAAA-30
This paper N/A

VEGFR2 knockdown: 50-GTGCTGTTTCTGACTCCTAAT-30 This paper N/A

NRP1 knockdown: 50-TATACTAGAATCACCGCATTT-30 This paper N/A

NRP2 knockdown: 50-CCTCAACTTCAACCCTCACTT-30 This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SpaceRanger 10x Genomics https://support.10xgenomics.com/spatial-

gene-expression/software/downloads/latest

Seurat v3.0.0 Stuart et al.24 https://github.com/satijalab/seurat/

releases/tag/v3.0.0

BayesSpace Zhao et al.25 http://www.bioconductor.org/packages/

release/bioc/html/BayesSpace.html

ELDA Hu et al.59 http://bioinf.wehi.edu.au/software/elda/

CellChat Jin et al.34 https://github.com/sqjin/CellChat
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xudong Wu

(wuxudong@tmu.edu.cn).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� Spatial transcriptomics RNA-sequencing data that support the findings of this study have been deposited in the GEO (https://www.

ncbi.nlm.nih.gov/geo/info/submission.html) under accession code GSE253080 and will be publicly available as of the date of

publication.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Tumor tissues were procured from patients diagnosed with treatment-naive GBM (WHO Grade 4) at the Tianjin Huanhu Hospital (Tianjin,

China). All tumor specimens were authenticated as glioblastoma by trained pathologists. For ST sequencing, 16 fresh tissue samples were

extracted via surgery from 3 Han Chinese patients with glioblastoma, 1 sample from males and 2 from females were used in this study

(Table S1). No information about socioeconomic status was collected for the participants. The GBM tumor specimens were promptly frozen

in liquid nitrogen and embedded in OCT compound. The frozen tissue specimens were then cryo-sectioned at a thickness of 10 mm. The sec-

tions weremountedon pre-treatedglass slides and incubated at 37�C for 1min (min), followedby fixation inmethanol for 30min at�20�Cand

washing in phosphate buffered saline (PBS). The current ST protocol was applied to all sections, resulting in both conventional hematoxylin

and eosin (H&E) images that were amenable to annotation by pathologists, as well as gene expression profiles for each microarray spot.

The study was approved by the Ethics Committee of Tianjin Huanhu Hospital (Application number, NO.2019-14) and conducted in adher-

ence to the Declaration of Helsinki and Good Clinical Practice. All participants were comprehensively informed about the study through

complete and adequate verbal and written communications prior to their involvement.Written informed consent was secured from all partici-

pating subjects before their enrollment in the study. A thorough review of the clinical information of these patients was conducted, which

included factors such as age, tumor size, overall survival (OS), disease-free survival (DFS), among others.
METHOD DETAILS

Outline of the spatial transcriptomics workflow

The ST experiment is based on the Visium Technology Platform of 10X Genomics Visium Platform. The specific product numbers of reagents

and consumables in the experiment can be found at https://www.10xgenomics.com/products/spatial-gene-expression.

The ST method adheres to the following workflow: tissue sectioning, tissue fixation, tissue staining, imaging, pre-permeabilization, per-

meabilization, cDNA synthesis, tissue removal, probe release, library preparation, sequencing, data processing, data visualization, and

analysis.

Typically, RNA integrity numbers (RIN) greater than 8 and good tissue morphology were considered suitable for subsequent library con-

struction and sequencing experiments. In the context of ST technology, each section within the capture area (6.5 mm by 6.5 mm) can contain

up to 5000 spots, with each spot having a diameter of 55 mm.We define ‘‘high-quality data’’ as sample data with an average number of genes
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per feature exceeding 1000, as well as proper tissue placement on the spatial array (tissue within the area, minimal folded areas and missing

pieces, etc.).
Staining and imaging

Sections were fixed for 10 min using pre-cooled methanol at �20�C and stained with Mayer’s Hematoxylin (#S3309, Dako) and Bluing buffer

(#CS702, Dako), followedby Eosin (#HT110216, Sigma-Aldrich) in a Tris-base solution (0.45MTris, 0.5MAcetic acid, pH 6.0). Following rinsing,

the dried sections were mounted with 85% Glycerol (#104094, Merck Millipore) and covered with a coverslip (#BB024060A1, Menzel-Glsäer).

Bright field imaging was performed using the Automated Quantitative Pathology Imaging System (Perkin Elmer). Raw images were stitched

together using ImageScope software. The images were then visualized and exported in JPEG format.
Permeabilization and reverse transcription

For each well, corresponding to each sub-array with a section, 70 mL of Permeabilization Enzyme was added along the side of the wells to

uniformly cover the tissue sections, ensuring the absence of bubbles. The Slide Cassette was gently tapped to guarantee uniform coverage,

followed by sealing and placing it on the Thermocycler Adaptor at 37�C for 30 min. Subsequently, the Permeabilization Enzyme was removed

by washing with 100 mL of 0.1x SSC. Finally, 70 mL of the reverse transcription mix was added to each well to initiate Reverse Transcription.
Second strand synthesis & denaturation

The RT Master Mix was removed from the wells, and 75 mL of 0.08 M Potassium hydroxide (KOH) was added to each well. Following a 5-min

incubation at room temperature (RT), the KOH was removed from the wells, and 100 mL of Qiagen Buffer EB (Cat. No. 19086) was added to

each well. Subsequently, the Buffer EB was removed from the wells, and 75 mL of the Second Strand Mix was added to each well to initiate

