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Abstract

Background: Modern DNA sequencing methods produce vast amounts of data that often requires mapping to a
reference genome. Most existing programs use the number of mismatches between the read and the genome as a
measure of quality. This approach is without a statistical foundation and can for some data types result in many
wrongly mapped reads. Here we present a probabilistic mapping method based on position-specific scoring matrices,
which can take into account not only the quality scores of the reads but also user-specified models of evolution and
data-specific biases.

Results: We show how evolution, data-specific biases, and sequencing errors are naturally dealt with probabilistically.
Our method achieves better results than Bowtie and BWA on simulated and real ancient and PAR-CLIP reads, as well
as on simulated reads from the AT rich organism P. falciparum, when modeling the biases of these data. For simulated
lllumina reads, the method has consistently higher sensitivity for both single-end and paired-end data. We also show
that our probabilistic approach can limit the problem of random matches from short reads of contamination and that
it improves the mapping of real reads from one organism (D. melanogaster) to a related genome (D. simulans).

Conclusion: The presented work is an implementation of a novel approach to short read mapping where quality
scores, prior mismatch probabilities and mapping qualities are handled in a statistically sound manner. The resulting
implementation provides not only a tool for biologists working with low quality and/or biased sequencing data but
also a demonstration of the feasibility of using a probability based alignment method on real and simulated data sets.
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Background

Next-generation DNA sequencing is a powerful tool in
biological research [1] and is steadily gaining momen-
tum as costs keep decreasing. Applications vary from
genome re-sequencing [2-4] to transcriptome analysis
[5-7], metagenomics projects [8-10], and sequencing of
ancient genomes [11-16]. All these applications rely on
mapping reads to existing reference genomes. Many map-
ping programs have been developed using a variety of
algorithms with different strengths, weaknesses and limi-
tations [17].
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Hash-based algorithms such as MAQ [18] and SOAP
[19] dominated initially but were hampered by large mem-
ory demands. Subsequently, the Burrows-Wheeler trans-
form [20] was applied to compress the genome index in
programs such as Bowtie [21], Bowtie2 [22], SOAP2 [23],
and BWA [24]. This decreased the memory usage while
increasing speed and sensitivity, leading to mappers based
on the Burrows-Wheeler transform to now dominate the
field. Other approaches, however, show promising results
for some types of data. Segemehl [25] uses an enhanced-
suffix array to provide fast alignment of insertion/deletion
(indel) prone reads, and a similar approach was imple-
mented in the mapping tool used in the sequencing of
the first ancient human genome [13]. Programs such
as CUSHAW [26] and SOAP3 [27] have begun to use
graphics processing units (GPUs) to provide even faster

mapping.
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Most programs allow a specified number of mismatches
in an alignment (with a limit of 1-3 mismatches in the
beginning of the read), and report uniquely mapped reads
as those where all other locations have more mismatches.
However, evaluating a mapping location by the number of
nucleotide mismatches alone is not optimal and implicitly
assumes that the genome has a homogeneous base com-
position and that errors occur uniformly in the reads. The
mapping with the lowest number of mismatches may have
a high probability of being incorrect if i) there are many
sub-optimal mappings, ii) the genome has a very biased
base composition, iii) certain nucleotide mismatches are
expected due to sample conditions, or iv) the mismatch-
ing bases have low error-probabilities compared to other
bases.

Most sequencing platforms provide a quality score for
each base derived from the probability that the nucleotide
is wrongly assigned in the base-calling. With the Illu-
mina platform, the error probabilities typically range from
around 0.01% in the 5’ end of the read to several percent
in the 3’ end, but the actual DNA sequence can affect
the read quality [28]. These qualities can affect not only
the ability of a mapper to find the correct hit, but also
the quality of the reported hit. While the latest genera-
tion of mappers such as MASAI [29] and GEM [30] either
do not take quality scores into account or only consider
them in a rudimentary manner, they also report all pos-
sible alignments and do not provide a mapping quality
to distinguish between a high confidence alignment and
a low confidence one. We demonstrate that taking qual-
ity scores and other information about the biases in the
experimental data into account can improve the sensitivity
while providing an accurate mapping quality estimation.
Recently, the use of position-specific scoring matrices
(PSSMs) has been applied to the short read mapping prob-
lem and shown to provide accurate SNP and indel calling
[17,31].

