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Abstract: Radiocaesium is a pollutant with a high risk for the environment, agricultural production,
and human health. It is mobile in ecosystems and can be taken up by plants via potassium transporters.
In this study, we focused on the role of potassium transporter AtKUP7 of the KT/HAK/KUP family
in Cs+ and K+ uptake by plants and in plant tolerance to caesium toxicity. We detected that
Arabidopsis kup7 mutant accumulates significantly lower amounts of 134Cs in the root (86%) and in the
shoot (69%) compared to the wild-type. On the other hand ability of the mutant to grow on media
with toxic (100 and 200 µM) concentrations of Cs+ was not changed; moreover its growth was not
impaired on low K+. We further investigated another mutant line in AtKUP7 and found that the
growth phenotype of the kup7 mutants in K+ deficient conditions is much milder than previously
published. Also, their accumulation of K+ in shoots is hindered only by severe potassium shortage.
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1. Introduction

Caesium is very rare in natural soils as it constitutes only about 3 ppm of soil mass. However,
soils can be enriched in anthropogenic radioactive caesium due to nuclear weapons testing and nuclear
power plant accidents. The most prominent events concerning the spread of radiocaesium in northern
hemisphere were tests of nuclear weapons and the Chernobyl disaster in April 1986 [1]. More recently,
large amounts of caesium were released into terrestrial and marine ecosystems when the Fukushima
Daiichi nuclear power plant was damaged by a tsunami in 2011 [1–3].

Common radionuclides of caesium are 137Cs and 134Cs [4]. With relatively long half-lives of 30
and 2 years respectively, these radionuclides persist in the soil and are introduced into the food chain
through plant uptake. Indeed, caesium is readily transported into plants as a chemical analogue of
potassium [4]. This led researchers to study soil and genetic factors influencing caesium uptake to
reveal risks of crop production in contaminated soils as well as the potential to remediate contaminated
soil via plants.

So far, numerous studies founded that a limited supply of potassium from soils or cultivation
media increased caesium uptake in various plant species, including wheat [5], spinach [6], and beans [7].
These studies highlight candidate proteins for caesium transport, which are components of a
high-affinity potassium uptake system [8], directed towards caesium transport during potassium
scarcity [9]. Primarily these are transporters from the KT/HAK/KUP (K+ transport/High-affinity K+/K+

uptake) family. In Arabidopsis thaliana, the single transporter upregulated in response to low potassium
availability is AtHAK5 and its involvement in caesium uptake has been reported [10,11]. Some other
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KT/HAK/KUP transporters were also indicated to affect caesium accumulation in A. thaliana [12].
In tomato SlHAK5, an orthologue of AtHAK5, seems to mediate most of the caesium influx in conditions
of potassium scarcity [13]. In rice, mutagenesis revealed OsHAK1, a close relative of AtHAK5, as the
transporter responsible for large part of caesium influx [14]. A quantitative genetic approach in
A. thaliana indicated two other transporters from different families that correlate with enhanced
caesium sequestration: AtCHX16 (Cation/H+ exchanger 16), and AtCNGC1, (Cyclic nucleotide-gated
channel 1) [15]. These transport proteins have not yet been functionally characterised. Reduced caesium
accumulation was also shown in a SNARE (SNAP receptor) protein sec22 (Secretion deficient 22)
mutant. In A. thaliana, accumulation of caesium was decreased in Atsec22 mutant plants and yeast
Scsec22 mutants had impaired transport of caesium into the vacuole [16].

When analysing the risks of radiocaesium soil-plant translocation for food production and
human health, root-shoot transport and allocation to edible parts of the plant are of highest concern.
Consumption of plants with high content of radiocaesium leads to internal radiation with more severe
consequences. Among other examples, it was shown in rice, that a higher amount of caesium is
transported into the shoot during fruit ripening [17]. Also, brown rice had higher Cs+/K+ ratio than
the rest of the shoot [18]. In summary, Cs+ accumulation is generally higher in fast-growing species,
although it differs among taxonomic groups [19], and cultivars [20–22]. High Cs+ accumulation occurs
in species of Chenopodiaceae, Amaranthaceae, and Brassicaceae families [19,23].

