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The endoplasmic reticulum (ER) is a key site for lipid biosynthesis and folding of nascent
transmembrane and secretory proteins. These processes are maintained by careful home-
ostatic control of the environment within the ER lumen. Signalling sensors within the ER
detect perturbations within the lumen (ER stress) and employ downstream signalling cas-
cades that engage effector mechanisms to restore homeostasis. The most studied signalling
mechanism that the ER employs is the unfolded protein response (UPR), which is known to
increase a number of effector mechanisms, including autophagy. In this chapter, we will
discuss the emerging role of autophagy as a UPR effector pathway. We will focus on the re-
cently discovered selective autophagy pathway for ER, ER-phagy, with particular emphasis
on the structure and function of known mammalian ER-phagy receptors, namely FAM134B,
SEC62, RTN3 and CCPG1. Finally, we conclude with our view of where the future of this
field can lead our understanding of the involvement of ER-phagy in ER homeostasis.

Introduction
The endoplasmic reticulum (ER) is an intracellular organelle that consists of a continuous network of
membranous sheets and tubules spanning the cytoplasm. A lipid bilayer segregates the ER lumen from
the cytosol. The ER acts as a reservoir for calcium cations (Ca2+). These are maintained at a relatively high
concentration within the lumen and can be released during cell signalling responses [1]. The other func-
tion of the ER is biosynthesis. ER membranes are divided into two conceptual types, rough and smooth
ER, present in different proportions and abundances in different cell lineages, although these are intercon-
nected compartments and gradients of function likely exist. The smooth ER is the site for the biosynthesis
of lipids and steroid hormones, and acts as a hub for detoxification enzyme activity [2]. An expansive and
specialized smooth ER, the sarcoplasmic reticulum, is present in muscle, wherein it acts as the major cal-
cium store for release during contraction. The rough ER is studded with ribosomes that co-translationally
insert nascent polypeptide chains encoding transmembrane or secretory proteins. In the lumen, these
proteins fold with the assistance of ER-luminal chaperone proteins, which bind, retain and prevent the
aggregation of partially folded substrates [3]. Folding is also aided by post-translational modifications
such as N-linked glycosylation, mediated via glycosylases, and intramolecular disulphide bond forma-
tion and rearrangement, catalysed by protein disulphide isomerases (PDI) [4,5]. Chaperone binding also
prevents secretion from the ER of incompletely folded proteins. The high luminal Ca2+ concentration fa-
cilitates chaperone protein function [4]. A distinct redox potential in the ER lumen—a more oxidizing
environment than the cytoplasm—optimizes PDI activity [5].

All cells require ER but some specialist types have a particularly heavy demand for certain ER functions.
For example, hepatocytes are a major site of lipid synthesis and have expansive smooth ER. Similarly,
plasma cells (effector B cells) and exocrine cells, which secrete abundant immunoglobulins and zymogens
respectively, have a high abundance of rough ER [6].
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Figure 1. Outcomes of ER stress

Perturbation of ER homeostasis or ‘ER stress’ (blue), is ameliorated by the triggering of signalling cascades (yellow), which in turn

engage downstream effector mechanisms (green). Generally speaking, these mechanisms restore homeostasis. This review will

discuss these pathways and mechanisms, with particular focus on autophagy as a potential effector and, in further detail, selective

autophagic degradation of ER luminal contents or ER (ER-quality control (ERQC)-autophagy, ER-associated degradation (ERAD)-II

and ER-phagy).

ER homeostasis
Signalling sensors within the ER detect perturbations within the lumen (ER stress) and employ downstream signalling
cascades that engage effector mechanisms to restore homeostasis (Figure 1). These mechanisms include increasing the
capacity of the ER, increasing degradation of ER luminal proteins or up-regulating chaperones and luminal protein
modification or folding enzymes. This review will focus on ER homeostatic pathways, with a particular emphasis on
the emerging role of autophagy as a potential effector mechanism.

Physiologically, ER stress occurs upon, for example, changes to luminal Ca2+ concentration, redox status, increased
abundance of unfolded proteins and/or hyperaccumulation of proteins. Conditions that produce this include heavy
biosynthetic demand, hypoxia, redox stress, deregulated Ca2+ homeostasis and crises such as metabolite insufficiency
or low intracellular ATP levels. ER stress can also be produced experimentally with drugs that perturb calcium home-
ostasis, alter redox status or inhibit glycosylation (Figure 1).