Here we show how quality scores, contamination, biases
in base composition, mutations, and data-specific base-
changes (as in PAR-CLIP or ancient DNA) can all be dealt
with probabilistically and encoded in a PSSM. We also
present an algorithm which applies the Burrows-Wheeler
transform to the scoring of PSSMs, and BWA-PSSM, a
fast and sensitive mapping tool which implements the
methods.

We show that the use of probabilistic scoring allows
for both higher sensitivity and positive predictive value
when mapping simulated reads. More importantly, we
offer the ability to use a specified error model to map
reads based on the expected types and locations of mis-
matches. This improves the mapping of ancient DNA
data with errors due to damage, and the improvement is
even more pronounced when mapping PAR-CLIP data,
where there is a strong bias towards T-to-C substitutions
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[32], as well as data from P falciparum which has an
extreme nucleotide bias with more than 80% AT con-
tent [33]. We also show that the probabilistic scoring can
help in cases of contamination by dramatically reducing
the mapping of short reads from E. coli to the human
genome.

Results and discussion

When mapping reads, one is interested in the proba-
bility that the read originated from a specific location
in the genome. The read and the genome might not
be completely identical due to e.g. sequencing errors or
SNPs.

A position-specific scoring matrix from quality scores

Most sequencing machines provide a quality score for
each base which is related to the probability of a sequenc-
ing error occurring at this position in the read. These
qualities are normally in the Phred format [34] and relate
the error probability p. and the quality score Q by p. =
10~ /19, From these qualities, we can calculate the proba-
bility P(a|x) for the base a € {A, C, G, T} being present at
a given position in the DNA fragment given that the base
x € {A, C, G, T} was called by the sequencing machine (see
Methods).

If the DNA being sequenced differs from the reference
genome, e.g. due to evolution, there is a probability P(g|a)
that base g occurs in the genome if the base is a in the
sample. We use a simple model with a probability p for a
mutation (see Methods).

Combining this with the probability of errors, the prob-
ability of a base g in the genome given the called base x is

P(glx) = > P(gla)P(alx). (1)

In some types of data, known base modifications are
known to occur. For instance, in ancient DNA some bases
are damaged due to hydrolysis, resulting in cytosine to
thymine (C-to-T) conversions in the 5 ends of reads,
which can look like apparent guanine to adenine (G-to-A)
substitutions in the 3’ end, and in PAR-CLIP experiments
there is a large fraction of thymine to cytosine (T-to-
C) conversions where the protein crosslinks to the RNA.
These phenomena are easily modeled and included in the
PSSM, essentially by introducing a probability P(b|a) that
the observed base is b, given that the base is 4 in the
sample (see Methods section).

Using this approach, one can turn a short read into a
PSSM and use it for mapping the read to the genome. The
PSSM is constructed such that at position i in the read,
the score for base g is s(glx;) = log,(P(glx;)/q(g)), where
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P(g|x;) is the probability of a genomic base g given the
i’th base x; in the read calculated as described above in
equation 1, and ¢(g) is a background probability, which is
usually just the frequency of the base in the genome. The
score for matching a read x to a certain position £ in the
genome is Sx(¢), and is obtained by summing the scores
from the PSSM corresponding to the genome sequence
starting at position /.

BWA-PSSM is very flexible when it comes to how you
feed the PSSM to the program. In the present implementa-
tion, the PSSM can be constructed from the quality scores
supplied with the sequence, using a background distribu-
tion calculated from the frequencies of bases in the refer-
ence genome and a mutation rate (pg above). Alternatively,
the user can supply a table with a direct translation of base
and quality score pairs to PSSM scores. Such a table can
be computed ahead of time to include for instance a more
sophisticated evolutionary model or a PAR-CLIP model.
Finally the user can input a fully constructed PSSM and
use it for mapping.

Mapping probability
The advantage of the PSSM is that the probability of a
match can be calculated directly [17]. There is a probabil-
ity that a read x originates from — or is homologous to —
a position £ in a genome g, P(¢, M|x, g), where M means
the “match model”. Alternatively, the background model
N is used if the read does not originate from the genome
due to e.g. contamination or adapter sequences. A priori,
we may be able to estimate the probability P(N|x) of a
read being contamination, and obviously P(M|x) = 1—
P(N|x).