Second Strand Synthesis. After incubation, the reagents were removed from the wells, and 100 mL of Buffer EB was added to each well. Then,

the Buffer EB was removed from the wells, and 35 mL of 0.08 M KOH was added to each well. After a 10-min incubation at RT, 5 mL of Tris-HCl

(1 M, pH 7.0) was added to 4 tubes in an 8-tube strip (4 tubes will be used for each slide). Finally, 35 mL of the sample was transferred from each

well to a corresponding tube containing Tris-HCl in the 8-tube strip.
cDNA library preparation for sequencing

Onemicroliter of the sample was transferred to the qPCR plate, and 9 mL of qPCRMix was added to each well to initiate a qPCR procedure for

determining the cycle numbers of subsequent cDNA amplification steps. Next, 65 mL of cDNA Amplification Mix was added to the remaining

34 mL of samples and incubated in a thermal cycler to amplify the cDNA. Following amplification, 60 mL of SPRIselect reagent (0.6 3) was

added to each sample (100 mL in total). Following a 5-min incubation at RT, the tube strip was placed on the magnet$High. Once the solution

had clarified, the supernatant was removed, and the pellet was washed twice with 80% ethanol. Then, 40.5 mL of Buffer EB was added. After a

2-min incubation at RT, the tube strip was placed on the magnet,Low. Once again, once the solution had clarified, 40 mL of the sample was

transferred to a new tube strip. One mL of the sample was taken for cDNAquality control and quantification using an Agilent Bioanalyzer High

Sensitivity chip. Subsequently, the spatial gene expression library construction and sequencing were performed by Novogene Co., Ltd.
Sequence alignment and generation of gene expression database

In each pair of reads, the first read comprised the spatial barcode and the UMI but lacked gene information. The second read contained the

gene information and was initially processed using the Burrow-Wheeler Aligner (BWA) for quality trimming. Furthermore, stretches of homo-

polymers exceeding 15 bases were excised along with the sequences following the homopolymer, and all reads shorter than 28 bases were

discarded. The remaining reads were aligned against the human genome (hg38) for GBM samples using Bowtie2 v2.2.3 with default settings.

The number of reads aligning to each gene was counted with htseq-count v0.6.1, utilizing RefSeq gene annotations restricted to validated

protein-coding and non-coding transcripts (transcript_ids starting with ‘‘NM_’’ or ‘‘NR_’’) for GBM samples. Mitochondrial genes were

excluded from the analysis due to their high abundance and potential for internal priming. Whenever read two in a read pair aligned to a

gene, the spatial barcode from the corresponding read one was assigned to a barcode in the reference file, as described previously (‘‘de-

multiplexing’’). To eliminate reads that were duplicated during the amplification protocol, a clustering algorithm that sorts the UMIs and it-

erates over them to form clusters based on theminimumhamming distance was employed. Ultimately, all the information was written to a file,

generating a database that combines gene expression and spatial information.
Spatial gene expression analysis and visualization

Raw sequencing reads were aligned to the reference genome hg38 using SpaceRanger (version 1.2.0) to generate raw gene expression

matrices for each sample. Subsequent analysis was conducted using the Seurat R package (version 3.0).24 In brief, spot with fewer than

1,000 total features were removed. Additionally, spot with more than 30% of expressed mitochondrial genes were discarded. Hence, after

unsupervised clustering, we removed cluster 4 due to low counts of captured features and genes was lower than 1000 in per spot in that clus-

ter. All analyses were conducted in accordance with the instructions provided at https://satijalab.org/seurat.
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Cell culture

The GBM cell line U87 was obtained from the American Type Culture Collection (Manassas, Virginia, USA) and cultured in Dulbecco’s modi-

fied Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin (PS). Cells were incubated at

37�C in a humidified incubator with 5% CO2. Cell authentication was performed by examining their karyotypes and morphologies. All cells

were tested for mycoplasma contamination using PCR and were confirmed to be mycoplasma-free.

Transwell assay

Transwell chambers with an 8-mm pore size in 24-well plates (Corning) were utilized for the migration assay as previously described.60,61 In

detail, 5 3 104 U87 cells were seeded in the upper chamber using serum-free medium. The lower chamber was filled with 500 mL of

DMEM containing 5% FBS as a chemoattractant. Following a 24-h incubation in the incubator, the cells in the upper chamber were carefully

removed using a cotton swab. The migrated and invaded cells were washed twice with PBS, fixed with 4% tissue fixative solution, and stained

with 0.1% crystal violet for 10 min, respectively. Subsequently, image capture and quantification were performed.

Extreme limiting dilution analysis

The extreme limiting dilution assay were performed as previously described.62 In brief, U87 cells were resuspended in sphere formation me-

dium (DMEM/F12 supplemented with 1% B27, 20 ng/mL human EGF, 10 ng/mL human b-FGF, and 5 mg/mL insulin) and plated into 96-well

plates pre-coated with 0.5% agarose at the specified cell doses (10, 20, 50, and 100 cell per well, respectively). At least 60 wells were seeded

with cells for each cell dose. Two weeks later, the number of wells containing spheres was counted, and utilized to calculate the tumor initi-

ating frequency using the ELDA software (http://bioinf.wehi.edu.au/software/elda/).59

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are expressed asmeanG SD. Analyses were performed using R or GraphPad PrismV9. p value was calculated using two-sided Student’s

t test and are shown in footnotes in Figures 2E, 3D, S5C, and S8A. Significance levels are shown in footnotes in Figure 3D and are denoted as

follows: **, p < 0.01; ****, p < 0.0001. The number of replicate determinations is indicated by ‘‘n’’, n = 3.
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