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Abstract

Cell surface carbohydrates play an important role in virus entry and intracellular trafficking. Bovine Adeno-Associated Virus
(BAAV) uses plasma membrane gangliosides for transduction and infection. In addition, independent of the infectious
pathway, BAAV also has the ability to pass through barrier epithelia and endothelia using a transcytosis pathway dependent
upon the presence of cell surface carbohydrates. Thus, in order to better define the carbohydrate interactions that are
necessary for BAAV infection or transcytosis, a glycan microarray composed of both natural and synthetic carbohydrates
was probed with HA-tagged BAAV particles. This identified chitotriose, a trimer of b-1-4-linked N-acetyl glucosamine, as
having an interaction with BAAV. Competition experiments showed that the BAAV interaction with this carbohydrate is not
necessary for infection but is instead important in the transcytosis pathway. The b-1-4-linked N-acetyl glucosamine
modification has been reported on gp96, a glycoprotein involved in the transcytosis of bacteria and toxins. Significantly,
immunoprecipitation and competition experiments with an anti-gp96 antibody and a soluble form of gp96, respectively,
showed this glycoprotein can also interact with BAAV to serve as a receptor for its transcytosis.
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Introduction

The initial interaction between a virus and the cell surface is

critical for determining the fate of the virus. While some

interactions will lead to entry and infection of the cells, others

will lead to the destruction of the virus in the cytosol [1–3].

Carbohydrate interactions play an important role in the life cycle

of viruses. In addition to serving as a point of attachment for the

virus on the cell surface, carbohydrates on viral proteins are also

important in intracellular trafficking [4].

Adeno-associated viruses (AAVs) have been isolated from a wide

variety of species and are reported to bind a diverse array of cell

surface carbohydrates including heparan sulfate proteoglycans, N-

and O-linked sialyated glycans, and glycoshingolipids (reviewed in

[5]). While the majority of interactions between AAV and

carbohydrates have been associated with cell binding, virus entry,

and infection, it is possible that they are also involved in other

aspects of the virus lifecycle.

Previous work from our group with an AAV isolated from a

stock of bovine adenovirus, termed bovine AAV (BAAV) [6]

demonstrated that this virus did not require cell surface proteins

for entry but instead used gangliosides for cell infection and

transduction [7]. This tropism resulted in gene transfer vectors

based on BAAV having a unique tropism compared with current

AAV vectors and the ability to transduce cells in the inner ear

[8–10]. In addition, this and other AAV serotypes, for example

AAV4 and AAV5, have the ability to pass through barrier

epithelia and endothelia using transcytosis via a pathway

independent of that used for infection [11]. Our experiments with

BAAV, AAV4, and AAV5 suggested that this process is rapid as

well as serotype and cell-type specific and can be blocked by

neutralizing antibodies, temperature, or chemical inhibitors of

transcytosis. We observed that depending on the cell type and

vector, as much as 3 to 15% of the vector that binds to the cell

surface will transcytosis through a permissive barrier cell model

over 24 hrs [11]. Furthermore, competition experiments with

lectins suggested the involvement of cell surface carbohydrates in

this process [11]. Interestingly, particles isolated following apical-

to-basolateral transcytosis still have their genomes encapsulated

and can transduce permissive cell lines in vitro [11].

Transcytosis has been reported for a number of macromolecules

as well as pathogens such as bacteria and viruses. At its most basic

level, transcytosis is the movement of macromolecules from one

side of a cell to the other and can occur by a variety of mechanisms

[12]. For HIV transcytosis, cell surface galactosyl-ceramides have

been proposed as a receptor for this pathway [13]. For other

pathogens such as S. pneumoniae, translocation across a barrier layer

via the poly(IgA) receptor [14,15] has been proposed. As described

above, transcytosis activity has been demonstrated in BAAV,

AAV4, AAV5 and has been proposed to occur in 2 others; AAV8

and AAV9 [11,16–19]. However, little is known regarding the

mechanism of AAV transcytosis. In order to better define the

carbohydrate interactions that are necessary for BAAV transduc-

tion or transcytosis we probed a glycan microarray composed of
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carbohydrates commonly found on the cell surface with BAAV

particles tagged with an antigenic peptide from the influenza

hemagglutinin (HA) protein (HA-BAAV particles). This analysis

identified an interaction with chitotriose, a trimer of b-1-4 linked

N-acetyl glucosamine (GlcNAc). This interaction was specific for

BAAV and was not seen with an HA-tagged AAV4, which has a

high amino acid sequence homology to BAAV as well as a distinct

but overlapping transduction and transcytosis activity [6,11].

Competition experiments showed that the interaction of BAAV

with this carbohydrate is not necessary for transduction but is

important in the transcytosis pathway. Furthermore, additional

experiments showed that gp96, a b-1-4 linked N-acetyl glucos-

amine containing membrane glycoprotein, involved in the

transcytosis of bacteria and toxins in epithelial and endothelial

barriers, can serve as a receptor for BAAV transcytosis.

