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Abstract: Alginate is a natural polysaccharide that typically originates from various species of algae.
Due to its low cost, good biocompatibility, and rapid ionic gelation, the alginate hydrogel has become
a good option of bioink source for 3D bioprinting. However, the lack of cell adhesive moieties,
erratic biodegradability, and poor printability are the critical limitations of alginate hydrogel bioink.
This review discusses the pivotal properties of alginate hydrogel as a bioink for 3D bioprinting
technologies. Afterward, a variety of advanced material formulations and biofabrication strategies
that have recently been developed to overcome the drawbacks of alginate hydrogel bioink will
be focused on. In addition, the applications of these advanced solutions for 3D bioprinting of
tissue/organ mimicries such as regenerative implants and in vitro tissue models using alginate-based
bioink will be systematically summarized.

Keywords: alginate hydrogel; bioink formulation; 3D bioprinting strategy; biomedical applications

1. Introduction

3D bioprinting is an automated biofabrication technique based on a layer-by-layer
deposition process that can precisely orchestrate living cells, matrices, biomaterials, and
molecules following a pre-determined model devised by computer-aid-design [1]. The
burgeoning development of the 3D bioprinting technique has extensively stimulated the
advances of regenerative medicine, individualized therapy, and customized biomedical
instrument. For instance, to tissue-engineer artificial tissue substitutes, 3D bioprinted struc-
tures may be used as an instructive scaffold or even directly maturated into a functional
tissue-equivalent when living cells are involved during the printing process [2]. Besides
tissue regeneration and repair, 3D bioprinting is also capable of constructing advanced
in vitro tissue models, such as organ-on-a-chip and organoids, that can be either utilized as
drug screening platforms for analyzing pharmaceutic safety and efficacy in patient-specific
conditions or applied as an alternative tool of animal models for the interpretation of
disease pathophysiology [3,4]. Therefore, 3D bioprinting has been recognized as one of the
most promising biofabrication techniques over the past decade.

As a key element of 3D bioprinting, the term bioink was originally introduced with the
advent of the organ printing concept in 2003 [5]. Bioinks not only escort the encapsulated
living cells and molecules to build complex 3D structures but also provide a microenviron-
ment for regulating cell activities and ECM remodeling [6]. Hence, appropriate physical
and biological properties are the basic requirement for an ideal bioink. The physical proper-
ties of a bioink include (1) tunable viscosity that can be adapted to different 3D bioprinting
techniques, (2) shear-thinning rheological behavior which helps to protect cell viability
during the printing process, (3) acceptable printability enabling successfully fabrication of
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complex constructs, (4) mild gelation condition for minimizing cell damages, and (5) proper
mechanical properties applicable for biomedical application scenarios. In the view of bi-
ological properties, on the other hand, the bioink should be (1) non-immunogenic when
used to build tissue and organ implants, (2) bio-instructive for promoting the adhesion and
migration of residing cells, (3) biodegradable allowing for ECM remodeling and controlled
release of payloads. To date, a variety of natural biomaterials (e.g., ECM proteins, polysac-
charides, glycosaminoglycans) and synthetic polymers have been formulated as bioinks [7].
However, none of these biomaterials can fully match the abovementioned requirements.

Among the currently available bioink candidates, alginate has received extensive at-
tention. As a low-cost natural polysaccharide normally derived from brown algae, alginate
possesses multiple essential advantages, including non-immunogenic, biodegradable, and
non-cytotoxicity features, as well as the rapid and cell-friendly gelation characteristic [8].
For these reasons, alginate has been widely used as a biomaterial for tissue engineering
and regenerative medicine (e.g., wound healing [9] and bone regeneration [10]). Despite
its unique properties, numerous critical drawbacks limit its application as a bioink for 3D
bioprinting. First, although the viscosity of alginate pre-gel is tunable as the concentra-
tion varies, its poor printability leads to the difficulty of direct 3D bioprinting of complex
structures [11]. Besides, this material is bioinert due to the absence of cell-adhesive mo-
tifs and thus may lead to anoikis of embedded cells. Moreover, the alginate hydrogel
is dissolvable upon interactions between monovalent cations existing in reagents and
alginate blocks, which is detrimental to the long-term structural and mechanical stability
of the printed structures for in vitro tissue modeling [12]. Furthermore, the non-bonded
alginate polymers never degrade via enzymatic activity in mammalian hosts; therefore,
the implants composed of alginate hydrogel usually suffer from erratic biodegradation
kinetics [13]. Hence, to utilize alginate as a versatile bioink, it is indispensable to improve
several performances of this material, such as enhancing printability, promoting cellular
affinity, and controlling biodegradation manner and kinetics.

As illustrated in a schematic view (Figure 1), this review provides an overview of the
current strategies that attempt to overcome the limitations when alginate is selected as a
bioink for 3D bioprinting. The article will explain the working principle of prevalent 3D
bioprinting techniques and discuss the pivotal properties of bioinks. Afterward, a variety
of advanced material formulations and biofabrication strategies that are recently developed
to break through the bottleneck of alginate bioink will be focused upon. In addition, the
applications of these advanced solutions for 3D bioprinting of regenerative implants and
in vitro tissue/organ models using alginate bioink will be systematically summarized.
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2. 3D Bioprinting Techniques and Bioinks

The successful 3D bioprinting of viable constructs that can structurally and function-
ally emulate natural tissues/organs highly relies on the adopted bioprinting approaches
and appropriate choices of bioink. Owing to the disparate working principles, the applica-
tion of different 3D bioprinting techniques may lead to distinctive structural features and
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cell/biomolecule patterning of the constructs. On the other hand, bioink plays a decisive
role in the period of both fabrication and in vivo/in vitro application. Suitable properties
of bioink can help to support the fabrication process, mediate functions of accommodated
cells, and assist in dynamic remodeling. Therefore, it is important to elaborate on the
bioink designs anterior to the 3D bioprinting process. This section will summarize the
advantages and limitations of three main types of 3D bioprinting techniques, emphasize
the key properties of bioinks, and introduce the characteristics as well as the applications
of alginate bioink.

2.1. Prevalent 3D Bioprinting Techniques

Different from the traditional 3D printing techniques developed for producing indus-
trial parts [14], 3D bioprinting aims at building biological constructs that could facilitate
rehabilitation of injured tissues in vivo or recapitulate physiological functions of natural
tissues ex vivo [15]. Such objectives inevitably entail the use of living cells and biomolecules
in the fabrication process. These elements are undoubtedly susceptive to harsh manufactur-
ing environments, such as extensive heat, low humidity, and harmful UV exposure, when
some traditional 3D printing methods (e.g., selective laser sintering [16], fused deposition
modeling [17], stereolithography [18]) are used. Therefore, a variety of 3D bioprinting
techniques that enable the deposition of these sensitive blocks has emerged. According to
the working principle, the commonly applied 3D bioprinting techniques can be categorized
into three sub-types: inkjet-based, microextrusion-based, and light-assisted printing.

2.1.1. Inkjet-Based 3D Bioprinting Technique

Comparable to document printing that ejects a tiny volume of colorful ink onto a paper,
inkjet 3D bioprinting selectively deposits bioinks droplet with a volume spanning from
nanoliter to microliter toward a substrate [19]. In a layer-by-layer manner, the collected
droplets can stack up a three-dimensional construct. The cell/molecule-laden bioink is
generally loaded in a cartridge connected to the printing heads of an inkjet printer. As
the on-demand printing signals are received, deformations of the printing heads triggered
by a mechanical actuator or thermal variation subsequently squeeze the accommodating
bioink, resulting in droplet generation (Figure 2A). The deformations of inkjet printer
heads are usually driven by a piezoelectric or a thermal unit. While the piezoelectric heads
force out the droplets of bioink upon the bending of an electric-sensitive element, the
thermal heads impose heat in the affinity of the emission tip to generate a vapor bubble
that outputs a bioink droplet. Besides, electrostatic-, electrohydrodynamic-, acoustic-,
and microvalve-based modules have been recently used for additive manufacturing [19],
capable of intermittently applying pressure to a bioink cartridge, leading to an identical
effect of the inkjet-based 3D bioprinting technique.