Transporters involved in K+ xylem loading were identified and are good candidates for proteins
mediating radiocaesium translocation from root system to shoot. In A. thaliana, shaker-type channel
SKOR (Stellar K+ outward rectifying channel) participates in xylem potassium loading [24], but its
involvement in caesium transport is not known. Also, non-canonical potassium transporters are
involved in potassium and caesium partitioning. NRT1.5 (Nitrate transporter 1.5) is involved in
potassium xylem loading, with unknown discrimination between K+ and Cs+[25], while ZIFL2
(Zinc-induced facilitator-like transporter 2) is specific for caesium partitioning. When ZIFL2 is mutated,
caesium is accumulated more in the A. thaliana shoot [26]. Recently, transporters that accumulate
potassium in xylem parenchyma were identified. KT/HAK/KUP transporter OsHAK5 participates in
both potassium uptake and xylem loading in rice [27]. In A. thaliana another KT/HAK/KUP transporter,
AtKUP7, is also involved in potassium uptake as well as accumulation in xylem parenchyma and affects
potassium loading into the xylem [28]. It is, therefore, a highly probable candidate for participating in
the root-shoot translocation of radiocaesium in A. thaliana.

In this study, we focused on AtKUP7 transporter and its possible involvement in uptake and
root-shoot transport of 134Cs+ and K+. We examined T-DNA insertional mutant of AtKUP7 (kup7-1)
for its capacity to take up 134Cs+ and K+ and translocate these ions into the shoot. The sensitivity of
kup7-1 mutant plants to Cs+ toxicity and K+ scarcity was also analysed.

We found, that kup7-1 accumulates less radiocaesium in both roots and shoot. In addition,
we observed a much milder growth phenotype in low K+ conditions than previously published for
another mutant line (marked kup7-2 in this study). Therefore, we compared these two mutant lines
in subsequent cultivation experiments. We found that low K+ phenotypes of Atkup7 mutants are
generally milder than previously published.

2. Results

2.1. Plant Material

After purchase, both mutant lines were genotyped by PCR and homozygous plants were
backcrossed with Col-8. Homozygotes and respective wild-types were selected in the F2 generation
with PCR genotyping. T-DNA insertion was confirmed in the annotated position by sequencing.
In kup7-1, the presence of transcript was evaluated by qualitative RT-PCR. Transcript upstream of the
insertion was present in the homozygotes, while the transcript in the vicinity of the insertion was not
detectable (Supplementary Figure S1).
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2.2. Short-term Uptake of 134Cs+

After 24 h exposure to 134CsCl, kup7-1 plants contained significantly less radioisotope than the
wild-type plants in both roots and shoots (Figure 1a,b). 134Cs activity in kup7-1 roots was 86% of
the wild type, while it was 69% of the wild type in the shoot. This suggests that both root uptake
and root-shoot transport of 134Cs were hindered by the KUP7 mutation. Both mutant and wild-type
plants had same growth rate on the basis of dry weights at the time of 134Cs incubation experiment
(after 3 weeks of cultivation in K+ replete medium + 1 week of K+ starvation; see Supplementary
Figure S2).

Figure 1. The radioactivity (Bq.g−1 of dry weight) in plant parts after 24h incubation in solution
containing 1800 Bq.l−1 134CsCl and 0.5 mM CaCl2. Radioactivity in (a) roots and (b) shoots of kup7-1
plants and respective wild types and in (c) roots and (d) shoots of hak5 and respective wild types.
* indicates significant differences between genotypes (Aspin–Welch Unequal-variance T-test, p ≤ 0.05,
n = 6–8).

We also evaluated the sensitivity and reliability of our 134Cs incubation methods using published
hak5 mutant line (SALK_005604C). In the same experimental setup, the hak5 mutant exhibited
significantly lower 134Cs uptake into its roots (21%) and shoot (45%) compared to wild-type (Figure 1c,d),
which is in agreement with its function in caesium uptake [11].

2.3. Plant Susceptibility to 133Cs+ Toxicity

The significantly lower uptake of 134Cs by kup7-1 mutants might suggest reduced long-term
accumulation of caesium in kup7-1. Since caesium can be toxic to plants and its toxicity depends
on potassium supply [29], we tested the growth of kup7-1 plants in different caesium concentrations
and in low potassium availability. In this experiment, we used media with three concentrations of
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stable caesium isotope (50, 100 and 200 µM 133CsCl) supplied with 100 µM of K+, which enabled
reasonable growth of the plants. Growth of plants was gradually inhibited by rising concentrations
of caesium. Dry weights of roots and shoots, total length of root system, and number of lateral roots
were significantly lower in these treatments compared to plants exposed to 100 µM K+ only (GLM
ANOVA, p ≤ 0.05; Figures 2a–d and 3). We also included the treatment with 100 µM K+ + 200 µM
NaCl to our experimental design. The growth of Na+ treated plants was the same as in Cs+ free
treatment (GLM ANOVA, p ≤ 0.05; Figure 3a–d), which proved that the observed growth inhibition
was caesium-specific.