Results

BAAV Binds Chitotriose When Screened on a Glycan
Microarray

In order to better define the carbohydrate interactions that are

necessary for BAAV’s life cycle we probed a glycan microarray

composed of carbohydrates commonly found on the cell surface. The

array is available through the Consortium for Functional Glycomics

(CFG) and currently contains over 400 sialyated and nonsialyated

glycans with different linkages and modifications and has been

previously useful in characterizing AAV virus particle:carbohydrate

interactions [20]. Purified BAAV vector genetically tagged with an HA

epitope after amino acid 137 of VP1 and within the VP2 orf, a

modification which has previously been shown not to effect the

transduction activity of AAV2 [21,22], was used to probe the printed

slide (PA V2 http://www.functionalglycomics.org/static/consortium/

resources/resourcecoreh8.shtml). The bound virus was detected using

an FITC conjugated anti-HA antibody. The full summary of the

microarray data is available at NCBI accession number GSE17443.

The highest interaction was seen with glycan #173, GlcNAcb1-

4GlcNAcb1-4GlcNAcb–Sp8 or chitotriose (Fig. 1). Although signifi-

cantly lower, BAAV vectors also showed weak affinity for glycan #110

Gala1-4Galb1-4GlcNAcb–Sp8 or the P1 blood group antigen. The

same array probed with an HA tagged rAAV4 particles under the

same conditions did not show these interactions (data not shown).

Chitotriose Inhibits BAAV Transcytosis but Not
Transduction

Chitotriose is a trimer of b-1-4-linked N-acetyl glucosamine

units and can competitively inhibit lysozyme C [23]. Multimers of

N-acetyl glucosamine are found as a post-translational modifica-

tion on proteins and competition experiments with chitotriose can

block the transcytosis of pathogens [24,25].

In order to understand the role of the chitotriose carbohydrate

in the life cycle of BAAV, cos cell transduction by BAAV vector

virions encoding GFP was analyzed following pre-incubation with

this glycan. The addition of chitotriose did not inhibit BAAV

transduction of the cos cells, but rather slightly increased (10%)

Figure 1. BAAV glycan binding on a glycan microarray. A printed glycan array slide containing 264 glycans (PA V2) was screened to identify
stable BAAV carbohydrate interactions. The plot shows the average relative fluorescence (RFU) with the standard error measurement (SEM) for each
glycan versus glycan number. The values for the top two hits (#173, GlcNAcb1-4GlcNAcb1-4GlcNAcb–Sp8 or chitotriose, and # 110 Gala1-4Galb1-
4GlcNAcb–Sp8 or the P1 blood group antigen) are listed below the figure.
doi:10.1371/journal.pone.0009336.g001

BAAV, Transcytosis, gp96
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transduction activity (Fig. 2A). AAV4 transduction was also

increased (50%) in the presence of chitotriose (Fig. 2A). Primary

human airway epithelia (HAE) and MDCK1 cells have been

shown to be permissive to both BAAV and AAV4 transcytosis

(approx. 0.2–1% of total input vector will transcytose through the

cells in 3 hrs [11]) and form a stable polarized monolayer that

develops a trans epithelial resistance (TER) [11]. In contrast to the

transduction assay, the addition of chitotriose blocked the

transcytosis of BAAV when the virus was pre-incubated with the

glycan prior to application to the apical surface of the cells. The

addition of 20mg/ml decreased BAAV transcytosis activity almost

80% on HAE, and by 50% on MDCKI (Fig. 2B and C). In

contrast, chitotriose did not significantly affect AAV4 transcytosis

(Fig. 2C). In addition to chitotriose, chitin hydrolysate, a crude

mixture of chito-oligomers that has previously been used to block

transcytosis of Ecoli K1, a chitotriose dependent pathogen, was

also tested. Titration experiments on MDCKI cells indicated that

TER was unchanged at concentrations of chitin hydrolysate up to

250mg/ml (data not shown). Addition of 125mg/ml chitin

hydrolysate inhibited ,80% of the BAAV transcytosis but had

no significant effect on the transcytosis of AAV4 (Fig. 2C).

Moreover, addition of heparin sulfate, another charged glycan,

resulted in marginal to moderate (,10% and 60%) increases in

the BAAV and AAV4 transcytosis activity, respectively (Fig. 2C).

The core structure of chitotriose is a b-1-4-linked N-acetyl

glucosamine, which is reportedly bound by several lectins,

including wheat germ agglutinin (WGA) [26]. In competition

experiments, preincubation of MDCKI cells with 30mg/ml of

WGA inhibited 85% of BAAV transcytosis activity but had no

significant effect on AAV4 transcytosis (Fig 2D). Higher

concentrations of lectins resulted in a decrease in TER (data not

shown). A similar level of inhibition was also observed at 10mg/ml

(data not shown). In contrast, dolichos biflorus agglutinin (DBA),

which binds N-acetylgalactosamine, had the opposite effect on

both viruses and resulted in ,50% and 100% increase in

transcytosis for BAAV and AAV4, respectively (Fig. 2D) [27].