It is important to control and stabilize the production of the droplets as they are the
units fabricated by the inkjet-based 3D bioprinting technique [20]. Similar to conventional
2D printing, the bioinks can be immediately forced out as a response to the received
signals. The frequency of electrical signals applied to induce printing heads deformation
mainly dominates the speed of droplets formation. Hence, the rapid and tunable printing
speed (1–250,000 droplets per second) is a remarkable merit of this technique [21]. Besides,
given the ability to deposit tiny amounts of bioink, inkjet-based 3D bioprinting allows for
high fabrication resolution as fine as 2 µm or single-cell dimensions when living cells are
encapsulated in bioinks [22]. The size of the ejected droplets depends on the deformation
amplitude of printing heads, as well as the viscosity and surface tension of bioinks [REF].
However, to prevent nozzle clotting, the viscosity of bioink is necessarily low (<0.1 Pa·s),
which dramatically narrows the range of available biomaterials [23]. In addition, because
the density of encapsulated cells is closely related to the viscosity of bioink, it is difficult to
print high cell density bioink using the inkjet-based method. The sparsely deposited cells
may suffer from apoptosis when the mutual cell interaction is absent, much less forming
functional tissue equivalents [24].
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2.1.2. Microextrusion-Based 3D Bioprinting Technique

Different from inkjet-based bioprinting that discretely deposits droplets, microextru-
sion utilizes an extrusion system to continuously squeeze high viscosity bioinks out through
a nozzle, forming a fine filament [25]. On control of nozzle movement, the extruded fila-
ments are stacked layer-by-layer to create 3D constructs (Figure 2B). The extrusion system
can be either pneumatically or mechanically driven, each of which has distinct advan-
tages. A pneumatic system links stable air pressure provided by a clean compressed air
source to the cartridge where bioinks are loaded [26]. Due to the low cost of air source
and flexible control of pressure value, the pneumatic system can be easily equipped with
an extrusion-based 3D bioprinter. In addition, the pneumatic pressure does not directly
contact the bioink, reducing the risks of contamination. However, the pressure loading
and residual air in the cartridge might retard the extrusion and overflow of bioinks. In
comparison, the mechanical system directly imposes forces to the bioink via a screw or
piston module, thus being beneficial for precisely tailoring the extrusion and flow rate of
the bioink [27]. Besides, the mechanical force enables the extrusion of bioinks with higher
viscosity. However, extensive force may cause detrimental effects on living cells involved
in bioink due to the damages to the cell membrane [28].

The main advantage of microextrusion-based 3D bioprinting is the ability to use the
bioink with a wide range of viscosity (30 mPa·s to >6 ×107 mPa·s) [29]. For this reason, the
pool of applicable bioinks is drastically expanded. More importantly, microextrusion per-
mits the direct printing of the bioink with high cell density or even cell spheroid/aggregates,
which could facilitate the rapid creation of functional tissues via cell self-assembly [30].
However, during the extrusion process, the cell-laden bioink passes through a sharp nozzle,
where the cell viability could be jeopardized by shear stress [31]. Because the gauge of the
nozzle is negatively related to the shear stress value, the nozzle size is usually larger than
100 µm to fabricate a highly viable construct [32]. Such a trade-off inevitably results in low
printing resolution as the diameter of filaments mainly depends on the nozzle size.
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2.1.3. Light-Assisted 3D Bioprinting Technique

Light can be another power source for driving the 3D bioprinting technique. Accord-
ing to the working principle, the light-assisted 3D bioprinting technique can be further
classified as laser-assisted jetting and stereolithography.

Similar to inkjet-based printing, laser-assisted jetting generates bioink droplets using
a laser beam and deposits them onto a platform to construct a 3D objective. Typically,
a laser-assisted jetting system is composed of three units, including a light source that
focuses a pulsed laser beam, a ribbon consisting of a laser-absorbing layer sandwiched
between a transparent donor slide and a bioink layer, and a platform for the collection of
droplets (Figure 2C) [33]. When the laser beam is focused on the ribbon, the materials in
the absorbance layer (e.g., Au, Ti) react and produce vapor pockets, which subsequently
induce droplet formation and jet them toward the platform. The printing results can be
manipulated by tuning the parameters of a laser-assisted jetting system, including laser
wavelength, pulse energy, signal frequency, the viscosity of bioink layer, and properties of
the platform (e.g., the surface tension of substrate and jetting distance) [34]. The use of a
pulsed laser can lead to apparent advantages of this technique such as ultrafine resolution
at micro-/nano-meter levels and rapid printing speed (5 kHz) [35]. Besides, due to the
nozzle-free working principle, laser-assisted jetting is not subjective to cell density and
viscosity of bioinks. However, the sophisticated laser source and ribbon composites cause
high costs to establish such a bioprinting system.

Except for the mechanical guiding bioinks to realize their precise deposition, light
can also chemically induce selective photo-crosslinking of bioinks to produce 3D complex
structures in a layer-by-layer process, namely stereolithography. The first 3D printer was
developed based on stereolithography in the 1980s, also called rapid prototyping [36]. It
produces parts in a layer-by-layer fashion using photochemical processes by which the
selective scanning of laser beams causes crosslinking of photopolymer resin to form 3D
solid constructs (Figure 2D). The productive efficiency can be drastically increased with
the assistance of a digital micromirror device, which replaces the point-by-point lase scan
with matrix projections, namely digital light processing [37]. In addition, based on the
mechanism of two-photon polymerization (TPP), the resolution of stereolithography can be
reduced to nanometer scales [38]. The advantages of stereolithography are the high resolu-
tion (<100 µm) and short printing time (<1 h) [39]. However, the use of ultraviolet (UV) light
(100–400 nm wavelength) might induce DNA damage, which triggers apoptosis of cells [40],
as well as denaturation of macromolecules [41]. Therefore, despite the long history, stere-
olithography failed to be involved as an eligible candidate for 3D bioprinting for years. In
recent, a variety of innovative photo-initiators emerged (e.g., lithium phenyl-2,4,6-trimethyl-
benzoyl phosphinate (LAP) [42], Eosin Y [43], and tris(2,2′-bipyridyl)dichlororuthenium(II)
hexahydrate/sodium persulfate (RU/SPS) [44]), which can cause photo-crosslinking of
bioinks using visible light, significantly leveraging the strength of stereolithography as a
3D bioprinting technique for building biological constructs.

2.2. Definition and Necessary Properties of Bioink for 3D Bioprinting

According to a putative definition, bioinks can be generally described as ‘a formulation
of cells that is suitable to be processed by an automated biofabrication technology that
may also contain biologically active components and biomaterials’ [45]. Because cells
are a mandatory component, the scope of available biomaterials for formulating a bioink
is significantly narrowed. In the field of 3D bioprinting, to accommodate living cells,
the bioink should provide a humid and amicable environment, suggesting cell-friendly
materials that contain high water contents are the prevailing options for bioinks. Therefore,
biocompatible hydrogels, crosslinked hydrophilic biopolymers undissolvable in water, are
spotlighted as potential bioinks. In general, both natural polymers derived from creatures
(e.g., collagen, gelatin, alginate, fibrin, decellularized extracellular matrix (dECM), and
matrigel) or synthetic polymers designed by scientists and engineers (e.g., polyethylene
glycol (PEG) and pluronic acid) have been applied in the biomedical field [46]. However,
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to be a qualified bioink for 3D bioprinting, the biocompatible hydrogel should match a
series of requirements.