Using the sum and product rule we can express the
match probability at position £ as

P(gl¢, M, x)P(£|M, x)P(M|x)

PUEM8) = 5 M, 0 POMIX) + PglN, 0PN

Assuming that any mapping position is equally likely a pri-
ori we have P(£|M, x) = 1/L, where L is the length of the
genome.

In the background model N we assume independently
identically distributed (i.i.d.) bases.

In the match model M, the probability of the aligned
bases in g is calculated from the PSSM and the remaining
bases are assumed to be distributed as in the background
model; this means that

P(g|t, M,x)/P(gIN,x) = 25 where Sy (£) is the PSSM
score. It is possible, of course, to have more sophisticated
background models of those sequences that do not origi-
nate from the genome, such as a Markov model, but this
will not be considered here.
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Using the identity P(g|M,x) = ), P(g|¢/, M,x)P({'|
M, x), where ¢’ runs over all positions in the genome, we
can finally write the posterior probability of the read x
mapping to position £ in the genome as

95x(0)
>y 25 4+ L(1 — P(M|x))/P(M|x)’
(2)

The first term in the denominator is the sum over all pos-
sible genomic positions. This is impractical to calculate,
but since only positions with some similarity to the query
yield a significant contribution, it is well approximated by
a sum over high-scoring mappings. The second term in
the denominator is proportional to the genome size and
reflects the fact that the larger the genome, the more likely
it is to have a random hit.

In the BWA-PSSM implementation we assume the same
prior match probability for all reads, P(M) = P(M|x),
which can be specified as a parameter with a default value
of 0.8 which is used for all experiments in this paper. To
simplify the presentation we assumed no indels in the
alignment of the read and the genome, see Additional
file 1 for the derivation of equation (2) and Methods for
details on handling indels.

P, MIx, g) =

Algorithm and implementation

PSSM search is implemented in the BWA program [24] as
a separate version called BWA-PSSM, which can be used
instead of the regular BWA alignment step (aln). Here
we describe the main algorithmic changes as compared to
standard BWA.

Using a PSSM, a score can be calculated for each posi-
tion in the reference genome, where high scores indicate
hits. Using a Burrows-Wheeler transformed index, this
operation can be sped up by evaluating scores on the pre-
fix tree of the index. At any given point in the search,
the position within the scoring matrix corresponds to the
current depth of the prefix tree. Scores are calculated by
summing the position-specific score at each node along a
path.

To bound the number of positions in the genome
that must be evaluated, a threshold score is used which
replaces the maximum number of mismatches used in
standard BWA. To calculate an overall score threshold for
a read, we rely on converting a limit on the number of
mismatches # into the minimum possible score with #
mismatches. That is, we allow #n mismatches of bases with
high quality and more than # mismatches of low-quality
bases.

To further prune the search space, lookahead scoring
can be used, in which the threshold is calculated for each
position in the PSSM as the difference between the thresh-
old and the best possible score of the remaining PSSM
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[35]. This is implemented in BWA-PSSM (Algorithm 1),
but using an improved bound. This is done by adapting
the method (named CALCULATED) employed by BWA
to consider what the minimum number of mismatches
must be for that subsequence to align to some region
of the genome. Our algorithm, called CALCULATET
(Algorithm 2), instead calculates the difference between
the best possible PSSM score with no mismatches and
the best possible score with the minimum number of nec-
essary mismatches. This difference is calculated at each
position and added to the lookahead-derived intermedi-
ate thresholds. This has the effect of requiring a higher
match score at each position and thus further bounding
the search tree. This allows for faster and more accu-
rate mapping of sequences with many low quality bases as
more likely paths (and thus matches) will tend to be visited
first.

Algorithm 1 The recursive BWA-PSSM search algorithm.
The PSSM is denoted A and the PSSM thresholds at each
position i are stored in T[i]. A score, s, is maintained
for every partial match and the indices into the Burrows-
Wheeler transformed sequence are stored in k and /. In
the algorithm O(b, ) denotes the number of occurrences
of the base b in the ['th prefix of the Burrows-Wheeler
transformed reference sequence, and C(b) is the number
of occurrences of bases that are lexicographically smaller
than b in the reference sequence. Insertions and deletions
are assigned penalties p; and pq, respectively. The algo-
rithm is initiated with the values PSSMSEARCH(A, T, |x| —
1,0,|g| — 1), where T is calculated from the sequence x
using the algorithm CALCULATET and |g| denotes the size
of the reference sequence.
1: function PSSMSEARCH(A, T, i, s, k, [)
2 if i <|x|]—1lands < T[i+ 1] then
3 return ¢}
4 end if
5: if i < O then
6
7
8
9

return {[ k,[]}
end if
1<
: I < TUPSSMSEARCH(A, T,i — 1,s — pi, k, 1)
10: forb € {A,C,G, T} do