Defects in sensing and signalling pathways downstream of ER stress are associated with numerous pathological
conditions including diabetes, non-alcoholic fatty-liver disease, Parkinson’s and Alzheimer’s diseases and cancers
such as hepatocellular carcinoma [7,8].

Two distinct pathways for response to ER stress have been proposed, comprising the less well-understood
ER-overload response (EOR) and the extensively characterized unfolded protein response (UPR). EOR is triggered
by hyperaccumulation of ER-resident proteins, not necessarily unfolded protein. Here, the ER releases luminal Ca2+,
which stimulates reactive oxygen species production that in turn activates NF-κB signalling [9]. Ultimately, NF-κB
up-regulates a variety of transcripts that promote proliferation and inflammation. However, little is known about the
mechanisms of EOR, particularly if there is any link with autophagy function. It can inhibit viral protein replica-
tion, suggesting that it may act as a rapid cellular antiviral response [10,11]. Moreover, EOR activated by Hepatitis
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C viral proteins leads to an increase in cancer-related gene expression, suggesting a role in hepatocellular carcinoma
progression [11,12].

The UPR acts to restore defective proteostasis upon detection of unfolded protein in the ER lumen. It in-
volves up-regulated transcription of redox enzymes, chaperones (such as binding immunoglobulin protein/78-kDa
glucose-regulated protein, abbreviated BiP/Grp78), foldases (chaperones catalysing folding via additional enzy-
matic activity, including PDIs), glycosylases and, additionally, via the transcription factors C/EBP and SREBP1/2,
lipid-synthesizing enzymes, which facilitate ER membrane expansion [13,14]. The UPR has three signalling arms,
each emanating from an ER integral membrane sensing protein. These sensors are inositol-requiring enzyme 1α
(IRE1α), protein kinase RNA-like ER kinase (PERK) and activating transcription factor (ATF) 6 . Upon accumula-
tion of misfolded proteins in the ER lumen, BiP/Grp78 is titrated away from the luminal domains of these sensor
proteins, releasing them from their monomeric, inactive states and, in the case of ATF6, allowing transit to the Golgi.

IRE1α possesses endoribonuclease activity that splices X-box binding protein 1 (XBP1) transcripts, permit-
ting generation of the transcription factor XBP1-S, which up-regulates genes such as ER luminal chaperones and
ER-associated degradation (ERAD) machinery component [15]. Up-regulation of chaperones increases the capacity
of the ER to deal with unfolded protein. Until recently, ERAD—the removal from the ER of proteins by retrotranslo-
cation into the cytosol and destruction at the proteasome—was thought to be the major mechanism to degrade ER
proteins. This process promotes ER homeostasis independently from, but also as an effector of, the UPR, given the
transcriptional up-regulation of components of its machinery by the latter [15,16]. ERAD (or ERAD-I) should not be
confused with ERAD-II, one of several terms coined recently to describe phenomena where lysosomal, rather than
proteasomal, activity appears to result in degradation of ER luminal content (see ‘Autophagy and its role in ER home-
ostasis’ section). Finally, IRE1α endonuclease activity can also act to degrade secretory protein mRNAs present at the
ER in a process termed regulated IRE1α-dependent decay of mRNAs (RIDD), rebalancing protein production and
folding capacity [17].

ATF6 differs from other UPR sensors, as it is released from BiP/Grp78 binding to undergo anterograde transport
from the ER to the Golgi after ER stress, where it is cleaved by proteases (S1P and S2P, Site 1 and Site 2 proteases) to pro-
duce a transcriptionally active polypeptide that can now translocate to the nucleus [18]. Activated ATF6 up-regulates
the transcription of ER chaperones, ERAD components and XBP1 mRNA [19-21]. The latter illustrates that the three
arms of the UPR may feedback upon one another.