2.2.1. Non-Cytotoxicity and Bio-Instructive

As a matrix for building living constructs, the bioink should provide an appropriate
microenvironment to the residing cells for supporting their adhesion, proliferation, and
migration. The presence of cytotoxic components or compounds can lead to varied cell fates,
such as apoptosis, necrosis, and unpredictable cycle arrest [47]. As a result, the fabricated
constructs may fail to achieve the purpose of tissue regeneration and function recapitulation.
Cytotoxic components could exist on biopolymer chains. For instance, pluronic F127, a
pluronic acid, is a commonly used 3D bioprinting material due to its thermal sensitivity
and superior printability [48]. However, this material is a surfactant that can lead to
membrane disruption of mammalian cells when the concentration is high (>5% (w/w)) [49].
For this reason, pluronic F127 is considered as a fugitive material for 3D bioprinting of
complex structures (e.g., embedded channels, suspended parts) [50,51], rather than a cell-
laden bioink. On the other hand, cytotoxic reagents may also be amalgamated during the
preparation process. As a representative example, a variety of photo-initiators have been
developed to facilitate the photo-crosslinking of bioinks upon different mechanisms (e.g.,
free-radical chain polymerization, thiol-ene, and photo-mediated redox) [52]. However,
most of them are cytotoxic that inevitably impedes cell viability. Therefore, it is critical
to consider the choice and concentration of photo-initiators when the light-assisted 3D
bioprinting technique and relevant photo-sensitive bioinks are applied.

Beyond protecting cell viability, the bioink is expected to be bio-instructive that can
govern cellular activity and functionality. Adhesion is a necessary initial cellular activity
for most of the mammalian cells when embedded in bioink hydrogels. Therefore, the bioink
should have cell adhesive motifs presenting on the polymer chains so that the cell sense
and adhere via ligand-receptor association [53]. A large group of natural ECM proteins
contains abundant adhesive moieties for mediating the cell-matrix interaction, while the
lack of cell-adhesive property is a general limitation of synthetic polymers [54]. Upon cell
adhesion, advanced bioinks are capable of regulating cell functions such as differentiation,
alignment, and tissue morphogenesis. The cellular function is commonly mediated by
the structural and compositional cues provided by the given microenvironment, such as
micro-topological structure, mechanical strength, critical molecule presence, and growth
factor gradients [55]. Therefore, efforts have attempted to upgrade biopolymers by either
chemical conjugation of biofunctional groups or supplementation with ingredients as
reinforcers. In addition to man-designed bioink, the bioink that originated from natural
tissue also demonstrated its bio-instructive superiority. For example, the dECM obtained
from native tissue can inherit characteristics of native microenvironments in their natural
counterparts, and thus the formulated tissue-specific bioinks can significantly promote cell
activities and functions [56].

2.2.2. Printability

Printability refers to the ability of a bioink to form and maintain reproducible 3D con-
structs using a 3D bioprinting technique [57]. In general, printability is associated with the
viscosity and the rheological property of a hydrogel material. However, the requirements
for these properties significantly vary when different 3D bioprinting techniques are used
due to the distinctive working principles.

Viscosity is the resistance of a fluid to the deformation at a given rate. Two main
factors affecting the viscosity of a bioink are the molecular weight and concentration of
polymers [58]. In general, high molecular weight and concentration result in increased
viscosity due to the increased entanglement of polymeric chains. The bioink used for
inkjet-based and light-assisted 3D bioprinting should exhibit low viscosity to avoid nozzle
blockage or to facilitate the refilling and removal of the unreacted materials. Conversely,
the microextrusion-based 3D bioprinting requests a bioink with relatively high viscosity, so
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that the cell-laden material can be retained statically in the cartridge and acquire improved
printing fidelity.

Mathematically, viscosity is defined as the ratio of the shear stress and the shear rate.
High viscosity inevitably causes elevated shear stress, which might mechanically damage
the encapsulated cells. Therefore, in terms of the microextrusion-based 3D bioprinting
technique, the bioink should also exhibit shear-thinning behavior; viscosity falls as the shear
rate increases, to reduce the shear stress for protecting the cell viability [59]. Most pre-gel
solutions and partially crosslinked hydrogels show the shear-shinning property owing to
the polymer disentanglement and molecular orientation along with the shear flow. On the
contrary, such a performance is unnecessary when a bioink is adapted to stereolithography
because this technique circumvents the use of a nozzle for generating droplets.

Viscoelasticity is another important factor dominating the printability of a bioink. A
property of a non-Newtonian fluid displaying viscose flow and elastic shape retention
is known as viscoelasticity, governed by the relationship between the storage modulus
(G′, energy stored during deformation) and the loss modulus (G′′, dissipated by the
material) [60]. As the storage modulus surpasses the loss modulus, the bioink is solid-
dominant since a large amount of shear-induced energy is elastically stored, leading to
elastic shape retention. On contrary, the bioink becomes fluidic because most of the energy
is dissipated as heat. The variation of storage and loss modulus is regulated by shear stress.
In most cases, both G′ and G′′ decrease as shear stress rises, but the G′ falls faster than G′′

does, resulting in the viscous flow of bioinks. Such viscoelasticity is especially crucial for
conducting microextrusion-based printing. The extrusion process initiates from the flowing
of bioink through a nozzle where the material should show a liquid-dominant feature
to reduce the shear stress. While the bioink is deposited onto the substrate, the material
should preferably convert to a solid-dominant status so that it can resist the deformation to
maintain the printed shapes.

2.2.3. Gelation Process

The gelation of bioink plays an important role in 3D bioprinting because it largely
determines the result of fabrication, the viability of cells, and the strength of the built
constructs. During the gelation process, two key factors, crosslinking condition and
gelation speed, should be particularly considered.

Various crosslinking strategies have been developed to induce gelation of bioinks in
different mechanisms, including physical crosslinking (ionic interactions, hydrogen bonds,
peptide-DNA conjugation, and hybridization), chemical crosslinking (photo-crosslinking,
chemical reaction), and enzymatic crosslinking [61]. Despite the multiple selections, the
crosslinking condition should be regulated by careful designs of crosslinking parameters to
avoid adverse effects on the encapsulated cells or molecules. For example, the concentration
and treating time of crosslinkers (e.g., ionic salts and photo-initiators) should be minimized
to reduce the adverse effects on cell viability caused by excessive osmotic pressure, cytotoxic
effect, and DNA damage. Thermal stimulation ought to be controlled within acceptable
ranges of temperature (<37 ◦C) and period of treatment so that the cell viability and
structural stability of molecules can be secured [62].

Upon the printing of droplets or filaments, the flowing bioink should be rapidly
solidified to generate firm structures for resisting the gravity-induced material spread
and construct collapse. Hence, a high gelation speed of bioink is essential for building a
3D complex structure with high resolution. For instance, collagen is a commonly used
bioink that can be thermally crosslinked based on the molecular assembly when incubated
at 37 ◦C [63]. However, the gelation time of thermal crosslinking is too long (>10 min)
to maintain the 3D-printed structure, which limits its applications in building complex
constructs [64]. In addition, although the gelation kinetics may negligibly influence the
printing outcomes when using stereolithography, an increased crosslinking speed could not
only accelerate the fabrication process but also improve cell viability by reducing the light
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irradiation time. Previous studies have reported that the UV exposure time for crosslinking
significantly determines the elasticity of hydrogel and the viability of embedded cells [65].