Sialic acid linked to gangliosides is important in the transduction of

BAAV [7] and for AAV4, O-linked sialic acid has been shown to

be important for its transduction [7]. To test the role of sialic acid,

and therefore gangliosides in BAAV transcytosis, MDCKI cells

were either preincubated with the maackia amurensis lectin II

(MALII), which binds specifically to sialic acid, or treated with

neuraminidase, which enzymatically removes cell surface sialic

acid, prior to the addition of vector (Fig. 2D). In both cases no loss

Figure 2. Effects of chitotriose, chitin hydrolysate, and lectins on BAAV transduction and transcytosis. (A) BAAV transduction is not
affected by chitotriose. Cos cells plated in 96 well dishes were transduced in serial dilution with either BAAV or AAV4 vector encoding a CMV-eGFP
expression cassette in either the presence or absence of 20mg/ml chitotriose. (B, C) Chitotriose and chitin hydrolysate inhibits BAAV transcytosis.
DNAse resistant particles (DRP) of recombinant BAAV or AAV4, are applied on the upper (apical) side of the monolayer of cells grown on membrane
insert filters (Transwell) either alone or in the presence of chitotriose (20mg/ml), chitin hydrolysate (125mg/ml), or heparin (20mg/ml). Three hours post
incubation, viral DNA was extracted from the basal side medium and quantified by QPCR and expressed as a percent of the amount of vector in the
basal media in the absence of any inhibitors. (B) HAE cells (C) MDCKI cells. N = 4. (D) Lectins inhibit BAAV or AAV4 transcytosis. Viruses were incubated
with cells in presence of wheat germ agglutinin WGA 30mg/ml, dolichos biflorus agglutinin (DBA) 30mg/ml, maackia amurensis lectin II (MALII) 30mg/
ml or neuraminidase 0.2mg/ml. Three hours post incubation, viral DNA was extracted and quantified and expressed as a percent of the amount of
vector in the basal media in the absence of any inhibitors. * P,0.05.
doi:10.1371/journal.pone.0009336.g002

BAAV, Transcytosis, gp96
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of transcytosis was detected for BAAV, which suggests that unlike

transduction, sialic acid and therefore gangliosides, do not have a

role in BAAV transcytosis. In contrast AAV4 transcytosis was

inhibited by ,60% following both treatments (Fig. 2D). Taken

together these experiments strongly suggest that the interaction of

BAAV with chitotriose and chito-oligomers are important for

BAAV transcytosis and that these interactions are virus specific.

Furthermore, inhibition of BAAV transcytosis on both HAE and

MDCKI epithelial barrier models suggests the vector may use the

same transcytosis pathway on both cell types.

Chitotriose Blocks BAAV Tannic Acid Mediated
Transduction and Virus Entry

Our findings suggested that BAAV, like E. coli K1, requires an

interaction with b-1-4 linked N-acetyl glucosamine for transcytosis

to occur. To confirm that the chitotriose inhibition of transcytosis

is due to its effect on cell entry and not due to the redirection of the

vector to alternative pathways, we tested the effect of chitotriose on

BAAV tannic acid (TA) mediated transduction (Fig. 3A). Previ-

ously we had demonstrated that treatment of the basolateral

surface of cells grown on a Transwell with low concentrations of

TA could block vector egress from the cell [11]. Furthermore, the

internalized particles were redirected to the nucleus resulting in

transduction [11]. In agreement with our earlier observation, the

addition of chitotriose was able to block TA mediated transduction

of BAAV on HAE and MDCKI cells (Fig. 3A and B). 48 hrs post

vector addition, transduction with BAAV/chitotriose vectors

encoding GFP on TA treated HAE or MDCKI cells decreased

3 and 15 fold respectively compared with that of TA controls

(Fig. 3A and B, BAAV TA chitotriose versus BAAV TA). As

expected, BAAV alone was not able to transduce the cells (Fig. 3A,

BAAV).

These observations suggest that the BAAV vector particles are

likely entering the cell via transcytosis and that chitotriose blocks

this entry mechanism. Transcytosis is a complex process and likely

involves multiple interactions with cellular factors. In order to

determine if chitotriose is affecting the entry of BAAV particles

into the cell, qPCR was used to measure the number of

internalized genomes in the TA treated cells either +/2 the

addition of chitotriose (Fig. 3C). After incubation with BAAV

particles +/2 chitotriose the cells were extensively washed and

treated with proteases to remove BAAV particles on the cell

surface followed by isolation of total DNA and quantification by

qPCR. As previously demonstrated, by treating the cells first with

TA to block the egress of the particles, apical administration of

BAAV on MDCKI cells increased the level of vector in the cell by

,3-fold compared with the control samples. However, the

addition of chitotriose reduced the amount of internalized

genomes by 40% compared with the TA only treated samples

(Fig. 3C BAAV). AAV4 has transcytosis activity on MDCKI cells

Figure 3. Chitotriose inhibits BAAV TA mediated transduction and cellular virus entry. (A) Tannic acid was added to the basal medium of
HAE or MDCKI cells while vector was added either alone or in the presence of chitotriose (20mg/ml) to the apical surface. Transduction of cells treated
with BAAV, BAAV and TA or BAAV, TA and chitotriose was observed 48 h post-vector addition by fluorescence microscopy. (B) Fluorescence
comparison. Value of cells treated with BAAV TA +/2 chitotriose was calculated after subtracting fluorescence background from BAAV only treated
cells and expressed as a percent of fluorescence of the BAAV TA treated cells. (C) BAAV internalization in presence of chitotriose. MDCKI cells were
incubated with BAAV or AAV4 in presence of tannic acid with or without chitotriose as above. Four hour post administration, cells were washed
extensively with PBS and non-internalized bound particles were removed by incubating the cells with trypsin and protease K. Total DNA was isolated
from the cells by phenol/chloroform extraction and viral genomes quantified by qPCR using primers specific for the promoter region. * P,0.05.
doi:10.1371/journal.pone.0009336.g003

BAAV, Transcytosis, gp96
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and like BAAV its transduction on these cells can be increase by

treating the basolateral surface of these cells with TA. In

agreement with our results with BAAV, detection of AAV4

genomes in the TA treated cells also increased (by ,70–100%)

compared with untreated control cells. However, this increase in

internalized particles was not inhibited by addition of chitotriose

but rather resulted in a further increase of ,100% (Fig. 3C

AAV4). Taken together these observations show that chitotriose

inhibits BAAV transcytosis and TA transduction by impeding the

entry phase of transcytosis and further confirms that the AAV4

transcytosis phenomenon is chitotriose independent.