PERK activation occurs with slower kinetics than ATF6 and IRE1α activation upon acute ER stress [22,23].
PERK is a serine-threonine protein kinase that phosphorylates the translation initiation protein, eukaryotic initia-
tion factor-2α (eIF2α), at Ser51, in order to arrest global translation. This results in fewer new protein molecules
entering the ER. However, paradoxically, some mRNAs are translationally up-regulated under these conditions, such
as ATF4. ATF4 can up-regulate the transcription of C/EBP homologous protein (CHOP) which can then up-regulate
growth arrest and DNA damage inducible 34 (GADD34) protein levels. CHOP is a transcription factor that drives
pro-apoptotic gene transcription, whereas GADD34 protein dephosphorylates eIF2α, providing negative feedback
within the stress response [24,25].

Often, if the UPR fails to resolve ER stress, then activation of cell death by CHOP or other mechanisms such
as IRE1α-driven, TRAF2-dependent activation of JNK, and consequent apoptosis, occurs [26]. However, some cell
types, both primary and cancerous, are able to withstand constitutive, low-level ER stress and maintain viability, with
concomitant chronic up-regulation of UPR transcripts. Some specialized cell types may exhibit UPR-like responses
in the differentiated state. Examples include plasma [27,28], osteoblast [29], pancreatic acinar [6], Paneth (intestinal
lysozyme granule secreting cells) [30], hepatocyte [31,32] and salivary gland [6] cells, which have an expanded ER
relative to their precursor cell state. For example, XBP1 up-regulation, which in turn generates XBP1-S and leads to
the production of molecules required to populate the expanded ER, such as chaperones, is required for plasma cell
differentiation [33-35].

Autophagy and its role in ER homeostasis
One of the more recent effector mechanisms proposed for the UPR is macroautophagy (hereafter autophagy). Au-
tophagy seals off portions of the cytosol within double-membraned vesicles, called autophagosomes. These fuse with
lysosomes, wherein their cargo is degraded [36]. The core, conserved elements of this process are covered in depth
elsewhere in this book. Here, we will briefly recap two of the core autophagy protein complexes required for under-
standing of the discussion further on in this chapter. Focal adhesion kinase family kinase-interacting protein 200-kDa
(FIP200) is a key autophagy-related (ATG) protein in most forms of autophagy, which assists in nucleation of au-
tophagosomes via scaffolding unc-51-like kinase 1/2 (ULK1/2) kinase activity, which phosphorylates other proteins
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required for autophagy [37]. It has been known for some time that the ER can platform formation of autophagosomes,
potentially at sites of mitochondrial contact [38-40], generating a cradle from which the isolation membrane, the pre-
cursor membrane to the autophagosome, extrudes. The isolation membrane is where ‘early’ ATG protein complexes,
including those containing FIP200, are concentrated. The subsequent extension of the tubular isolation membrane
and self-enclosure results in the distinctive double lipid bilayer structure of the mature autophagosome. Downstream
of ULK1 activity, a key protein grouping is ATG8-family members, of which there are six paralogues in mammals.
These are microtubule-associated protein 1A/1B-light chain 3 (LC3) A, B and C and γ-aminobutyric acid receptor
associated protein (GABARAP), GABARAPL1 and GABARAPL2 [41]. These ubiquitin-like proteins are lipidated
and thus covalently attached to nascent autophagosomal membranes.

Autophagy can be a non-selective mechanism that degrades general cytosol. However, autophagy is frequently
selective in nature, targeting damaged organelles or aberrant intracellular structures, referred to as ‘cargo’, such as
peroxisomes [42], mitochondria [43,44] and lysosomes [45], ubiquitinated protein aggregates and foreign pathogens
[38,39,46-48]. A key molecular component of a given selective autophagy pathway is the cargo receptor(s). The canon-
ical form of this receptor class in mammals bridges cargo to ATG8 family protein(s) by binding both simultaneously.
ATG8 binding is mediated via linear peptide regions called LC3-interacting region (LIR) motifs [48,49]. A prime
example of this is the well-known receptor protein, p62/SQSTM1, which links cargo to ATG8, for example during
cytosolic protein aggregate autophagy.