2.2.4. Mechanical Property

Biomechanical signals and the interactions between cells and ECM directly mediate
cell fates. As an example, in a 3D culture environment, as the stiffness and strength of
bioink are excessively high, cells struggle with the digestion and remodeling surrounding
ECMs; therefore, the proliferation and migration of cells are limited [66]. Also, plenty
of studies have demonstrated that variation of substrate stiffness can guide the differen-
tiation lineages of stem cells [67]. Besides regulating cellular behaviors, the acquisition
of suitable mechanical properties is a prerequisite for successful biomedical applications
of 3D bioprinted constructs. The most concerning mechanical properties of a fabricated
structure include fracture strength, elasticity, stiffness, toughness, compliance, and fatigue.
A biofabricated blood vessel, for instance, needs to possess high ultimate tensile strength
(>1 MPa), sufficient burst pressure (>2000 mmHg), and suitable compliance when used
as a bypass graft of the coronary artery [68]. Otherwise, the implant is at high risk of
graft rupture and intimal hyperplasia. For regenerative implants, the constructs should
exhibit comparable mechanical properties to the target tissues, which vary drastically
(e.g., the comparison of elastic modulus between adipose and bone [69]. Therefore, the
tunable mechanical property is a critical requirement for bioinks. Hydrogel is virtually
polymeric chain networks retaining high content of water; the mechanical properties of
bioink mainly depend on the density of the chain network, bonding strength of crosslinks,
and the mechanism of energy dissipation.

2.2.5. Biodegradability

It is worth noting that under the premise of sufficient incipient mechanical proper-
ties, 3D bioprinted constructs should exhibit tunable biodegradation for facilitating the
following in vivo and in vitro biomedical applications. First, even entrapped in a hydrogel
composed of bio-instructive bioinks, cells cannot always show ideal vitality if biodegra-
dation does not occur. This is because the cells in a 3D microenvironment demand a
relatively soft matrix that consecutively undergoes ECM remodeling to support their mi-
gration and proliferation [70]. Second, the ultimate objective of regenerative medicine is to
repair or replace the injured tissue/organ with artificial implants. Hence, the rate at which
degradation/remodeling occurs is important and should ideally be synchronized with the
deposition of new cell-derived ECM [71].

The biodegradability of hydrogels is generally based on the hydrolysis of the crosslinks
or the polymer backbone [72]. Incorporating cleavable moieties on polymer chains can
effectively realize the biodegradation of bioink hydrogel upon ester hydrolysis [73]. Besides,
to degrade the polymer backbone of a hydrogel, introducing degradable units into the
polymer or involving suitable enzymes are advisable approaches. The main group of
enzymes responsible for the degradation of ECM proteins is the matrix metalloproteinases
(MMPs) [74]. Because most of the natural polymers originate from ECM proteins (e.g.,
collagen, elastin, gelatin, and fibrin), the degradation rate of these materials can be easily
controlled by promoting or inhibiting the secretion of MMPs from cells following specific
signaling pathways.

2.3. Alginate as a Bioink
2.3.1. A Brief Overview of Alginate

Alginate is a naturally derived biomaterial extracted from marine algae. Marine
algae contain an abundant source of natural polysaccharides and diverse nutrients such
as vitamins, salts, iodine, and sterols [75]. Alginate massively exists in the cell wall of
algae, the quantification of which depends on the algae species, the type and age of the
tissue, and extraction methods. Due to the abundant existence and proficient industrial
production, alginate is a low-cost biopolymer.
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Alginate is an anionic and hydrophilic polysaccharide naturally derived from brown
algae consisting of alternating units, α-L-guluronic acid (G), and β-D-mannuronic acid
(M), which are covalently linked. The main element in the alginate polymer chain is
the carboxylic acid group (COO−), which allows for ionic interactions with divalent
cations (e.g., Ca2+, Sr2+, and Ba2+), resulting in ionic crosslinking of alginate hydrogel
crosslinking. Such an ionic reaction can be immediately triggered upon the presence of
divalent cation and preferentially occur at the G-block region. In addition, the G-block
is stiffer and more extended in chain configuration than the M-block because of more
hindered rotation around the glycosidic linkages [76,77]. Therefore, the biological and
physical properties (e.g., biodegradability, viscosity, and mechanical strength) of alginate
are basically dependent on its molecular weight, the ratio of M/G, and the distribution of
M and G units along the chains. In general, increased molecular weight and concentration
of polymer, as well as the fragment of G-block, result in viscose alginate solution or stronger
hydrogel, while M-block and MG-blocks enhance the elasticity of alginate [78].

It is known that the positive charges in material might induce an inflammatory
response [79]. In this view, as a negatively charged polysaccharide, alginate can support
high biocompatibility and cell growth. Following the approval of the U.S. Food and
Drug Administration (FDA) [80], the applications of alginate have been extended from a
thickening food agent to one of the most important biomaterials for regenerative medicine,
nutrition supplements, and drug delivery.

2.3.2. Alginate Bioink

The water solubility as well as rapid and cell-friendly ionic gelation of alginate have
attracted scientists to convert this biopolymer to a bioink for 3D bioprinting of living
constructs. When exposed to a reagent that contains divalent cations, the diffusion of the
ions can induce immediate crosslinking of the 3D bioprinted alginate bioink, leading to the
construction of firm structures. Nearly two decades ago, one pioneering study creatively
extruded a cell-laden alginate bioink (750,000 human endothelial cells and fibroblasts in
1.5% (w/v) sodium alginate solution) into a crosslinker bath (5% (w/v) calcium chloride
solution) to fabricate a continuous filament [81]. Using this method, a complex tissue-like
construct was 3D bioprinted in a later report [82]. The successful use of alginate as a 3D
printable material broadened its biomedical applications, such as tissue regeneration and
injectable/localized drug carriers [83].

However, due to the intrinsic limitation of alginate, the constructs built upon the con-
ventional strategies still face several critical challenges. The first obstacle is that, similar to
hyaluronic acid or any other unmodified polysaccharide, cell-attachable ligands are not pre-
sented in alginate hydrogel. Such an unfavorable microenvironment undoubtedly inhibits
cell adhesion and ensuing activity, despite the well-fabricated structures. Therefore, the
traditional alginate bioink is commonly used for accommodating anchorage-independent
cells, such as chondrocytes which can maintain their phenotype, synthesize and remodel
ECM (e.g., proteoglycans and collagens), even without appropriate adhesion [84]. In
retrospect, a common application of conventional alginate bioink is the fabrication of
chondrocytes-laden constructs for osteochondral tissue engineering. However, when other
types of cells are involved, supporting cell adhesion becomes a mandatory feature.

Besides, the enzyme that can cleave the alginate chain is absent in the mammalian
body, disabling the regular biodegradation process in vivo. Hence, the degradation of
alginate in mammalian bodies usually relies on dissolution as a result of ionic exchanges
of divalent cations that crosslink alginate chains with monovalent cation presenting in
tissue fluids (e.g., Na+ and K+) [85]. Such an erratic process causes the degradation rate of
alginate-based implants to be uncontrollable.

Moreover, although utilizing a crosslinker bath containing divalent cations is an
effective idea to induce desirable gelation and successful 3D bioprinting of alginate, the
presence of a high concentration of cations may risk cell viability due to the osmotic
shock [86]. In addition, the direct deposition of alginate into solutions may affect the
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printing solution. Therefore, advanced approaches for improving the printability of alginate
bioink are still in demand.