Figure 2. Growth metrics of wild type and kup7-1 plants after 16 days (a,b) or 10 days (c,d) of cultivation
on various K+ and Cs+ levels. (a) Dry weight of roots, (b) dry weight of shoots, (c) total length of
root system, (d) number of lateral roots. * indicates significant differences between genotypes within
treatments (Aspin–Welch Unequal-variance T-test, p ≤ 0.05, n = 24).
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Figure 3. Phenotype of wild type and kup7-1 plants on (a) 100 µM K+, (b) 50 µM Cs+ and 100 µM K+,
(c) 100 µM Cs+ and 100 µM K+ and (d) 200 µM Cs+ and 100 µM K+, scale bars 1 cm.
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The comparison of genotypes showed, that overall growth of kup7-1 mutants was slightly better
than wild type. This phenotype was statistically significant for root and shoot dry weights as well as
for total lengths of root systems (GLM ANOVA, p ≤ 0.05). On the other hand, the genotypes within
individual treatments (Aspin–Welch Unequal-variance T-test, p ≤ 0.05) showed significant differences
between kup7-1 and wild-type plants—mostly in Cs-free treatments, while differences were never
found at 100 and 200 µM Cs+ levels (Figure 2a–d).

2.4. Response to K+ Shortage

To test the response to severe potassium starvation, we used a treatment with 15 µM K+. Plants on
this media grew significantly less than on the 100 µM K+ media, although still better than those on
media with addition of 100 and 200 µM Cs+ (GLM ANOVA, p ≤ 0.05; Figure 2a–c). The only exception
to this trend was root branching. The depletion of K+ to 15 µM enhanced root system branching in
comparison to 100 µM K+ (GLM ANOVA, p ≤ 0.05; Figure 2d).

Surprisingly, kup7-1 plants grew slightly better than wild type. They exhibited higher shoot
biomass and number of lateral roots after 16 and 10 days of K+ shortage respectively (Figure 2b,d).
This growth trend did not correspond with data published for another kup7 line (SAIL_105_G04) [28].
We, therefore, included this line (marked as kup7-2) and the media from previously mentioned
study to compare low K+ responses of both lines. On both types of low K+ media, kup7-1 plants
showed slightly enhanced growth compared to wild type; they had significantly higher shoot biomass
(Aspin–Welch Unequal-variance T-test, p ≤ 0.05; Supplementary Figure S3a–d). On the other hand,
growth of kup7-2 did not significantly differ from its wild type in any biometric parameter (Aspin–Welch
Unequal-variance T-test, p ≤ 0.05; Supplementary Figure S3a–d).

2.5. Potassium Accumulation in Low K+ Conditions

The potassium content in plant biomass was analysed in plants grown for 16 days on agar plates
supplied with 100 µM K+. In this experimental setup, kup7-1 plants grew significantly better than other
genotypes and had longer primary roots during the cultivation. Kup7-2 showed no difference compared
to wild type (Aspin–Welch Unequal-variance T-test, p ≤ 0.05; Supplementary Figure S4a). Shoots of
kup7-1 mutants contained significantly less potassium than their respective wild type, while reduction
of potassium content in shoots of kup7-2 was not significant (p = 0.07; Aspin–Welch Unequal-variance
T-test; p ≤ 0.05, Figure 4a).

Figure 4. Potassium contents (g.kg−1 dry weight) of wild type and kup7 plants. (a) Shoots of kup7-1 and
kup7-2 supplied with 100 µM K+ in vitro for 16 days. (b) Roots and shoots of WT and kup7-1 grown in
hydroponics for three weeks in 4 mM K+ and one week in 15 µM K+.* indicates significant differences
between genotypes within treatments (Aspin–Welch Unequal-variance T-test, p ≤ 0.05, n = 11).
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Potassium content was also analysed in 4-week-old kup7-1 plants growing for 3 weeks in full
potassium media (4 mM K+) and for 1 week in 15 µM K+ in hydroponics. At the end of this cultivation,
overall growth of kup7-1 was better than wild type. The difference was statistically significant for root
biomass (Aspin–Welch Unequal-variance T-test, p ≤ 0.05; Supplementary Figure S4b). In terms of
potassium accumulation, both shoot and root potassium contents did not differ significantly between
wild type and mutant (Aspin–Welch Unequal-variance T-test, p ≤ 0.05; Figure 4b).