It is becoming evident that ER stress signals can lead to an increase in general autophagy action (Figure 2). Tuni-
camycin and thapsigargin, two pharmacological inducers of the UPR, drive autophagosome formation in the human
neuroblastoma cell line SK-N-SH and increased LC3 lipidation in mouse embryonic fibroblast (MEF) cells, dependent
upon the IRE1 sensor [50]. In human glioblastoma and several adenocarcinoma cell lines, it was shown that ER stress
downstream of hypoxia results in transcriptional up-regulation of MAP1LC3B (LC3B) and ATG5, via ATF4 and
CHOP [51]. Here, the induced autophagy had a prosurvival role. When autophagy was induced by leucine starvation
in MEFs, a range of core autophagy genes and cytosolic cargo receptors were identified as PERK-dependent ATF4
transcriptional targets, including Map1lc3b, Atg5, Atg3, Atg7, Atg10, Atg12, Atg16l1, Becn1, Gabarap, Gabarapl2,
p62 and Nbr1 [52]. Other pharmacologic ER stressors inducing general autophagic flux include A23187, thapsigargin,
tunicamycin, brefeldin A (HCT116 human colon and DU145 human prostate carcinoma cells, and MEFs), cocaine
(A172 human astrocytoma cells) and 14-deoxy-11,12-didehydroandrographolide (T47D human breast carcinoma
cells) [53-55]. The selectivity of autophagy was addressed in HCT116 and DU145 cells via ultrastructural character-
ization of autophagosomes, which were shown to contain a variety of cargo, suggesting a general up-regulation of
relatively non-selective autophagy [53]. Interestingly, in yeast, the specific activity of Atg1, the orthologue of ULK1, is
increased upon ER stress, without evident transcriptional induction [56]. This has not yet been observed in mammals.

None of the above studies addressed whether autophagy directly regulates ER homeostasis or showed that au-
tophagy could participate in selective degradation of the ER. However, loss of all autophagy function by knockout
of conditional Atg7 flox alleles in T lymphocytes (Lck-Cre) or Atg5 flox alleles in B lymphocytes (CD19-Cre) re-
sulted in expanded ER and elevated ER stress signalling, suggesting a role for autophagy in ER homeostasis [57,58].
Additionally, when wild-type yeast were treated with the UPR inducer DTT, ultrastructural analysis showed, for one
of the first times, that ER in any organism could be selectively sequestered in autophagic-like vacuoles [59]. These
early observations generated the idea that autophagy might both regulate ER function and even do so by direct action
on the ER. In the latter instance, three pathways for putative direct regulation of ER homeostasis by selective au-
tophagy are described, with the terms ‘ER-quality control autophagy’ (‘ERQC autophagy’), ERAD-II and ER-phagy
proposed. The degree of overlap between these processes is currently unclear. ER-phagy is presently the mechanisti-
cally best-described pathway.

ERQC autophagy was used as a term to describe a mammalian process in which disease-associated, conformer
mutants of proteins are removed from the lumen by autophagy without large portions of the ER itself being degraded
[60,61]. An example of this is the degradation of the mutant form of the G-protein-coupled receptor E90K-GnRHR
[61]. There is little mechanistic information on this phenomenon. A potentially similar phenomenon was reported
in mammals for removal of insoluble molecules of mutant protein from the ER via a lysosomal route, for which the
term ERAD-II was proposed, in analogy to proteasomal ERAD (or ERAD-I) [62].

ER-phagy involves the sequestration of portions of ER cisternae into autophagosomes and occurs in both yeast and
mammals (Figure 2). Potential examples include the ER stress associated inhibition of mTOR and incorporation of
ER into autophagosomes in Listeria-infected phagocytes, which may ameliorate ER stress and death [63]. Indeed, it is
presumed that general up-regulation of autophagy capacity, as described above, would translate into a commensurate
greater rate of ER-phagy, but this remains unproven. However, recent findings that have given the phenomenon of
ER-phagy mechanistic credence and have allowed direct testing of its role in cellular function and pathology, are the
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Figure 2. Engagement of autophagy by ER stress and molecular model for ER-phagy events

(1) Under normal ER homeostasis, the ER luminal chaperone protein BiP/GRP78 binds to the UPR sensor proteins PERK, IRE1α

and ATF6. (2) Upon the presence of ER stress caused by unfolded protein (pink lightning), BiP/GRP78 dissociates from UPR sensors

and binds to the unfolded protein, thus activating ER stress sensors. (3) PERK is able to up-regulate the transcription of numerous

autophagy genes and cargo receptors through its effector transcription factors ATF4 and CHOP, resulting in an increase in general

autophagic flux. (4) Any of the UPR sensors could hypothetically increase the transcription in ER-phagy receptor genes. In the case