Identification of gp96 As a Receptor for BAAV
Transcytosis

The transcytosis pathway followed by BAAV is very similar to

that reported for E. coli K1. Both are inhibited by WGA lectin,

chitotriose, chitin hydrolysate, treatment of cells with filipin, and it

can occur on in vitro cultures of blood brain barrier (BBB)

endothelial cells [11,25]. Extensive research on E. coli K1

transcytosis has identified a close homolog of gp96 as the protein

receptor responsible for transcytosis across the BBB [24]. Recent

reports suggest that gp96 can also function as a receptor for

Clostridium difficile toxin A transcytosis, Listeria monocytogenes invasion

and Neisseria gonorrhoeae cell attachment [28–30]. gp96 is a member

of the heat shock protein family and localized to the endoplasmic

reticulum where its chaperone function is critical for the proper

folding of many substrates [31]. However, under appropriate

conditions it also can be found on the apical membrane ([28,30]

and P.K. Srivastava personal communication). MDCKI and

Caco-2 cells differ in BAAV transcytosis activity by 3–4-fold [11].

In order to determine if the cellular expression and localization of

gp96 correlated with BAAV transcytosis activity in these cells,

western blots analysis and cell immunofluorescence assays were

performed. Western blots of whole cell lysates from MDCKI and

Caco-2 showed a similar level of gp96 expression (Fig. 4A).

However, confocal immunofluorescent plasma membrane imaging

of cells with an anti-gp96 followed by labeled secondary antibody,

showed a more uniform distribution of gp96 on permissive

MDCKI cells compared with the more weakly permissive Caco-2

cells where it appeared more scattered and in clusters (Fig. 4B).

Quantification of plasma membrane fluorescence for these cells

showed a difference (,3-fold higher) in pixel intensity representing

the gp96 distribution in MDCKI cells compared with Caco-2 cells

consistent with the overall difference in transcytosis activity

(Fig. 4C). This observation suggests that gp96 may be involved

in BAAV transcytosis. To investigate a direct role of gp96 in

BAAV transcytosis, competition experiments using an anti-gp96

antibody or the soluble gp96 extracellular domain were per-

formed. MDCKI cells grown on a Transwell were treated with

either a polyclonal antibody to gp96 or PDGFRa (25 mg/ml), a

receptor for AAV5, as a negative control, prior to the addition of

BAAV or AAV4 vectors. Four hours post incubation with vector,

transcytosis was measured. In contrast to treatment with the anti-

PDGFRa antibody, transcytosis was decreased by 50% following

treatment with the anti-gp96 antibody whereas that of AAV4 was

unaffected (Fig. 5 control, anti-gp96, anti-PDGFRa). Further-

more, the addition of a soluble form of gp96 (25 mg/ml) had a

similar effect on BAAV transcytosis but no significant effect on

Figure 4. gp96 quantification and cell membrane distribution in BAAV transcytosis permissive (MDCKI) and non-permissive (Caco-
2) cells. (A) gp96 western blot from whole cell lysates. GAPDH detection was used as a loading control. (B) Non-permeabilized cells were stained with
anti-gp96 followed by Alexafluor 488 secondary antibody and analyzed by confocal immunofluorescence laser microscopy. (C) Fluorescence
quantification of 10 random fields. * P,0.05.
doi:10.1371/journal.pone.0009336.g004

BAAV, Transcytosis, gp96
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AAV4 (Fig. 5 control, soluble gp96). These observations point to

the specificity of the gp96 recognition by BAAV and not AAV4.

The above data suggests a direct interaction between BAAV

and gp96. Alternatively, BAAV could be following the same

internalization pathway as gp96. To test for a direct interaction

between BAAV and gp96, a myc tagged version of gp96 was

expressed in 293T cells and purified using anti-myc affinity beads.

The protein coated beads were then used in an immunoprecip-

itation experiment. The gp96 coated beads or control beads

coated with either GFP or a myc-tagged version of the membrane

protein TRPC1 were then incubated with purified BAAV or

AAV4 viral particles. After extensive washing the bound virus was

quantified by qPCR with primers specific for the reporter gene

cassette. Compared with control GFP or TRPC1 beads, a 2–3fold

increase in the amount of bound BAAV was detected when

incubated with the gp96 coated beads (Fig. 6). In contrast, little

difference in AAV4 binding to GFP, TRPC1 or gp96 coated beads

was observed (Fig. 6). This pull down experiment indicates a direct

interaction between BAAV and gp96.

Discussion

The pathogenicity of a virus can be linked to its cell tropism and

its ability to spread through tissue. Indeed, studies with other

parvovirus such as MVM and CPV suggest that mutations that

affect virus:cell interactions can alter pathogenicity, invasiveness,

and host range [32,33]. For many viruses, the first host defenses

that must be overcome are the barrier epithelia that line the lung,

gastrointestinal, or reproductive tract (for review see [4]). To

overcome this obstacle, viral entry through normal signaling and

trafficking pathways present in these cells represent an attractive

target. A number of mechanisms exist in barrier epithelia for

moving macromolecules from the apical to the basolateral surface.