11: k< Cb)+0b,k—-—1)+1

12: [ < C(b)+ 0,0

13: if kK < [ then

14: I < I UPSSMSEARCH(A, T,i,s — pg, k, 1)

15: I < I UPSSMSEARCH(A, T,i — 1,5+
Alb,i],k 1)

16: end if

17: end for

18: return /

19: end function

Page 4 of 17

Algorithm 2 Calculation of intermediate thresholds.
The algorithm calculates intermediate thresholds for
PSSM A, read sequence X, genomic reference sequence g
given the global threshold ¢. x;; is the subsequence from
j to i of the read, and ¢ stores the difference between the
best and second best PSSM score that can be obtained
for the subsequence. The MINDROP(4, i, ) function sim-
ply calculates the minimum of the differences between the
highest and lowest scores for columns i to j in the PSSM,
while the function SUMMAX(A4, 0, i— 1) calculates the sum
of the maximal values in column 0 to column i — 1 in the
PSSM.

1: function CALCULATET(A,x, g, £)
j<0
3 5«0
4 fori =0to |x| — 1do
5 if x;; not in g then
6: 6 < 6 + MINDROP(4,}, i)
7
8
9

»

j<—i+1
end if
T[i] < t — SUMMAX(A,0,i — 1) + &
10: end for
11: return T
12: end function

While BWA uses the MAQ mapping quality score
(MapQ), BWA-PSSM reports the posterior probabil-
ity given in equation (2), but estimating the sum in
the denominator from the matches above the thresh-
old. In keeping with the MAQ tradition, this prob-
ability is also log scaled, rounded to an integer and
reported as the MapQ score in the output, that is Mg =
| —10logo(P(,, M[x)) + 4 |.

Comparing methods on simulated reads

The performance of BWA-PSSM was compared to BWA
[24], BWA-MEM [36], Bowtie [21], Bowtie2 [22] and
GEM [30] on a number of simulated datasets modelling
different types of short reads. The results are summa-
rized in Tables 1, 2 and 3 and Figures 1 and 2, and
details are given below. Each program, except Bowtie,
reports a mapping quality (MapQ), and the mapping per-
formance clearly depends on which threshold is used
for this. We report the unfiltered results, for which we
use no MapQ threshold, and the filtered results, for
which all matches with a MapQ of less than 25 are dis-
carded. The sensitivity reported is the number of correctly
mapped reads divided by the total number of reads. The
PPV (Positive Predictive Value) is the number of cor-
rectly mapped reads divided by the number of reported
matches. The elapsed user time is reported when run-
ning each program on an Intel(R) Xeon(R) E7450 2.40GHz
CPU.
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Table 1 Analysis of single-end data simulated with ART
Unfiltered MapQ filtered
Mapper Sensitivity PPV Sensitivity PPV Time (s)
a) ART single-end length 36
BWA-PSSM 0.811 0.899 0.776 1.000 44.19
BWA 0.804 0.896 0.735 1.000 4741
BWA-MEM 0.772 0.900 0.663 1.000 146.99
Bowtie 0.812 0.900 * * 9.75
Bowtie2 0.802 0.898 0.757 0.999 28.67
GEM 0.755 0.995 * * 3457
b) ART single-end length 50
BWA-PSSM 0.839 0.934 0.797 0.999 96.07
BWA 0.805 0.929 0.753 0.999 84.65
BWA-MEM 0.816 0.921 0.719 1.000 56.64
Bowtie 0.840 0.931 * * 15.74
Bowtie2 0.802 0918 0.717 0.999 4858
GEM 0.705 0.995 * * 3545
c) ART single-end length 76
BWA-PSSM 0.807 0.967 0.795 0.998 94.35
BWA 0.573 0.961 0.554 0.998 16842
BWA-MEM 0.821 0.937 0.751 0.999 65.21
Bowtie 0.822 0.962 * * 25.01
Bowtie2 0.778 0.928 0.675 1.000 81.86
GEM 0.695 0.995 * * 3220
d) ART single-end length 100
BWA-PSSM 0.837 0.979 0.828 0.999 128.25
BWA 0.308 0.973 0.302 0.998 262.54
BWA-MEM 0.863 0.951 0.807 0.999 91.12
Bowtie 0.855 0.976 * * 2833
Bowtie2 0.811 0.944 0.668 1.000 10049
GEM 0.716 0.996 * * 35.77