of CCPG1, this indeed occurs. (5) In the case of CCPG1 protein, an interaction with FIP200 is required for recruitment of ER into

autophagosomes. It is unclear whether this happens at the ER surface (depicted) or at a latter stage of the pathway. FIP200 is

rarely found on the inner surface of autophagosomes, arguing for the former. (6) The ER becomes scissioned. Concomitant with

this, ER-phagy receptors bind to ATG8 proteins via their LIR motifs, linking fragmented ER to the isolation membrane. (7) The

isolation membrane grows and encloses to form an autophagosome, which will eventually fuse with the lysosome and degrade

the ER fragment. (8) It is hypothetically possible that ER stress directly engages and activates ER-phagy receptors independent

of transcriptional induction and UPR sensors. To date, there are four described mammalian ER-phagy receptors (top panel). All

receptors share the common characteristic of at least one cytosolic LIR motif (yellow star). CCPG1 possesses additional cytosolic

FIP200-interacting region (FIR) motifs (red star).

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

629



Essays in Biochemistry (2017) 61 625–635
https://doi.org/10.1042/EBC20170092

Table 1 Known ER-phagy receptors in yeast and mammals, and their known functions and characteristics

Receptor General description AIM/LIR

Other
ATG-interaction

motifs
Physiological

role

Reticulon
homology

domain
(RHD)

Transmembrane
protein Region of ER

Yeast (Saccharomyces cerevisiae)

Atg39 Localized to the peripheral ER and
nuclear envelope. Also participates
in nucleophagy as it encapsulates

nuclear contents as well as ER
membranes

WNLV Atg11BR Regulates
perinuclear ER and
nuclear morphology

No Yes Perinuclear

Atg40 Localized predominantly at
cytoplasmic and cortical ER.

Facilitates the loading of ER sheets
and tubules into autophagosomes

YDFM Unknown
(proposed Atg11

interaction)

Regulates ER
morphology

Yes Yes Perinuclear, cortical
and cytoplasmic

Mammals (Homo sapiens)

FAM134B Promotes the remodelling and
scission of ER sheets through its

reticulon domain

FELL Unknown Health of sensory
neurons

Yes No Sheets

SEC62 Delivers portions of ER into
autophagosomes following ER

stress in a process termed
‘recovER-phagy’

FEMI Unknown Unknown No Yes Unknown

RTN3 Promotes the remodelling and
scission of ER tubules through its

reticulon domain

FTLL Unknown Unknown Yes No Tubules

YSKV

FEVI

WDLV

FEEL

YDIL

CCPG1 Delivers portions of ER to
autophagosomes in response to

ER-stress induction

WTVI Two FIR motifs Luminal
proteostasis of

exocrine pancreas
(acinar cells)

No Yes Unknown

The bold-underlined residues are key residues required for ATG8/LC3 binding. Abbreviations: AIM, Atg8-interacting motif (yeast equivalent of an LIR);
ATG11BR, Atg11-binding region; FIR, FIP200-interacting region.

discovery of ER-phagy-specific cargoes and cargo receptors, both in yeast [64,65] and mammals [66-69]. We will
examine predominantly mammalian ER-phagy receptors below to illustrate their mechanisms of action and explore
their potential integration into ER stress responses.

Four main mammalian ER-phagy receptors have been identified in vitro, namely FAM134B (U2OS and MEF
cells), SEC62 (HeLa and MEF cells), RTN3 (U2OS and MEF cells) and CCPG1 (HeLa and A549 cells) [66-69]. These
share some common and divergent principles of action (Table 1). Additionally, two ER-phagy receptors exist in yeast,
Atg39 and Atg40 [65], which work along broadly similar principles (Table 1). Other well-known autophagy receptor
proteins, such as p62/SQSTM1, may possibly have a role in ER homeostasis, although it is not clear that this is due
to any direct function in ER-phagy [70]. In the majority of the above cases, ultrastructural analyses have shown that
ER-phagy receptors drive the sequestration of isolated fragments of ER into an autophagosomal lumen defined by
discrete, delimiting membrane(s) [65-68].