These include paracellular and passive pores routes, nonselective

transcytosis in the fluid phase of vesicles, or selective receptor-

mediated vesicle transcytosis [12]. Despite all these options, most

pathogens are reported to penetrate barrier cell layers via a

receptor-mediated pathway.

Listeria monocytogenes and E. coli K1 are examples of pathogens

that use gp96 for transcytosis across barrier cell layers. Neisseria

gonorrhoeae uses gp96 as an attachment receptor while S. pneumoniae

translocation across a barrier layer via the poly(IgA) receptor

[14,15,28,30,34].

Our previous work suggested that AAV transcytosis occurs via a

receptor mediated pathway that is distinct from the pathway used

for infection [11]. In this study glycan microarray analysis of

BAAV carbohydrate interactions identified an interaction between

BAAV and chitotriose. Competition assays with this carbohydrate

showed that it did not block transduction but did inhibit

transcytosis in vitro. Additionally, western blots, immunoprecip-

itation, and competition experiments were used to link BAAV’s

ability to bind chitotriose (a trimer of b-1-4-linked N-acetyl

glucosamine) with the post-translationally modified glycoprotein

gp96, suggesting that this protein can serve as a receptor for

BAAV transcytosis. The use of AAV4 as a ‘‘negative’’ control

throughout these studies demonstrated the serotype specificity of

the chitotriose and gp96 interactions with BAAV.

Glycan microarrays are powerful tools for identifying interac-

tions with carbohydrates. However, as with any array platform it is

limited to what is printed on the array. We have previously

reported sialic acid containing glycoshingolipids are necessary for

BAAV transduction [7]. Although the chip contains a number of

sialyated carbohydrates and some gangliosides on the array, there

is no binding with these carbohydrates, suggesting either an

interaction with distinct gangliosides not on the array is required

for transduction or an interaction with other molecules is required

to stabilize the interaction with gangliosides. Detection of other

carbohydrate interactions that are critical to BAAV transduction

will require alternative methods of detection or more extended

versions of glycan microarrays.

Like transduction, AAV transcytosis could be a complex

process. Although our data does show a direct interaction between

gp96 and BAAV, the lack of complete inhibition in the presence of

the anti-gp96 antibody and soluble gp96 suggests that other

membrane components not present with the purified recombinant

gp96 used in the immunoprecipitation experiment may contribute

to the interaction. In addition other factors may also be required

for internalization. A multistep interaction process during cellular

entry has been reported for other AAVs. For example, cellular

transduction by AAV2 requires an interaction with a primary

heparan sulfate proteoglycan receptor as well as several co-

Figure 5. BAAV:gp96 competition experiments. Anti gp96, anti
PDGFRa or soluble gp96 extra cellular domain, 25mg/ml, were placed on
the apical surface of MDCKI cells grown on Transwell, prior to the
addition of BAAV or AAV4. Transcytosis activity was measured by QPCR
after 4 h. Values are expressed relative to the control (BAAV or AAV4
alone). * P,0.05.
doi:10.1371/journal.pone.0009336.g005

Figure 6. BAAV:gp96 immuno-precipitation. Anti-myc sepharose
beads previously incubated with cell lysates either of GFP, or myc-
tagged TRPC1 or gp96 transfected cells were then added with BAAV or
AAV4 vector respectively containing the CMV-GFP expression cassette.
After incubation at 4Cu for 1h, beads were extensively washed and
bound virus was quantified by QPCR. Bound vector was calculated as
fold change in bound vector relative to vector bound to GFP beads
alone. n = 3. * P,0.05.
doi:10.1371/journal.pone.0009336.g006

BAAV, Transcytosis, gp96
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receptors, the integrins aVb5 and a5b1, fibroblast growth factor

receptor and hepatocyte growth factor receptor, for cellular

recognition and internalization [35–38].

To date we have identified transcytosis activity in at least 3 AAV

serotypes (AAV4, AAV5 and BAAV) and this phenomenon has

been suggested to occur in AAV8 and AAV9 [11,16–19]. Two

outstanding questions are (I) whether or not this is a process that is

common to all AAVs and (II) whether or not the other AAVs also

use gp96 for this cellular transport process that is independent of

the transduction pathway. Given the sequence divergence,

utilization of distinct receptors for transduction, and our previous

work describing distinct transcytosis profiles on the different AAV

serotypes, it is possible that each virus will use a distinct

transcytosis pathway if they have transcytosis activity. Indeed the

data presented for AAV4 in this paper suggests that sialic acid is an

important carbohydrate in its transcytosis pathway. Analysis of the

chitotriose/gp96 binding site on BAAV will lead to a better

understanding of the transcytosis activity in the lifecycle of the

AAVs and the potential to provide information that could be

exploited for new applications of AAV gene transfer vectors, such

as the engineering of vectors which could navigate the blood brain

barrier.

Materials and Methods

Cell Cultures, Vector Construction, Preparation, and
Quantification

293T (human kidney) and cos cells were maintained in

Dulbecco’s modified Eagle’s medium supplemented with 10%

fetal bovine serum (FBS). The media contained 2 mM L-

glutamine, 100 U of penicillin/ml, and 0.1 mg of streptomycin/

ml. Cells were maintained at 37uC under a 5% CO2 humidified

atmosphere.