3. Strategies for Adopting Alginate as a Bioink

A plethora of innovative methods have emerged to improve the biological activity,
tailor the mechanical properties, enhance the printability, and control the biodegradability
of conventional alginate bioink. The revolution routes can be generally categorized into
(1) the formulation of new bioink systems via physical combination with other compo-
nents and chemical modification with functional groups; and (2) the innovation of 3D
bioprinting strategies.

3.1. Formulation of a New Alginate-Based Bioink
3.1.1. Physical Combination with Bioactive Materials

Due to the excellent hydrophilicity, it is possible to mix alginate with a majority of
natural and synthetic polymer bioinks. Therefore, blending alginate with other bioactive
components that can effectively encourage cellular adhesion to formulate hybrid bioinks is
an expedient way to improve the activity of alginate. The co-presenting bioactive polymers
in the composite alginate bioink additionally offer a cell-favorable habitat, enabling healthy
settle-down of encapsulated cells. So far, a variety of ECM proteins (e.g., collagen [87],
gelatin [88], silk fibroin [89,90], matrigel [91], dECM [92], etc.) have been individually or
combinatorically incorporated into alginate to develop hybrid bioinks for the applications
in 3D bioprinting. In such formulated systems, owing to its tunable viscosity and rapid
gelation characteristics, alginate usually plays a role as a solution thickener or structural
stabilizer for tailoring the rheology of bioink or facilitating the construction of complex
structures. One important consideration when formulating an alginate-based bioink is
the balance of biological and physical properties. While an excessively high concentration
of alginate inevitably reduces the bioactivity of the involved components, insufficient
concentrations may fail to fully utilize the strengths of alginate.

Besides, efforts have attempted to use a second polymer to enhance the mechanical
properties of alginate bioink. Forming interpenetrating networks (IPN), referring to poly-
mers synthesized from at least two polymer networks intertwined at the molecular level,
is a representative solution [93]. As a pioneering study, Hong et al. combined alginate
and poly (ethylene glycol) (PEG) to constitute an IPN hydrogel with both robust strength
and biocompatibility, which was applied for 3D bioprinting of living cells [94]. Upon the
3D bioprinting of a construct using the developed bioink, UV irradiation was provided to
trigger the photo-crosslinking of the PEG network, followed by the treatment of Ca2+ ions
to ionically crosslink alginate, forming interlocked polymeric chains. The mechanical rein-
forcement relies on two mechanisms: the covalently bonded PEG maintains elasticity under
server deformation, while the reversible Ca2+ crosslinking of alginate dissipates mechanical
energy. The printed constructs were able to resist mechanical strength without significant
plastic deformation while sustaining high cell viability (75.5 ± 11.6%) over seven days.
Despite PEG and alginate supporting cell adhesion, the reported idea opened an avenue for
formulating robust and bioactive alginate bioink. Since then, multiple IPN hydrogels such
as GelMA/alginate [95–97], collagen/alginate [98], and dECM/alginate [99] have been
developed for the construction of tissue mimicries. These achievements not only enhance
the strength of alginate-based bioink but also yield desirable outcomes of cell activities.
Notably, the properties of the resultant IPN hydrogel may depend on the crosslinking
sequences of individual monomer participants. For instance, photocrosslinking (e.g., free
radical reaction) could be interfered by an ionically crosslinked network formed earlier,
resulting in the heterogeneous hydrogel with inferior mechanical strength. Chen et al.
formulated an alginate/gelatin IPN hydrogel for 3D cell culture and organ printing. Their
outcomes revealed that the altered crosslinking sequences cause different microstructures,
leading to varied physiochemical and biochemical properties of the IPN hydrogels.
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The physical participation of suitable additives is also able to enhance the printability
of alginate bioink. As a low amount of Ca2+ is supplemented into an alginate solution, a
pre-crosslink (also called semi-crosslinked) alginate bioink with modulated viscosity, flow
behavior, and viscoelastic properties desired for 3D extrusion can be obtained. Falcone
et al. investigated the relationship between the concentration of Ca2+ and the printability
of the pre-crosslinked alginate, demonstrating that within 0.15–0.25 mM of calcium, the
bioink showed good extrudability, corresponding to both egg-box dimers and multimers
interactions [100]. Interestingly, the source of Ca2+ impacts the resultant printability of
bioink and mechanical properties of hydrogel due to the varied solubility of cation salts.
Kelly et al. studied the printability window of alginate bioinks that were crosslinked by
different Ca2+ salts (CaCl2, CaCO3, CaSO4) [101]. The low solubility of CaSO4 led to slower
and more uniform gelation, which improved the mechanical strength of the obtained
alginate gel.

The involvement of light-induced cation generators can enable the biofabrication of
alginate bioink using light-assisted 3D bioprinting. Valentin et al. applied 3D stereolitho-
graphic printing of alginate hydrogel based on ionic crosslinking by selectively illuminating
photoacid generator in the presence of insoluble divalent cation salts. As the spatially
provided irradiation of the photoacid generator causes the formation of protons (H+),
triggering the dissolution of cation salts to generate free divalent cations, which induce the
ionic crosslinking of local alginate [102]. In combination with sophisticated laser systems,
this method might be used to produce alginate constructs with an ultra-high-resolution
(e.g., micro-/nano-meter scale).

To modulate the degradation of alginate bioink hydrogel, one effective way is the
involvement of specific enzymes (e.g., the family of alginate lyases) that can specifically
recognize the alginate chain and catalyze the cleave the glycosidic bonds [103]. Referring
to the molecular configuration of alginate polymer, the choice and concentration of the
alginate lyase are key parameters to regulate the alginate hydrogel. Bin et al. applied the
3D bioprinting technique to fabricate biological scaffolds using a dermal-fibroblasts-laden
alginate/gelatin bioink [104]. To investigate the degradation property of the constructs,
alginate lyase with two different concentrations (0.5 mU mL−1 and 5 mU mL−1) were
incorporated into the bioink. Their results revealed that a higher concentration of alginate
lyase leads to faster degradation of alginate. More importantly, the enzyme-governed
degradation demonstrated low stiffness and higher porosity, promoting cellular adhesion
and proliferation in vitro, as well as facilitating cell infiltration and retention.

On the other hand, as the dissolution of alginate is generally initiated by ionic ex-
change, relevant chemicals (e.g., citrate, phosphates, lactates, and Ethylenediaminete-
traacetic acid (EDTA)) that help to chelate divalent cation crosslinks are also useful to
control the degradation rate of alginate constructs. In a study reported by Wu et al., a
3D bioprinted human corneal epithelial cells (HCECs) laden tissue construct using a col-
lagen/gelatin/alginate composite bioink was cultured in a medium containing sodium
citrate to control its degradation rate [105]. The degradation time of the bioprinted con-
structs can be tailored by altering the mole ratio of sodium citrate/alginate. The tunable
degradation dynamics contributed to rapid proliferation and critical gene expression of the
embedded HCECs, suggesting the importance of degradation control to cell functionality.
However, because ion chelators may also function to inhibit the adhesion between cells and
ECMs, the selection and concentration of citrate and EDTA should be carefully considered
when using alginate as a bioink to escort living cells.