3. Discussion

3.1. Radiocaesium Accumulation and Cs+ Sensitivity of kup7-1 Mutant Plants

In case of any accidental release of caesium radioisotopes into the environment, three factors
determine its impact on the food chain and agricultural production: ecosystem mobility of the
radioisotope, soil-plant uptake, and root-shoot translocation. Soil characteristics affect the caesium
mobility and soil-plant translocation, but species-specific differences in soil-shoot transfer factors seem
to be determined mostly by root-shoot transport [30]. As summarized by Burger and Lichtscheidl [31],
some species keep caesium in root system, while others (including A. thaliana) export substantial
amounts of Cs+ to the shoot. Root uptake of caesium is mediated by some potassium transporters,
e.g., AtHAK5, which is the critical component of high-affinity K+ uptake in low K+ conditions [10,11].
The mechanisms of caesium translocation to the shoot have gotten much less experimental attention.

In our study, we focused on AtKUP7 transporter, a very promising candidate for a protein involved
in radiocaesium translocation to the shoot in A. thaliana because of its role in potassium loading into the
xylem [28]. We have found that Arabidopsis kup7-1 mutant plants display significantly lower root-shoot
translocation of 134Cs compared to wild type plants in K-limiting conditions. Both short-term root
uptake and shoot-ward transport of 134Cs+ were impaired in kup7-1, the latter to a greater extent
(Figure 1a,b). These data are in agreement with the role of AtKUP7 in potassium transport to the
shoot [28]. In contrast, no difference in long-term Cs+ accumulation between A. thaliana kup7 and wild
type seedlings were found after 7 days of cultivation in the study of [12]. This can, however, be explained
by relatively high K+ availability used in their experiment (300 µM CsCl + 500 µM KCl), which might
prevent significant involvement of AtKUP7 in K+ or Cs+ accumulation. The transport activity of
AtKUP7 is important, especially in low-K conditions [28]. Moreover, A. thaliana translocates a larger
proportion of caesium accumulated in roots to the shoot, particularly in K-sufficient conditions [32].
These currents might be mediated by SKOR [24] NRT 1.5 [25] or other unknown components,
although their involvement is yet to be tested.

To verify our experimental setup for Cs+ uptake measurement, we included A. thaliana hak5
mutant plants. The AtHAK5 transporter is well known as the key component for potassium uptake
in K+ limiting conditions, and also being involved in Cs+ uptake by roots [10,11]. We successfully
evaluated our approach as Athak5 plants showed severely reduced 134Cs+ uptake, in agreement with
previously published data [11]. In the K+ deficient conditions induced by our treatment, short-term root
accumulation of 134Cs+ in Athak5 plants was 21% compared to wild type. Under the same conditions,
kup7-1 plants root accumulation of 134Cs+ was 86% and the accumulation in shoot was 69% compared
to wild type (Figure 1c,d).