Recombinant BAAV, BAAV-HA, AAV4-HA, and AAV4

viruses expressing eGFP were produced using a four-plasmid

procedure as previously described [8]. Briefly, semiconfluent 293T

cells were transfected by calcium phosphate with four plasmids: an

adenovirus helper plasmid (pAd12) containing the VA RNA and

coding for the E2 and E4 proteins; two AAV helper plasmids

containing the AAV2 rep and AAV specific cap genes, respectively,

and a vector plasmid containing AAV2 inverted terminal repeats

flanking an eGFP expression cassette. Forty-eight hours post-

transfection the cells were harvested by scraping into TD buffer

(140 mM NaCl, 5 mM KCl, 0.7 mM K2 HPO4, 25 mM Tris–

HCl {pH 7.4}) and the cell pellet was collected by low-speed

centrifugation. Cells were lysed in TD buffer by three cycles of

freeze–thaw. The clarified lysate (obtained by further low-speed

centrifugation) was treated with 0.5% deoxycolic acid (DOC) and

100 U/ml DNase (Benzonase) for 30 min at 37uC. Then the virus

was purified using CsCl gradients. Particle titers were determined

by qPCR. Amplification was detected using an ABI 7700 sequence

detector (ABI). Specific primers for CMV were designed by using

the Primer Express program (ABI): CMV forward 59-CATC-

TACGTATTAGTCATCGCTATTACCAT-39, CMV reverse

59-TGGAAATCCCCGTGAGTCA-39. Following denaturation

at 96uC for 10 min, cycling conditions were 96uC for 15 s, 60uC
for 1 min for 40 cycles. The viral DNA in each sample was

quantified by comparing the fluorescence profiles with a set of

DNA standards. The rAAV particle titers were 1–561012 DNAse

resistant particles (DRP) per ml.

The HA epitope tag (YPYDVPDYA) was added to BAAV

after amino acid 137 in the VP1 open reading frame to create

BAAV-HA using a site directed mutagenesis kit (Stratagene).

The following primers were used: Forward 59 gagacgccgga-

taaaacgtacccatacgacgttccagactacgcagcgcctgcggcaaaaaagaggcc 39

Reverse 59ggcctcttttttgccgcaggcgctgcgtagtctggaacgtcgtatgggtacg-

ttttatccggcgtctc 39. The presence of the tag into the clone was

verified by sequencing. This modification provided an antigenic

epitope for BAAV detection in glycan microarray screening used

to identify carbohydrates that bind this virus as described below.

Glycan Microarray
BAAV-HA particles were produced as described above and

concentrated to a titer of ,161014 vg/ml. The concentrated virus

was then dialyzed into a Tris buffer (Tris pH7.5 w/150 mM

NaCl) and used to probe a printed glycan array (PA V2) following

procedures developed by cores D and H of the Consortium for

Functional Glycomics (CFG; an NIH National Institute of General

Medical Sciences initiative (http://www.functionalglycomics.org/

static/consortium/resources/resourcecoreh.shtml) for identifying

specific carbohydrate binding partners for protein and viral lectins

[39]. Briefly, a printed slide containing 264 glycans was incubated

with AAV particles (at 200 mg/ml), and overlaid with a FITC

conjugated anti-HA tag (Molecular Probes Invitrogen) at 5mg/ml.

The fluorescence intensity was detected using a ScanArray 5000

(Perkin-Elmer Inc.) confocal scanner. The image was analyzed

using the IMAGENE image analysis software (Bio- Discovery, El

Segundo, CA). The data were plotted using the Microsoft EXCEL

software. NCBI accession number GSE17443 is MIAME

compliant.

Epithelial Barrier Cell Models
Caco-2, and MDCKI cells were grown at 37uC, in 5% CO2 in

DMEM containing 10% FBS, 1% Pen/Strep (Biosource, CA,

USA). Human primary airway epithelia cells (HAE) were

purchased from Lonza (MD, USA) or Promocell (Heidelberg,

Germany) and were grown at 37uC, 5% CO2 in medium supplied

by the cell provider. HAE cells were expanded and differentiation

was induced as previously described [40] the generation of cell

barrier models for transcytotic assay were carried out as previously

described [11]. Briefly, all cell types were allowed to establish

monolayers on 0.4-m pore size polycarbonate filters in 6 or 12 mm

Transwell chambers (Costar, MA, USA) and the integrity of cell

monolayers, polarization, and formation of tight junctions were

tested by measuring the Transepithelial Electrical Resistance

(TER) using a volt/ohm meter (Millicel; Millipore, MA, USA) in

an electrode chamber (EVOV; WPI, FL, USA). Only filters of cell

monolayers that displayed the required TER were used for the

AAV transcytosis assay, i.e. MDCKI, 2000 V/cm2; Caco-2 200–

300 V/cm2, HAE ,1000 V/cm2, as previously published

[11,12,40,]. As previously reported, no movement of particles

across the membrane was detected on empty Transwells

confirming the seal of the chamber [11]. All experiments with

HAE cells were performed on air–liquid interface cultures.

BAAV Transduction Assay
cos cells were plated in 96 well dishes and incubated, in serial

dilution, with either BAAV or rAAV4 vector encoding a CMV-

eGFP expression cassette in either the presence or absence of

20mg/ml chitotriose (Sigma). Three days post incubation positive

cells were counted.