3.1.2. Chemical Modification with Functional Groups

Diverse types of chemical modifications have been explored to improve the bioactivity
of alginate, endowing it with cell adhesion properties. A representative approach is the
biofunctionalization of alginate with cell-adhesive peptides. The incorporation of arginine-
guanidine-aspartate (RGD), a tripeptide sequence naturally existing in adhesive ECM
proteins (e.g., laminin and fibronectin), is a typical method to promote integrin-mediated
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cell adhesion to alginate. RGD sequences can be recognized by cells via cell-surface integrin
receptors, forming focal adhesions [106]. Such associations facilitate cell-ECM interactions
and initiate pivotal intracellular signaling cascades for modulating cell adhesion, prolifera-
tion, migration, and differentiation. This idea was firstly demonstrated by Rowley et al.,
in which the alginate was modified with RGD via a carbodiimide chemical reaction [107].
The RGD-conjugated alginate significantly improved the attachment, spread, and differen-
tiation of C2C12 mouse skeletal myoblasts. With the presence of RGD sequences, the 3D
bioprinted constructs using the modified alginate bioink can facilitate cell adhesion. Jia et al.
built a human adipose-derived stem cells (hADSCs) laden structure by 3D bioprinting of
RGD-modified alginate. The hADSCs actively attached and spread in the matrix composed
of RGD-modified alginate, while remaining round morphologies in unmodified alginate
even after an eight-day incubation period [108].

It is worth noting that, except for RGD, a variety of other peptide sequences can be
covalently linked with alginate. While the RGD sequence can be recognized by particular
integrins of most cell types, other peptide sequences with better cellular affinity might
be desirable when specific cells are used. For instance, Wang et al. modified alginate
with arginine-glutamate-aspartate-valine (REDV) peptide sequence that is recognized by
α4β1 integrin, particularly expressed by endothelial cells (ECs), to selectively enhance
the adhesion of ECs for promoting neovascularization [109]. More importantly, besides
improving the bioactivity for cell adhesion, the conjugation with differentiation-inductive
peptides can direct specific lineage commitment of encapsulated progenitor or stem cells.
In a recent report, Sarker et al. linked RGD and tyrosine-isoleucine-glycine-serine-arginine
(YIGSR) peptides, a peptide sequence capable of regulating neuronal differentiation, with
a 2% (w/v) alginate bioink for the 3D bioprinting of neural constructs [110]. After a three-
week culture, the bioprinted structures not only facilitate viability and morphology of
Schwann cells but also support remarkable directional neurite outgrowth, demonstrating
the biofunctionality of the modified alginate bioink. Hence, the conjugation of peptides
can be a potential method for converting alginate into a versatile bioink.

Chemical incorporation of photosensitive groups on alginate allows in situ covalent
crosslinking under light illumination in the presence of a photo-initiator. The replacement
of ionic gelation with the photo-crosslinking strategy is advantageous by offering spatial-
temporal control over the gelation process through several configurations, such as the
intensity and duration of light exposure, the concentration and the type of photo-initiator,
and the extent/pattern of the illumination regions. Notably, the appropriate extent of
chemical modification does not necessarily deprive the ionic gelation property of alginate.
Therefore, covalent and ionic crosslinking processes can co-present, enabling spatial control
over the mechanical property of a 3D bioprinted construct. Samorezov et al. conjugated
both methacrylate groups and RGD peptides in alginate and performed varied modification
degrees to produce hydrogels that could be either ionically crosslinked, photo-crosslinked,
or both (dual crosslinking). By selectively exposing the modified alginate bioink to UV
light, the researcher can create patterned structures with regions of dual crosslinked
(exposed area) or ionically crosslinked regions (non-exposed area) exhibiting discrepancies
in mechanical properties and cell response (i.e., adhesion and spreading) [111]. Moreover,
it is known that the loss of crosslinking ions can interfere with the integrity of ionically
crosslinked alginate (approximately 40% within 9 days) [112], while the photo-crosslinking
of alginate chains can be an effective way to maintain the mechanical and structural
stability of the obtained hydrogel due to the presence of covalent bonds. For instance,
once the carboxyl of an alginate monomer reacts with 2-aminoethyl methacrylate (AEMA),
the methacrylated alginate becomes photocurable, desirably maintaining the mechanical
properties of alginate hydrogel and improving its strengths [113].

Enabling the photo-crosslinking of alginate allows for the stereolithography of the
relevant bioinks. Ooi et al. used thiol-ene click chemistry to react norbornene-alginate
with thiol-containing polymer (e.g., PEG dithiol or 4-arm PEG thiol) crosslinkers, which
permitted better spatio-temporal control of alginate rheological and mechanical properties
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during bioprinting. The norbornene functionalized alginate showed good printability at a
lower concentration (2 wt%) and maintained a more stable 3D construct than a printing
process which only relies on ionic crosslinking of alginate [114].

Besides photo-sensitivity, pioneering studies have attempted to develop thermally-
polymerizable alginate, aiming at the creation of versatile alginate bioinks. For example,
Wang et al. incorporated glycidyl methacrylate groups in alginate. In the presence of
a thermal initiator, the modified alginate could be rapidly (5 to 20 min) crosslinked at
37 ◦C. These innovations may facilitate the biofabrication process for building alginate
constructs, when advanced 3D bioprinting techniques are applied (e.g., heating-assisted
extrusion) [115].

With the assistance of chemical modification, the biodegradation of alginate hydrogel
can become tunable when degradation cites are incorporated for the association with
cell-derived enzymes. A plethora of MMP-sensitive peptide sequences have demonstrated
their ability to govern alginate degradation, such as PVGLIG, VPMSMRGG, and GPQGI-
WGQ. Lueckgen et al. proposed a photo-crosslinkable alginate bioink with the presence
of VPMS↓MRGG or GPQG↓IWGQ containing sequences as degradable crosslinkers [116].
The incorporation of these sequences promoted the spread of embedded fibroblasts within
these hydrogels whereas the cells remained essentially round in non-degradable coun-
terparts even after 14 days. In vivo outcomes showed higher tissue and cell infiltration
into degradable alginate grafts in comparison to non-degradable controls, stressing the
importance of involving matrix remodeling cues in the biological performance of bioink
constructs. Except for the peptide conjugation, oxidization is also an effective method for
offering control over the degradation rate of alginate. It creates hydrolytically labile bonds
in the polysaccharide, allowing for easy hydrolysis of alginate backbone [117]. Although
the degradation of alginate can be accelerated as the oxidization degree increases, the
weakened mechanical property is a vital drawback of the oxidized alginate bioink [118].

Taken together, both physical combination and chemical modification have demon-
strated their unique merits for improving the performances of conventional alginate bioink.
Meanwhile, the physical and chemical methods can be combined, which can collabora-
tively provide additional advantages to the resultant bioink. However, each strategy has
inevitable drawbacks. While the physical blending usually requests mutual compatibility
of the involvements, chemical modification processes might be complicated, which could
introduce ingredients harmful to cells. Therefore, the design of bioink is one of the most
crucial missions for the 3D bioprinting of alginate hydrogels.

3.2. Innovation of 3D Bioprinting Strategy

In addition to the valuable efforts for bioink modifications, plenty of works have
focused on developing novel 3D bioprinting processes that can similarly achieve the
precise printing of complex architectures, control of mechanical properties, modulation of
degradation, and enhancement of bio-instructive performances.