Such comparisons between Athak5 and Atkup7-1 indicates that AtHAK5 has an irreplaceable
function in K+ limiting conditions [33], while AtKUP7 is more redundant in K+ uptake and translocation
to shoot. Alternatively, AtKUP7 might be more selective for K+ over Cs+. The ability to transport
Cs+ was proven by heterologous expression in yeast for other members of KT/HAK/KUP family,
e.g., AtHAK5 [34] or AtKUP9 [35]. AtKUP7 needs to be tested in the same way to get final proof of its
Cs+ transport ability. The role of AtKUP7 might also be indirect, via regulation of other transporters.
A functional adenylate-cyclase domain was detected on N-terminal cytoplasmic domain of AtKUP7 [36]
as well as AtKUP5 [37], and the role of this domain in regulation of K+ homeostasis was proposed [37].
All these possibilities need to be verified by future experiments.
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We also tested whether the reduced short-term uptake and translocation of Cs+ improves the
growth of Atkup7-1 in the presence of Cs+ in the rhizosphere. Cs+ distribution in plant tissues is
similar to K+ [38] and Cs+ toxicity correlates with the Cs/K ratio of the plant [29]. In agreement,
enhanced tolerance to Cs+ toxicity was previously documented for Athak5 plants and linked with their
lower Cs+ uptake in low K+ conditions [11]. We used the stable isotope 133Cs in these experiments.
The addition of 50–200 µM of Cs+ into the 100 µM K+ media-induced mild to severe Cs+ toxicity as
was published for A. thaliana [11]. The response of Atkup7-1 and wild-type plants to Cs+ did not differ
significantly in the vast majority of growth parameters at any Cs+ level applied (Figure 2a–d). We can
assume that the reduction in uptake of Cs+ by 14% and reduced shoot-ward transport by 31% in kup7-1
is too small of a change to affect plant growth in a Cs-rich environment. It is also possible that higher
Cs+ translocation to the shoot in wild-type plants is later compensated by transport systems that
re-translocate Cs+ back into the root and environment. This may correspond with the data published
by Adams, Miyazaki and Shin [12], who did not detect differences in long-term Cs+ accumulation
between kup7 and wild-type plants. As summarized by [8] and [39], the majority of Cs+ delivered to
the shoot can be recirculated to the roots via the phloem. An example of a phloem re-translocation
system might be the metal-stabilising protein NaKR1. Mutants in AtNaKR1 accumulate various alkali
ions (K+, Na+ and Rb+) in their shoots [40], but the role of NaKR1 in Cs+ phloem transport needs to be
experimentally tested.

3.2. Low K+ Responses and K+ Accumulation in Arabidopsis kup7 Mutants

Growth retardation and reduced shoot K+ accumulation in Atkup7 seedlings cultivated in low K+

conditions (100 µM K+) were previously shown as evidence indicating the involvement of AtKUP7
in xylem loading [28]. In agreement with this, we detected lower K+ contents in shoots of Atkup7-1
plants in similar conditions (short-term in vitro cultivation on media with 100 µM K+) (Figure 4a).
On the other hand, Atkup7-1 plants grew slightly but often significantly better than wild-type plants
in short-term in vitro cultivations with 15-100 µM K+ levels (Figure 2a–d). This phenotype was also
observed in long-term hydroponic cultivation where severe low-K conditions (15 µM K+) were applied
during the last week of four-week cultivation, after three weeks of growth in K-replete solution (4 mM
K+). Despite this, we did not find any difference in shoot K+ contents between Atkup7-1 and wild type
plants in hydroponics (Figure 4b).

In plants pre-treated with a potassium-rich media for a long period of growth, the function
of AtKUP7 might be redundant. AtKUP7 is expressed in most cell types in the root and actively
transports K+ into the cells, thus contributes to K+ accumulation in xylem parenchyma cells [28].
Then K+ is released into xylem vessels by the shaker-like channel AtSKOR [24] and K+/H+ antiporter
AtNRT1.5 [25]. AtKUP7 thus contributes to potassium uptake into the cells [28] but its involvement in
root K+ uptake from rhizosphere is less significant in comparison to AtHAK5 and AtAKT1 (Arabidopsis
K+ transport) [41]. In addition, disruption of KUP7 function in K+ uptake does not manifest in
potassium-rich conditions [28], which might be similar to our plants cultivated in potassium replete
conditions three weeks prior the period of K+ starvation.

Slightly better growth of Atkup7-1 compared to wild-type seedling in low-K conditions is surprising
as it does not correspond with the growth retardation of Atkup7 mutants described by [28]. However,
we used another mutant line (SALK_206158S; Atkup7-1), where the T-DNA insertion is located in the
last exon of AtKUP7. By qualitative RT-PCR we detected that the transcript upstream of the insertion is
present in homozygous plants and only the downstream part is disrupted (Supplementary Figure S1).
Hence, we cannot exclude the presence of a partial protein with a missing part of the C-terminal
domain. The study of [28] worked mostly with the mutant line SAIL_105_G04 (Atkup7-2). In this line,
the insertion is located in the first exon of AtKUP7, the transcript is not present, and the transporter is
disrupted completely [28]. Therefore, we included this line in our study to compare low-K growth
phenotypes of both lines. In low-K conditions, seedlings of both lines tended to accumulate less K+ in
the shoot (Figure 4a). However, they differed in growth parameters. Atkup7-1 plants showed slightly
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enhanced growth, while Atkup7-2 plants tended to be smaller compared to their respective wild type
or did not differ (Supplementary Figure S3a–d). We also grew both lines on a medium resembling that
from its original publication, which contained 1.25 mM NH4

+. NH4
+ may negatively affect plants

that suffer from potassium shortage [42], and inhibits the expression of AtHAK5 [11]. Both lines grew
slightly worse on the basis of shoot dry weight on this medium but maintained the differences in
growth rates (Supplementary Figure S3a–d). In our hands, the growth phenotype of K+ deficient
Atkup7 plants was generally milder than previously published for Atkup7-2. However, the difference
between kup7-1 and kup7-2 mutant lines exists independent of cultivation conditions.