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on simulated data sets covering a
random 1% of the human genome. The reads were simulated using the ART_illumina [37] program with the default error profile for the given read length. The symbol

"* indicates that the mapper does not provide MapQ scores.

Unbiased reads

To test the baseline performance of BWA-PSSM, we sim-
ulated reads using three different simulation programs.
The first, ART [37] simulates reads using an error profile
particular to the sequencing technology being simulated
(Ilumina Genome Analyzer II, in our case). The second,
WG-SIM [38], simulates reads with a uniform error prob-
ability. The third, MASON [39], uses variable, position
dependent qualities drawn from normal distributions with
a specified mean and standard deviation for the start and
end position. ART generated the lowest quality reads, fol-
lowed by MASON, followed by the high quality WG-SIM
simulated reads.

As expected, BWA-PSSM performs best on the low-
quality data set (Table 1) and slightly worse on the
high quality reads (Additional file 1: Table S2 and S4).
It performs comparatively better on the shorter reads
than on the longer. This is likely explained by the
fact that we limit the size of the heap (and conse-
quently the branching) and thus miss more hits simply
because we discard a proportionally larger portion of
the search space for the longer reads. Filtering accord-
ing to mapping quality improves the PPV and reduces the
sensitivity.

The performance of BWA-PSSM really stands out when
considering high quality alignments (as reported by the



Kerpedijiev et al. BMC Bioinformatics 2014, 15:100
http://www.biomedcentral.com/1471-2105/15/100

Table 2 Analysis of paired-end data simulated with ART
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Unfiltered MapQ filtered
Mapper Sensitivity PPV Sensitivity PPV Time (s)
a) ART paired-end length 36
BWA-PSSM 0.974 0.974 0.935 1.000 211.18
BWA 0.973 0973 0911 1.000 238.95
BWA-MEM 0.899 0.899 0.753 1.000 404.35
Bowtie 0483 0.927 * * 1578.74
Bowtie2 0.971 0.971 0.929 0.999 137.88
GEM 0.976 0.071 * * 91.46
b) ART paired-end length 50
BWA-PSSM 0.965 0.967 0.928 0.999 242.98
BWA 0911 0.943 0.785 0.999 261.53
BWA-MEM 0.902 0.908 0.655 1.000 118.35
Bowtie 0433 0.951 * * 656.37
Bowtie2 0939 0.952 0.736 1.000 109.78
GEM 0.927 0.399 * * 48.79
c) ART paired-end length 76
BWA-PSSM 0.958 0978 0.943 0.999 155.57
BWA 0.697 0.963 0498 0.999 21034
BWA-MEM 0.939 0.943 0.815 1.000 102.00
Bowtie 0.366 0.969 * * 213.10
Bowtie2 0.920 0.948 0.726 1.000 81.17
GEM 0.906 0.692 * * 2947
d) ART paired-end length 100
BWA-PSSM 0.962 0.983 0.949 0.999 147.38
BWA 0352 0.971 0.201 0.999 194.03
BWA-MEM 0.955 0.956 0.854 1.000 102.86
Bowtie 0.365 0.981 * * 168.39
Bowtie2 0.930 0.957 0.517 1.000 74.23
GEM 0.900 0.779 * * 23.25

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on simulated data sets covering a
random 1% of the human genome. The reads were simulated using the ART_illumina [37] program with the default error profile for the given read length. The insert
sizes in the paired-end data were simulated using a mean length of 250 and a standard deviation of 50. The symbol *' indicates that the mapper does not provide

MapQ scores.