3.2.1. Aerosol-Assisted 3D Bioprinting

To facilitate the direct printing of bioink with improved shape fidelity, aerosols con-
taining gelation initiators can be supplied to create a crosslinking ambiance that can induce
rapid gelation of the deposited bioinks. In comparison with the use of an aqueous bath, the
aerosolized crosslinking reagents avoid the uncontrollable suspension of printed blocks
within the liquid solution due to buoyancy. However, the bioink selected for aerosol
treatment should immediately crosslink so that it can be fabricated as stable droplets
and firm filaments to ensure printing resolution and enable the construction of complex
structures. For this reason, alginate is a good candidate for its rapid gelation feature when
encountering divalent cations. Ahn et al. bioprinted a 3D cell-laden scaffold utilizing
3.5% (w/w) alginate and a cross-linking aerosol produced by fuming 2% (w/w) calcium
chloride solution with an ultrasonic humidifier [119]. In the presence of calcium chloride
aerosol, the alginate bioink is directly crosslinked as extruded out from a 310 µm diameter
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needle, enabling the successful fabrication of a thick construct (4.5 mm height) with a
homogeneous pore size (435 ± 32 µm) and fine filaments (355 ± 28 µm) (Figure 3A). The
encapsulated pre-osteoblasts (MC3T3-E1) retained high cell viability (85%) after printing,
suggesting that the developed fabrication method is unharmful to cells. Notably, the
limited diffusion of aerosols can only cause superficial crosslink of the fabricated structures,
resulting in weak mechanical properties. Hence, post-treatment such as immersing the
printed structure in a Ca2+ containing medium is necessary to induce further gelation
that can mechanically stabilize the constructs. In this stage, the osmotic shock induced by
excessive Ca2+ is worth noting.

3.2.2. Microgel-Bioink-Based 3D Bioprinting

Microscale hydrogels (microgels) have been widely used as building blocks for bottom-
up tissue engineering. In particular, densely packed or jammed hydrogel microspheres
have demonstrated great potential as versatile bioinks for 3D bioprinting [120]. The packed
hydrogel microspheres contact and physically trap each other rather than behave as a
free suspension in solution, resulting in similar physical properties to bulk hydrogels.
Nonetheless, the interactions between the microspheres are weaker than the bonding
strength of crosslinked polymer chains, and thus, they can still yield to flow as external
forces overcome the inter-microsphere frictions during printing [121]. After printing, the
physical associations between microspheres reestablish, which can support the fabricated
structures. Such a shear-thinning and self-healing behavior enables microgel to be a suitable
form of bioink for 3D bioprinting techniques.

Jeon et al. reported controlled assembly of cell-laden dual-crosslinkable alginate mi-
crogels composed of oxidized and methacrylated alginate (OMA) [122]. The human bone
marrow-derived mesenchymal stem cells (hMSCs)-laden OMA microspheres (300 µm)
were firstly produced using a coaxial airflow-induced microgel generator that forms OMA
monomers (2.5% (w/v)) directly into ionic crosslinking solution (0.2 M CaCl2). The packed
cell-encapsulated OMA microspheres exhibited shear-thinning behavior, shear-yielding
feature, and self-healing property, which enables the 3D extrusion of diverse customized
constructs (Figure 3B). After the flexible assembly of OMA microspheres based on fabri-
cation processes, low-level UV illumination (20 mW/cm2) was supplied to initiate photo-
crosslinking, which tightly locked the adjacent microspheres via covalent bonds, forming
stabilized structures.

In addition to bioink, packed microgels can also be utilized as a support medium for
3D bioprinting. The support medium is fluidized under low shear stress, allowing motion
of a depositing needle within the bulk consisting of microgels. As the shear stress caused
by needle movement is removed, the locally fluidized microgel reservoir rapidly self-heals,
forming a stable medium that firmly holds the printed bioinks. The same group expanded
the OMA microgels as a photocurable support medium to directly print individual cell-only
bioink [123]. The rheological characteristics of the OMA microgel bath enabled the high-
resolution deposition, positioning, and structuring of hMSCs without creating crevasses.
The ensuing photo-crosslinking enhanced the structural and mechanical integrity of the
OMA microgel bath, providing a long-term stable culture and differentiation condition
to the printed cellular constructs (Figure 3C). Dissociation of the photocured microgel
bath by gentle agitation can enable the acquisition of matured 3D tissue analogs. Besides,
the idea of ‘in-bath printing’ is also useful to enable the direct printing of soft alginate
solutions. In a representative report, Hinton et al. defined a novel 3D bioprinting technique
named freeform reversible embedding of suspended hydrogel (FRESH), which permits the
printing of soft bioinks (alginate, fibrin, collagen, and matrigel) within a second gelatin
microgel supportive bath [123]. The reversible thermal-gelation of gelatin enables the
creation of gelatin microgel at a low temperature that facilitates the suspension of bioink
and the removal of gelatin bath as the temperature rises (incubating at 37 ◦C), helping to
separate the printed constructs.
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3.2.3. Collaborative 3D Bioprinting

The integration of multiple printing heads achieves the simultaneous dispensing of
diverse bioinks in a single fabrication step. When a wide range of bioinks and biomaterials
are applied, collaborative 3D bioprinting is helpful to meet various needs, including robust
mechanical property, acceptable printability, and tunable degradability.

Using a multi-head deposition system (MHDS) equipped with four microextrusion
dispensers, polycaprolactone (PCL) and human chondrocytes-encapsulated alginate bioink
(4% (w/v)) was co-printed to fabricate a cell-laden scaffold for cartilage regeneration [124].
During printing, PCL was firstly melted and printed as a framework followed by subse-
quent deposition of cell-laden alginate bioink in the spaces between the lines of PCL layers.
Such a procedure was repeated, resulting in the stacking up of a 3D PCL/alginate heteroge-
neous structure (Figure 3D). After treating 100 mM CaCl2, the crosslinked alginate offered
a cell-friendly microenvironment for the loaded chondrocytes, while the PCL framework
not only allowed the precise positioning of soft alginate bioink but also provided adequate
mechanical strength to the biological construct for resisting the load-bearing condition
in vivo. Using an identical approach, alginate bioink carrying human mesenchymal stro-
mal cells was also used to 3D bio-print multiple layered constructs for osteochondral tissue
regeneration [125].

In contrast to the parallel organization of nozzles for sequential printing, multiple
needles can be assembled coaxially that allow the simultaneous extrusion of different
bioinks. Given the advantages of rapid ionic gelation, alginate is an optimal bioink for
such a coaxial bioprinting technique. When alginate is co-dispensed with a crosslinker
(e.g., CaCl2 solution) through a pair of coaxially configurated nozzles, instant crosslinking
can be induced, forming firm alginate fibers, which enhances its printability. Colosi
et al. used a core/shell nozzle to produce a blended GelMA (4.5% w/v) and alginate
(4% w/v) bioink in the core and 0.3 M CaCl2 solution in the shell [126]. When the core
and shell materials came into contact at the outlet of the coupled nozzles, the alginate in
the bioink was ionically gelled by exposure to Ca2+ ions, producing robust 150 µm wide
filaments and providing excellent printability for stacking a thick structure (1 mm height)
(Figure 3E). The GelMA was subsequently cross-linked by UV treatment, and the alginate
gradually dissolved within culture media after 10 days. Owing to the bioactivity of GelMA,
the embedded human umbilical vein endothelial cells (HUVECs) showed improved cell
migration and organization.

Another fascinating merit of coaxial bioprinting lies in its ability to build tubular
constructs. By increasing the number of needles, multiple cell-laden alginate-based bioinks
can be concentrically layered, resulting in biomimetic cannular tissue mimicries (e.g.,
blood vessel and urethra) [127]. In a pioneering study, the group of Ozbolat developed
a novel printable vessel-like microfluidic channel fabrication method that enables the
direct bioprinting of cellular microfluidic conduits [128]. Alginate and chitosan bioinks
were applied to construct both freestanding and bulk-hydrogel embedding channels to
test their nutrition-transporting functionality through perfusion of cell-type oxygenized
media, demonstrating the great promise of the microfluidic channels for the development
of vascular networks (Figure 3F).