We cannot exclude that, in the Atkup7-1 line, a partial KUP7 protein can be formed. This protein
might have a part of the cytosolic C-terminal domain disrupted by T-DNA insertion in AtKUP7 gene,
but the remaining part might be partially functional. This part includes the transmembrane domains
of the transporter’s pore, as well as the AMP cyclase domain on N-terminus [36]. Little is known
about the function of this domain. In kup7-2 line, AtKUP7 protein is completely missing as Han, Wu,
Wu and Wang [28] did not detect any AtKUP7 partial transcript. We can speculate that the presence
of an AMP cyclase domain or the gain of function conformation change in this domain might be the
cause of enhanced growth in kup7-1. This interesting possibility needs to be tested.

4. Conclusions

This research and previous work show, that two distinct mutant lines in AtKUP7 have decreased
root-shoot transport of alkali ions (Cs+ and K+). This decrease is not uniformly translated into lower
potassium content in plants’ shoot. Also, we did not observe any growth retardation in either mutants.
Therefore, we conclude that the phenotype of KUP7 mutation is much milder than previously thought
and its function is probably redundant.

5. Materials and Methods

5.1. Plant Material

Homozygous mutant T-DNA insertion line for AtKUP7 (At5g09400): kup7-1 (SALK_206158S) of
Arabidopsis thaliana (L.) Heynh. was used in this study. Additionally, another kup7 line (SAIL_105_G04,
marked kup7-2 in the text) and insertion line for AtHAK5 (At4g13420)—hak5 (SALK_005604C) were
used. Seeds of all the lines were obtained from publicly available collections (NASC, Nottingham
Arabidopsis Stock Centre) and used in experiments. Lack of the wild-type allele (the presence of T-DNA
insertion) was confirmed by standard genotyping PCR procedure using pre-designed genotyping
primers from SALK Institute website [43]. Position of the insertion was confirmed by sequencing.
Mutant plants were backcrossed into their genetic background (Col-8; N60000) and homozygous
mutants and wild-type controls were selected in F2 generation by genotyping. RNA was isolated from
kup7-1 homozygotes using the NukleoSpin RNA Plant kit (Mecherey-Nagel; Duren, Germany) and the
presence of transcript in these lines was tested by qualitative RT-PCR.

5.2. Uptake of 134Cs

Plants were grown hydroponically in a growth chamber with constant growth conditions (25/15 ◦C
day/night temperature, 16/8 light/dark cycle). Plants were grown for three weeks in 5.5L containers
(18 plants per container) with aerated modified Murashige-Skoog media (0.2× strength, with NH4NO3

omitted) with the following nutrient composition (K+ replete medium with 4 mM K+): 3.76 mM KNO3,
0.25 mM KH2PO4, 0.3 mM MgSO4, 0.59 mM CaCl2, 20 µM H3BO3, 0.02 µM CoCl2, 0.02 µM CuSO4,
20 µM FeSO4 EDTA, 22.4 µM MnSO4, 0.21 µM Na2MoO4, 1 µM KI and 5.98 µM ZnSO4. NH4

+ was
omitted because it can block KT/HAK/KUP transporters or change their expression levels [11].
Cultivation media was replenished once a week. After three weeks of cultivation, fully developed
plants were transferred into low K+ media (1 µM K+; other nutrients same as in K+ replete media)
for one week. KH2PO4 and KNO3 were substituted by respective sodium salts in low K+ medium.
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pH was adjusted to 5.8 by NaOH in all cultivation media. Following low K+ treatment, plants were
transferred into the incubation solution containing 1800 Bq.l−1 134CsCl and 0.5 mM CaCl2 for 24 h to
monitor short-term 134Cs accumulation in plant tissues. After incubation, roots were washed with
0.5 mM CaCl2 solution for 3 min. Plants were divided into roots and shoots and plant parts were
dried to a constant weight at 60 ◦C. Biomass of dried samples was weighed and activity of 134Cs was
measured by HPGe gamma spectrometry in a well detector at National Radiation Protection Institute,
Czech Republic.