MapQ score) of ART-simulated reads (Figure 1). BWA-
PSSM achieves the greatest sensitivity of the tested
aligners which all have a PPV greater than 99%. For
reads of length 36 and 50, BWA-PSSM performs bet-
ter across all quality values, whereas for the longer
reads BWA-MEM reports more lower quality mappings
(Figure 3). When ignoring the quality of the resulting
mappings, Bowtie returns more results with the caveat
that they are more likely to be incorrect. The running
time among the aligners varies within an order of mag-
nitude with Bowtie consistently being the fastest while
the slowest depended on the length and quality of the
reads.

For the longer higher quality reads, the performance of
BWA-PSSM lags slightly behind the other aligners for all
PPV values (Additional file 1: Figure S2 and S3). These
results are not unexpected as using quality values which
are largely irrelevant should not improve the performance.
Furthermore, some of the trade-offs employed to improve
the performance for low-quality and biased reads impede
the performance for high quality data. While disadvan-
tageous, this is not the targeted type of data for which
this approach was designed and the other aligners already
serve this niche adequately.

GEM reports all the potential hits found and classifies
them according to the edit distance from the genome.
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Table 3 Analysis of simulated biased single-end data

Unfiltered MapQ filtered
Mapper Sensitivity PPV Sensitivity PPV Time (s)
a) ART single-end length 36 / PAR-CLIP
BWA-PSSMPC 0699 0.881 0662 0996 68.84
BWA-PSSM 0.642 0.865 0.594 0.990 81.89
BWA 0.628 0.866 0.582 0.996 56.05
BWA-MEM 0451 0.844 0.388 0.999 74.78
Bowtie 0.689 0.870 * * 3221
Bowtie2 0.594 0.845 0419 0.992 2591
GEM 0475 0.980 * * 3948
b) ART single-end length 55 / Ancient DNA
BWA-PSSMA 0.807 0.941 0.774 0.997 122.16
BWA-PSSM 0.797 0.937 0.766 0.996 115.17
BWA 0.743 0.935 0.703 0.998 90.33
BWA-MEM 0.817 0.924 0.725 1.000 50.89
Bowtie 0.807 0.934 * * 28.55
Bowtie2 0.788 0916 0.665 0.999 57.76
GEM 0.691 0.993 * * 30.62
¢) ART single-end length 100 / P. falciparum
BWA-PSSM 0.899 0975 0.886 1.000 86.60
BWA 0332 0974 0325 0.999 59.20
BWA-MEM 0.824 0.840 0.786 0.868 34.56
Bowtie 0.925 0976 * * 1291
Bowtie2 0.832 0.972 0712 1.000 34.33
GEM 0.726 1.000 * * 13.84

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on data sets simulated using the
ART_illumina [37] program with the default error profile for the given read length. The PAR-CLIP and Ancient DNA data sets cover a random 1% of the human genome,
while the P. falciparum data set covers 42.9% of the P. falciparum genome corresponding to 100,000 reads. The data simulated for the PAR-CLIP and Ancient DNA data
was further mutated to simulate the bias introduced by the experiment and natural degradation (see the respective Results and discussion sections). The symbol "*'
indicates that the mapper does not provide MapQ scores.

Il BWA-PSSM I BWA 1 BWA-MEM I Bowtie2
T T T T T T

1.0 '
0.8 B

0.6 - -

Sensitivity

0.4 -

0.2 -

Single 36 Single 50 Single 76 Single 100 Paired 36 Paired 50 Paired 76 Paired 100

Figure 1 Comparison of the sensitivity of BWA-PSSM, BWA, BWA-MEM and Bowtie2 after applying MapQ filtering on the single-end and
paired-end data sets simulated with ART. After filtering the results on mapping quality all the mappers shown above have a PPV above 0.99. The
sensitivities and PPVs are listed in Tables 1 and 2. Bowtie and GEM are excluded as they do not provide MapQ scores.
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While this approach leads to a greater overall sensitiv-

Il BWA-PSSM 1 BWA-MEM o o depr . .