ER-phagy receptors are basally ER resident proteins, either transmembrane with associated luminal and cytoso-
lic domains or anchored within ER membranes, and in both instances exposing at least one LIR motif to the cy-
tosol (Figure 2). The LIR motif in all instances is required for ER sequestration into autophagosomes [66-69].
RTN3 possesses a total of six LIR motifs, all of which contribute to ATG8 binding. CCPG1 also contains two novel
FIP200-interacting region (FIR) motifs [69]. As FIR motifs are required for ER-phagy, FIP200 may also thus have a
distinct role in cargo selection in addition to its known role in regulating ULK1 activity (Figure 2).

FAM134B, CCPG1 and RTN3 all act to trim ER content, thus maintaining ER morphology [66-69]. Notably, both
FAM134B and RTN3 (and yeast Atg40) share the presence of a reticulon homology domain (RHD), which con-
sists of two hairpin helices that anchor the protein to ER membranes. The presence of the RHD facilitates mem-
brane curvature and potentially mediates ER scission to facilitate ER-phagy [65-67]. RTN3 resides in peripheral ER
tubules whereas FAM134B is found on perinuclear ER sheets and these subdomain resident receptors act to drive
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local ER-phagy [67]. For instance, RTN3 specifically drives tubular ER-phagy. Both FAM134B and RTN3 can drive
ER-phagy in vitro that is stimulated by the general autophagic stimulus of amino acid starvation. In vitro, CCPG1
may also participate in ER-stress driven ER-phagy, after DTT treatment. Finally, Sec62 participates specifically in
ER-phagy during recovery from ER stressors, clearing fragments of ER enriched in now redundant ER chaperones
[68]. This process is distinguished within the larger set of ER-phagy responses by the term ‘recovER-phagy’. These
different mechanistic routes for ER-phagy, targeting distinct regions of the ER and at different stages of the ER stress
response, suggest functional specialization of ER-phagy pathways, which may have further relevance in vivo where
the ER exhibits large differences in form and function between different tissue types (see below).

There is emerging evidence for direct links between homeostatic ER responses and ER-phagy from in vivo mod-
els. Investigations of the physiological role of autophagy have generally involved ablation of all autophagy function
by conditional knockout of core Atg genes in various tissues in mice, using tissue-specific, promoter-driven recom-
binases, typically Cre or tamoxifen-inducible Cre-ERT2. Summarizing, autophagy loss per se generally disrupts ER
morphology and size, and produces stress responses. In Paneth cells, Atg7 or Atg16l were seen to be required to re-
strain IRE1α activation after ER stress induced by experimental XBP1 down-regulation. Loss of this action leads to
intestinal inflammation [71]. Furthermore, knockout of Atg5 or Atg7 in pancreatic acinar cells produces ER dilation,
stress, inhibition of secretory protein transcription, cell death and inflammation [72,73], although not all reports agree
with these findings [74]. However, it is important to note that the contribution of ER-phagy is not precisely interro-
gated when core autophagy genes are deleted; ER pathology may be an indirect consequence of damaged mitochon-
dria or protein aggregate accumulation, and consequent effects on bioenergetics and signalling. The construction
of ER-phagy receptor mutant mice has begun to allow exploration of this issue. Fam134b−/− mice exhibit dilated
ER and Golgi within peripheral sensory neurons and cell death [66]. Intriguingly, FAM134B is mutated in human
families with heritable sensory neuropathy and these mutations ablate ER-phagy function [66]. In Ccpg1 hypomor-
phic animals, the acinar cells within the exocrine pancreas exhibit distended ER and insoluble ER luminal protein
accumulation, as well as elevated UPR [69]. Few other tissues are reported to be affected by loss of ER-phagy recep-
tor function, indicating that physiologically important ER-phagy receptors remain undiscovered or untested. This
observation befits the functional specialization of ER within different cell lineages.

Future directions
In the authors’ view, a major source of outstanding questions in the field of mammalian ER homeostasis centre upon
the mechanism and function of ER-phagy.