5.3. Susceptibility to Cs+ Toxicity and K+ Shortage

To analyse plant sensitivity to caesium toxicity, we cultivated plants in vitro in agar-solidified
media supplemented with various levels of 133Cs+ (stable isotope) and K+. The nutrient composition
of germination medium (0.2 ×Murashige-Skoog medium with omitted NH4NO3) was the same as
in hydroponic cultivations (see above), and contained 4 mM K+. For potassium deficient media,
KH2PO4 and KNO3 were substituted by respective sodium salts, and potassium levels (15 and 100 µM
K+) were adjusted by addition of KCl. Caesium was added as 133CsCl to medium with 100 µM K+

to get 50, 100, and 200 µM Cs+ concentrations. Cultivation medium with 100 µM K+ and 200 µM
Na+ (added as NaCl) was used to confirm the specificity of plant response to Cs+. Alternatively,
low K+ medium with the exact salt composition of the low K+ media according to [28] was used to
compare the growth of kup7-1 and kup7-2 mutant lines in low K+ conditions. This medium is based
on 0.5 Murashige-Skoog medium and contains 100 µM K+. All media was supplemented with 1%
w/v sucrose and solidified with 1% w/v agar (Plant agar; Duchefa, Netherlands). This agar contains
54 ± 2 mg/kg of residual potassium. This residual potassium was taken into account when potassium
levels were adjusted. pH of the media was adjusted to 6.0 by NaOH.

Seeds were surface sterilized with 20% solution of commercial bleach with 0.1% triton for 15 min
and washed with distilled water three times. Seeds were sown onto the solidified germination medium
(see above) in the 100 × 100 mm sterile plates. The plates were then stored in 4 ◦C and darkness for three
days to vernalise. After vernalisation, plates were placed into a cultivation room with constant growth
conditions (22/18 ◦C day/night temperature, 16/8 h light/dark cycle). After five days, seedlings were
randomly transferred onto solidified media with various K+ and Cs+ levels. Root system traits were
determined 10 days after germination (DAG) and plant biomass on 16 DAG.

5.4. Measurements of Root System Traits and Plant Biomass

To monitor root system growth, plants on agar plates were scanned at high resolution (1200 dpi,
48-bit) and root system traits were measured by Root analyser plug-in in NIS Elements AR 3.22.05
software (Laboratory Imaging). To analyse plant growth and biomass production, roots and shoots
were separated, and their fresh weights were measured. Plant parts were then dried to a constant
weight at 60 ◦C to analyse dry weights and relative water contents.

5.5. Potassium Accumulation

Plants were grown in hydroponic containers (Araponics; Liege, Belgium) for 17 days supplied
with aerated 4 mM K+ medium with NH4NO3 omitted (K+ replete medium with 4 mM K+; see above).
The media was changed weekly. Then, plants were transferred to 15 µM K+ medium (media
composition see above) for one week. Prior to harvest, plant roots were washed with 1 mM CaCl2
for 3 min. The biomass of the plants was determined. The dry mass was then homogenized
by mixer mill (Retsch MM301) and subsequently decomposed by a solution of HNO3 and H2O2.
Potassium content was measured by flame atomic absorption spectrometry on SpectrAA 280 FS (Varian;
Palo Alto, CA, USA). In the second experiment, plants were grown for 16 days on solidified media
supplied with 100 µM K+ and processed in the same way as plants from hydroponic culture.
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5.6. Statistical Analyses

The statistical analysis was done with NCSS 9.0.15 software (Hintze, J. 2013. NCSS, LLC.
Kaysville, UT, USA). The effects of treatments, genotypes, and their interaction were analysed
with GLM ANOVA (Bonferroni Test). The differences between kup7 plants and wild type controls in
individual treatments were analysed with Aspin–Welch Unequal-variance T-test, p ≤ 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/11/1525/s1,
Figure S1: Results of qualitative RT-PCR; Figure S2: Growth of plants in Cs+ uptake experiments; Figure S3:
Growth of plants in K+ accumulation experiments; Figure S4: Comparison of growth in kup7-1 and kup7-2.
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