B BWA BN Bowtie2 ity, it also makes it difficult to assign a confidence value
0.9 T T T to a particular alignment. The strength of this mapper
0.8k i lies in aligning long insertion/deletion prone reads, two
07k | qualities which are conspicuously absent from the pre-
sented benchmark data sets. As such, the performance of
2 0.6 i GEM is presented in the data tables simply as a point of a

E 05 N comparison for this different class of read mappers.
ﬁ 0.4 e For paired-end data (Table 2 and Additional file 1:
Y o3k i Table S3), the situation is similar but more pronounced.
ool 1 Low quality reads are readily aligned with high accu-
racy by BWA-PSSM whereas high quality reads present
01 _ a greater challenge. Due to the use of (nearly) default

parameters for each aligner, BWA performs extremely
poorly on the longer low quality reads. The situation is
somewhat reversed for the high quality reads where BWA-
PSSM finds slightly less hits in a longer amount of time

PAR-CLIP 36 Ancient 55 P. falciparum 100

Figure 2 Comparison of the sensitivity of BWA-PSSM, BWA,
BWA-MEM and Bowtie2 for the three simulated biased data sets
after applying MapQ filtering. After filtering the results on mapping

quality all the mappers shown above have a PPV above 0.97, except than Bowtie2 and BWA. The results presented, of course,
for BWA-MEM which has a PPV of 0.868 on the P. falciparum data set. depend greatly upon the parameters chosen for each map-
For the PAR-CLIP data we show the sensitivity of BWA-PSSMPC using per (the default). Exploring the potential parameter space

the T-to-C transition model, and for the ancient DNA data the for each program is an overwhelming task which is often
sensitivity of BWA-PSSM” using the ancient DNA damage model is prog 8

shown. The sensitivities and PPVs are listed in Table 3. Bowtie and guided by the data to be aligned. The results presented
GEM are excluded as they do not provide MapQ scores. here are merely meant to be a cross section of the potential
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Figure 3 Sensitivity as a function of PPV for BWA-PSSM, BWA, BWA-MEM and Bowtie2 using single-end ART-simulated data. For short
reads of length 36 (a) and 50 (b) BWA-PSSM shows greater sensitivity than the other mappers at similar PPV. For reads of length 76 (c) the
performance of BWA-PSSM and BWA-MEM is similar, while for reads of length 100 (d) BWA-MEM has slightly higher sensitivity than BWA-PSSM at
similar PPV. The curves for each mapping program were obtained by filtering for varying mapping qualities. The results are based on the simulations
shown in Table 1. Bowtie and GEM are excluded as they do not provide MapQ scores.
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capabilities of each aligner, corresponding to a roughly
comparable (within an order of magnitude) running
time.

Ancient DNA

By specifying a probability for each base at each position,
itis possible to include additional information in the align-
ment. Ancient DNA is fragmented and degraded in vari-
ous ways, leading to specific biases and errors in the data.
The dominant error is the deamination of cytosines into
uracils (C-to-U), which will be interpreted as thymines in
the sequencing step [40]. This leads to an excess of C-to-
T or G-to-A mismatches, depending on the strand being
sequenced. This is most significant in the ends of the reads
and decreases rapidly towards the center [15].

PSSMs were simulated using the damage model spec-
ified by Orlando et al. [15], see Methods. The results
(Table 3b) show that BWA-PSSM with a PSSM modelling
the simulated damage gives slightly higher sensitivity and
PPV than without a damage model. The sensitivity is
slightly higher than BWA while the run time is roughly the
same. BWA-PSSM was able to find more hits than BWA,
Bowtie and Bowtie2 even without a specialized PSSM.

When mapping real ancient DNA and filtering on
MapQ, the results mostly reflect the simulated data
(Table 4a). The use of a PSSM led to the recovery of more
matches than without one. While the difference is not
large, the number of reads one might expect to be dam-
aged is rather low in comparison to the total number of
reads present. Hence, a modest increase in actual numbers
can reflect a greater increase in relative terms. Further-
more, if the results reflect the simulated data, then the
expected PPV of the filtered results should be higher than
for the other mapping tools. Again, BWA-PSSM without a
specialized PSSM provides an increase in filtered matches
compared to BWA and Bowtie2.

PAR-CLIP data

Sequencing data from PAR-CLIP experiments is very
prone to T-to-C transitions due to the incorporation of
4SU-containing nucleobases and their crosslinking to the
bound protein. The locations of such transitions indi-
cate where an RNA molecule is bound by a protein [41].
The increased probability of a T-to-C mismatch is readily
encoded in a PSSM and incorporated into the mapping by
BWA-PSSM.

To examine the efficacy of providing this extra informa-
tion, reads were simulated with a 11% T-to-C rate. The
results (Table 3a) show that the use of a T-to-C transition
model improves both the unfiltered and filtered sensi-
tivity. Without such a model, BWA-