BAAV Transcytosis Assays
26108 DRP of BAAV or rAAV4, suspended in 50 ml of

DMEM, were placed on the upper (apical) side of the monolayer

of cells grown on 6 mm membrane insert filters (Transwell,

Costar) either alone or in the presence of chitotriose or heparin.
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With air–liquid interface HAE cultures, 20 ml of medium was

added to the apical surface. 12 mm insert filters were the

membrane surface is 3 fold larger, medium and virus were

increased, accordingly. After 3 h of incubation, the medium in the

lower (basal) side of the Transwell was collected and tested for the

presence of transcytosed rAAV DNA. Viral DNA was extracted

from 200 ml of medium from the basolateral side of the Transwell

using the DNeasy Mini Spin Column Kit (Qiagen, CA, USA) and

quantified by qPCR as previously described. In tannic acid (TA)

mediated transduction experiments medium containing 0.5% TA

(Polysciences, PA, USA) was placed on the basolateral side of the

Transwell inserts while BAAV was placed on the apical side with

or without chitotriose. Transduction was observed 48 h post-

vector addition by fluorescence microscopy. In carbohydrate

competition experiments, chitotriose, chitin hidrolysate (Vector-

labs), heparin (Sigma) were incubated with BAAV or AAV4

10 min at 4uC prior the addition to the apical side of the cells. In

competition experiments, lectins (Vectolabs), neuraminidase

(Prozyme), anti-gp96 (Stressgen) or anti-PDGFRa (Santa Cruz)

were added on the apical side of MDCKI cells 10 min prior to the

addition of BAAV or AAV4. Whereas, soluble gp96 receptor

(Stressgen) was incubated for 10 min with virus prior to cell

incubation. Three hrs post addition transcytosed virus was

quantified as described above.

BAAV Internalization
Basolaterally TA treated MDCKI cells were incubated with

either BAAV or AAV4 with or without chitotriose as described

above. Four h post administration, cells were washed extensively

with PBS and non-internalized bound particles were removed by

incubating the cells with 0.05% trypsin-EDTA (Gibco) and

0.4 mg/ml protease K (Qiagen) until cells were detached from

each other and from Transwell filters. Cells were washed three

times with PBS, total DNA was isolated from the cells by phenol/

chloroform extraction, and viral genomes quantified by qPCR

using CMV primers.

Western Blot Analysis for gp96
56105 MDCKI or Caco-2 cells grown on Transwell were lysed

with 2% SDS containing 0.25 U benzonase (Sigma) and 1:100

dilution of protease cocktail inhibitors (Sigma). Cell lysate was

centrifuged at 11000g for 2 min to remove cell debris, aliquoted,

and stored at 220 C. 50mg/lane of cell lysate was run on a 12%

Bis-Tris gel (Invitrogen) and transferred using a semi-dry

apparatus (Biorad, Richmond CA) to nitrocellulose membrane

for 1 h at 15 volts. The membrane was blocked for 30 min in 5%

milk/TBST (Tris Buffered Saline with 0.05% Tween20), then

incubated with anti-gp96 (Santa Cruz) (1:100 dilution as per

manufacturer’s protocol) in 5% milk/TBST followed by incuba-

tion with anti-mouse secondary antibody (1:5000 dilution,

Amersham) in 5% milk/TBST. All washes were carried out in

TBST. The bands were visualized using ECL Chemiluminescent

Substrate Reagent (Amersham). GAPDH detection was used as a

loading control.

gp96 Cell Membrane Distribution
MDCKI or Caco-2 cells grown on Transwell were fixed in 2%

formaldehyde/PBS for 10–12 min. Non-permeabilized cells were

probed with anti-gp96 (Santa Cruz) in 10% FBS in PBS/0.02%

sodium azide for 1 h followed by a goat anti-rabbit Alexafluor 488

(Molecular Probes, Invitrogen) secondary antibody in 10% FBS in

PBS/0.02% sodium azide for 1 h and analyzed by confocal

immunofluorescence laser microscopy. Fluorescence quantifica-

tion of 10 random fields was obtained using Volocity software

(Improvision, Waltham, MA, USA).

gp96/BAAV Immunoprecipitation
293 cells were transfected with gp96-myc (a gift from

Christopher Nicchitta), TRPC1-myc (a gift from Biman Paria),

or GFP expression plasmids using Lipofectamine 2000 (Invitrogen)

according to the vendor’s protocol. Forty-eight hrs post transfec-

tion, cells expressing gp96, TRCP1, or GFP were lysate in M-Per

reagent (Pierce, Rockford, IL) and immunoprecipitated (IP) using

the Mammalian c-Myc Tag IP/Co-IP kit (Pierce, Rockford, IL).

Anti-myc agarose beads previously incubated with cell lysates

either of GFP, TRPC1 or gp96 myc tagged transfected plasmids

were then mixed with 108 DRP of BAAV or AAV4 vector

containing the CMV-GFP expression cassette. After incubation at

4Cu for 1 h, the beads were extensively washed with TBS-T buffer

in spin columns. The DNA of bound vector was extracted by

phenol/chloroform and quantified by qPCR. Vector bound to the

anti-myc beads was calculated as fold change in bound vector

relative to vector bound to GFP beads alone. These experiments

were done in triplicate (n = 3).

Statistics
All data are expressed as means +/2 standard error

measurement (SEM). Unpaired Student’s t-test was used to assess

the significant difference between groups. P values ,0.05 were

considered significant.

Acknowledgments

The authors thank William Swaim for fluorescent quantification. Biman

Paria and Christopher Nicchitta for providing reagents. Pramod K.

Srivastava and Nemani M. Prasadarao for sharing data and suggestions.