One question: is whether there is a relationship between ER-phagy and mechanistically opaque processes such
as ERQC autophagy and ERAD-II? What degree of overlap in players and mechanisms is there here? Additionally,
what molecular determinants mark an ER-phagy receptor, other than LIR motifs? For example, CCPG1 additionally
possesses FIR motifs for recognition of the ER by autophagy. Linked to this, it is also crucial to consider whether
ER-phagy receptors merely mark ER membrane for degradation or play an active role in scissioning ER membrane to
permit sequestration or in sensing ER stress. As a potential example of the former, FAM134B and RTN3 have retic-
ulon domains that might assist ER membrane breakage. In the latter category, some of these receptors have luminal
polypeptide regions and it might be conjectured that they could directly sense changes in redox, luminal [Ca2+] or un-
folded protein in parallel with canonical sensors. In the case of CCPG1, the ER luminal domain contains a coiled-coil
forming region, and it is possible that regulated multimerization/clustering could modify function, as suggested for
RTN3 [67,69]. Cytosolic domains might also play a role within the downstream relays of ER stress signalling path-
ways. For example, some cargo receptors acting in other selective autophagy paradigms bear phosphoregulable LIR
motifs [75,76].

Does ER stress specifically trigger ER-phagy, non-selective autophagy or a combination of both, and in which tissue
types and to what ultimate purpose? The finding that the UPR can transcriptionally up-regulate CCPG1 provides a
mechanistic link between ER stress and selective autophagy of the ER. The Ccpg1 promoter also binds the transcrip-
tion factor MIST1 [77], which is predominantly expressed in professional secretory cells such as pancreatic acinar
cells. MIST1 expression is required for correct differentiation here and is itself dependent upon the IRE1α-XBP1
arm of the UPR [78,79], providing a potential tissue-specific link between CCPG1 up-regulation and its role in ER
homeostasis. It is therefore of key importance to dissect whether ER stress response pathways can regulate the activity
of other ER-phagy receptors, either to activate them acutely or as is likely for CCPG1 in vivo, also in part to mediate
their tissue-specific expression.

It is difficult to say with exactitude how ER-phagy mediates ER homeostasis at a detailed mechanistic level. It is
possible that ER-phagy acts to remodel and rebalance the different regions of the ER to meet fluctuating biosynthetic
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demand. Alternatively, perhaps proteostatic defects result in localized accumulation of unfolded or aggregated pro-
tein, by transport mechanisms within the ER lumen, such that specific portions of ER are ‘sacrificed’ in a piecemeal
manner in order to maintain unfolded protein at a manageable level within the lumen. There is also little information
on rough ER compared with smooth ER as a cargo of autophagy. Different pathways and different receptors may
participate, again pointing to likely tissue-specific divergence of these mechanisms in vivo.

Finally, another potentially ER-phagy related mechanism that specialist cells might use to respond to ER stress is
secretory autophagy. Paneth cells secrete ER luminal lysozyme via the ER to defend against pathogens. Here, ER stress,
triggered by bacterial invasion, results in an increase in secretory autophagy of lysozyme, i.e. the use of the autophagy
machinery to build secretory vesicles containing the lysozyme, rather than utilization of the default secretory pathway
via the Golgi [80]. Investigations are required to determine if ER-phagy receptors play a role here.

Conclusion
The UPR and other ER stress response signalling pathways engage multiple effector pathways. A recently emerging
effector is autophagy and, of particular interest, ER-phagy. Taken together, the evidence points to a pivotal role for
ER-phagy in normal ER homeostasis and overall cell health, particularly in specialized tissue types in vivo. Cru-
cially, ER-phagy helps ameliorate the effects of ER stress through the degradation of ER membranes, removal of ER
luminal protein aggregates and/or removal of ER-chaperone proteins. Furthermore, ER-phagy also acts to trim ER
content, helping maintain the dynamism that is characteristic of this key organelle. Future work will surely expand
the molecular components and role of this pathway in currently known and new tissue types.

Summary
• ER is the key site for the folding of nascent transmembrane and secretory proteins.

• The lumen of ER has a specialized environment to ensure the fidelity of this process.

• Signalling sensors within the ER lumen detect stress and employ downstream cascades to engage
effector mechanisms and restore homeostasis.

• The major signalling cascade employed by the ER is the UPR, which translationally and transcrip-
tionally engages a variety of effector mechanisms.

• Selective degradation of the ER by autophagy occurs via a process termed as ER-phagy.

• There are currently four known mammalian ER-phagy receptors; FAM134B, SEC62, RTN3 and
CCPG1.

• ER-phagy receptors possess LIR motifs, allowing interactions with ATG8 family proteins.

• ER-phagy has important roles in the physiology of secretory cells in vivo.

• General autophagic flux and direct ER-phagy might both be transcriptionally up-regulated by the
UPR.
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