The glycan array analysis was conducted by the Protein-Carbohydrate

Interaction Core H of The Consortium for Functional Glycomics.

Author Contributions

Conceived and designed the experiments: GDP MAM JAC. Performed the

experiments: GDP NK MAM. Analyzed the data: GDP MAM JAC.

Contributed reagents/materials/analysis tools: GDP. Wrote the paper:

GDP JAC.

References

1. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF (2000) Endosomal processing

limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin

Invest 105: 1573–1587.

2. Marsh M, Helenius A (2006) Virus Entry: Open Sesame. 124: 729.

3. Smith AE, Helenius A (2004) How Viruses Enter Animal Cells. Science 304:

237–242.

4. Bomsel M, Alfsen A (2003) Entry of viruses through the epithelial barrier:

pathogenic trickery. Nat Rev Mol Cell Biol 4: 57–68.

5. Harbison CE, Chiorini JA, Parrish CR (2008) The parvovirus capsid odyssey:

from the cell surface to the nucleus. Trends in Microbiology 16: 208.

6. Schmidt M, Katano H, Bossis I, Chiorini JA (2004) Cloning and characteriza-

tion of a bovine adeno-associated virus. J Virol 78: 6509–6516.

7. Schmidt M, Chiorini JA (2006) Gangliosides Are Essential for Bovine Adeno-

Associated Virus Entry. J Virol 80: 5516–5522.

8. Di Pasquale G, Rzadzinska A, Schneider ME, Bossis I, Chiorini JA, et al. (2005)

A novel bovine virus efficiently transduces inner ear neuroepithelial cells. Mol

Ther 11: 849–855.

9. Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, et al. (2008)

Coordinated control of connexin 26 and connexin 30 at the regulatory and

functional level in the inner ear. Proceedings of the National Academy of

Sciences 105: 18776–18781.

10. Shibata S, Di Pasquale G, Cortez S, Chiorini J, Raphael R (2009) Bovine adeno-

associated virus gene transfer in the guinea pig cochlea. Gene Ther;

In Press.

BAAV, Transcytosis, gp96

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9336



11. Di Pasquale G, Chiorini JA (2006) AAV transcytosis through barrier epithelia

and endothelium. Mol Ther 13: 506–516.
12. Tuma PL, Hubbard AL (2003) Transcytosis: Crossing Cellular Barriers. Physiol

Rev 83: 871–932.

13. Alfsen A, Iniguez P, Bouguyon E, Bomsel M (2001) Secretory IgA Specific for a
Conserved Epitope on gp41 Envelope Glycoprotein Inhibits Epithelial

Transcytosis of HIV-1. J Immunol 166: 6257–6265.
14. Xie Y, Jun K, Kwang K, Kim S (2004) Current concepts on Escherichia coli K1

translocation of the blood;brain barrier. FEMS Immunology and Medical

Microbiology 42: 271–279.
15. Zhang J-R, Mostov KE, Lamm ME, Nanno M, Shimida S-i, et al. (2000) The

Polymeric Immunoglobulin Receptor Translocates Pneumococci across Human
Nasopharyngeal Epithelial Cells. Cell 102: 827.

16. Vandendriessche T, Thorrez L, Acosta-Sanchez A, Petrus I, Wang L, et al.
(2007) Efficacy and safety of adeno-associated viral vectors based on serotype 8

and 9 vs. lentiviral vectors for hemophilia B gene therapy. Journal of Thrombosis

and Haemostasis 5: 16–24.
17. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, et al. (2005) Adeno-associated virus

serotype 8 efficiently delivers genes to muscle and heart. Nat Biotech 23: 321.
18. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, et al. (2009) Intravenous

Administration of Self-complementary AAV9 Enables Transgene Delivery to

Adult Motor Neurons. Mol Ther.
19. Foust K, Nurre E, Montgomery C, Hernandez A, Chan C, et al. (2009)

Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes.
Nat Biotech 27: 59–65.

20. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ (2006) Alpha2,3 and
alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by

adeno-associated virus types 1 and 6. J Virol 80: 9093–9103.

21. Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D, et al. (2005) Green
Fluorescent Protein-Tagged Adeno-Associated Virus Particles Allow the Study

of Cytosolic and Nuclear Trafficking. J Virol 79: 11776–11787.
22. Warrington KH, Jr., Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, et al.

(2004) Adeno-Associated Virus Type 2 VP2 Capsid Protein Is Nonessential and

Can Tolerate Large Peptide Insertions at Its N Terminus. J Virol 78:
6595–6609.

23. Chipman D, Sharon N (1969) Mechanism of Lysozyme Action. Science 165:
454–465.

24. Prasadarao NV (2002) Identification of Escherichia coli Outer Membrane
Protein A Receptor on Human Brain Microvascular Endothelial Cells. Infect

Immun 70: 4556–4563.

25. Prasadarao NV, Wass CA, Kim KS (1996) Endothelial cell GlcNAc beta 1–
4GlcNAc epitopes for outer membrane protein A enhance traversal of

Escherichia coli across the blood-brain barrier. Infect Immun 64: 154–160.
26. Nagata Y, Burger MM (1974) Wheat Germ 0Agglutinin. Journal of Biological

Chemistry 249: 3116–3122 %R.

27. Etzier M, Kabot E (1970) Purification and characterization of a lectin (plant

Hemagglutinin) with blood group A specificity from Dolichos biflorus.

Biochemistry 9: 869–877.
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