3.2.4. Micro-/Nano-Scale 3D Bioprinting

To better emulate native tissues, there is an increasing requirement to build structures
with ultrafine resolutions, which can further recapitulate the hierarchical structure and
composition of the native ECM. Such replications of the cellular microenvironment may
suggest new opportunities for the generation of functional tissue and organs. For instance,
cell-cell interactions occur at the micro- to nanometer scale [129]. In addition, mechanical
property and topological structure cues provided by fibrillar ECM components are impor-
tant modulators of cell fates [130]. Therefore, micro-/nano-scale 3D bioprinting of bioinks
is spotlighted as a new direction to improve the bio-instructive performances of constructs
through the micro-structural definition.
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(orange: non-crosslinked, purple: crosslinked by exposure to CaCl2 aerosol). Reproduced with permission from [119].
(B) (i) A schematic depicting the fabrication of ionic/covalent dual-crosslinkable OMA beads; and (ii) the 3D bioprinting of
femur, skull, and ear models using the hMSCs-laden OMA microgel bioinks (scale: femur, 1 cm; skull and ear, 100 µm).
Reproduced with permission from [122]. (C) (i) A schematic of 3D bioprinting of cells within the alginate microgel supporting
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medium, where the OMA microgels fluidize when stress is applied by the motion of the printing nozzles (shear-thinning
region) and rapidly fill in after the needle passes (self-healing region) while the supporting medium without shear presents
solid-like properties; and (ii) captures of bioprinting a letter “C” (time-course images), a cubic, an acronym “CWRU”,
and a femur using stem cell-only bioinks. Reproduced with permission from [123]. (D) (i) A schematic of the fabrication
process of cell-laden PCL/alginate hybrid scaffold using the collaborative 3D bioprinting strategy, and (ii) the SEM
images of the fabricated porous hybrid scaffold at magnifications of ×25, ×75, and ×150. Reproduced with permission
from [124]. (E) Schematic illustration of the fabrication process that coaxial extrudes a GelMA/alginate hybrid bioin
through the core needle and CaCl2 solution through the shell needle, which sequentially undergoes ionic crosslinking and
covalent crosslinking, resulting in direct 3D bioprinting of GelMA/alginate fibers. Reproduced with permission from [126].
(F) (i) A schematic of coaxial printing CaCl2/alginate solutions using a core/shell nozzle; and (ii) an image of bioprinted
alginate microfluidic channels. Reproduced with permission from [128]. (G) (i) A schematic of the formulated cell-laden
alginate/PEO/fibrin bioink for the electrohydrodynamic-direct-writing fabrication, (ii) A schematic and SEM images of
microfibers fabricated using 50 mm/s nozzle moving speed (scale of the inset: 100 µm), (iii) A schematic showing the
micro-scale printing of C2C12 cell-laden constructs and immunofluorescent images revealing the orientation of matured
muscular fibers. Reproduced with permission from [129]. (H) A schematic of 4D bioprinting for fabricate Alg/MC hydrogels
and their 3D deformations in CaCl2 solution. Reproduced with permission from [130].

Among all types of abovementioned 3D bioprinting approaches, only the TPP tech-
nique can achieve a resolution finer than dozens of micrometers. Reports from different
groups have demonstrated that the TPP technique allows for reaching a structure resolution
less than 100 nm [131]. As a bioactive bioink that can undergo photo-crosslinking, GelMA
has been applied for TPP in several studies [132–134]. Technically, any photocurable bioink
is adaptable to the TPP technique. Therefore, although there are no relevant reports, the
formulated alginate bioinks (e.g., chemically methacrylated alginate) can be utilized for the
3D bioprinting of micro-/nano-scale structures using the TPP technique.

Electrospinning is another fabrication method that can obtain nanofibers resembling
the natural ECM. However, owing to the rigid chain conformation and limited chain entan-
glement, the alginate, a natural polyelectrolytic polymer, does not readily electrospin [135].
Typically, flexible and uncharged synthetic polymers (e.g., polyethylene oxide (PEO) and
polyvinyl alcohol (PVA) can be supplemented to improve the spinnability of alginate [136].
Due to the formation of hydrogen bonds between alginate and these polymers, the re-
pulsive force among polyanionic molecules is drastically decreased to facilitate the chain
entanglement, which permits the production of nanofibers. Notably, despite the given
high-intensity electrical field, studies have demonstrated that the electrospinning of bio-
compatible hydrogels is compatible with the processing of living cells if the electric voltage
is controlled in an appropriate range, even achieving the reconstruction of functional
constructs embedding cardiomyocytes or neural cells [137,138].

However, one drawback of electrospinning is the difficulty in spatially organizing
the produced fibers. To overcome this challenge, electrohydrodynamic and electrowriting
techniques that can utilize the flexibility of the 3D bioprinting technique were devel-
oped to align the fibers, achieving direct fabrications of anisotropic tissue mimicries. In
a recent work reported by Yeo et al. a fully patterned microfibrous construct fabricated
using fibrin-assisted alginate bioink encapsulating myoblasts/endothelial cells and a novel
electrohydrodynamic-direct-writing approach was proposed for skeletal muscle tissue
engineering [139] (Figure 3G). This new biofabrication method helped to provide mechan-
ically stable and topographical cues to the involved cells, inducing rapid and efficient
regeneration of skeletal muscle tissues.

Despite the currently available techniques for 3D bioprinting of fine structures, the
remaining challenges are the unstable mechanical and swelling properties of hydrogel,
which might cause damage and morphing of the fabricated construct. Consequently,
to tackle this issue, strategies that are useful to increase the stiffness of the hydrogels
include varying the degree of crosslinking, grafting of a secondary robust material, and the
formation of interpenetrating networks.
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3.2.5. 4D Bioprinting of Alginate-Based Bioink

The recently emerged concept of 4D bioprinting refers to the morphing of a 3D printed
structure in response to an environmental stimulus with the fourth dimension being time-
dependent changes. Therefore, the fabrication of a 4D bioprinted construct is a type of
programmable matter that govern shape transformation resulting from the reaction of
the printed products with relevant parameters within an environment (e.g., temperature,
PH, humidity, magnetism, electricity, light, etc.) or cellular activity over time (e.g., cell
contraction, cell migration, etc.) [140]. A large amount of stimulus-responsive materials
has been developed for smart autonomous robotics, biomedical devices, drug delivery, and
tissue engineering [141].

A central idea for the 4D bioprinting of hydrogel bioinks as shape-morphing mate-
rials is the exploitation of their flexible swelling/shrinking behavior. By controlling the
swelling/shrinking rates or degrees, the volume of the hydrogel can be altered sizably
and anisotropically, enabling the building of transformable hydrogel constructs. Due to
the reversible ionic crosslinking of alginate as a function of involvement and chelation
of divalent cations, an alginate architecture with gradient crosslinking density can be
dynamically modulated under specific stimulations [142]. Hence, it is possible to utilize
alginate as a smart bioink for 4D bioprinting. In a pioneering work, Kirillova et al. utilized
a visible-light-curable methacrylated alginate bioink to 3D bioprinted cell-laden biolog-
ical films [143]. Upon photo-crosslinking under green light and mild drying, the films
immersed into solutions (e.g., water, PBS, and cell culture media) instantly fold into tubes
due to the swelling of alginate hydrogel. When exposed to calcium salt or EDTA solutions,
the ionic crosslinking/de-crosslinking of alginate can harness its de-swelling/re-swelling
performances, thereby fulfilling the reversible shape transformation of the films.

However, such dynamic shape transformation is quite limited, alone with its poor
printability; thus, pure alginate bioink for 4D bioprinting has been rarely reported. Despite
the limitations, when mixed with other biopolymers such as methylcellulose and poly-
dopamine, alginate-based bioink can obtain the desired shape-morphing ability. In a recent
study, alginate and methylcellulose were combined to formulate highly printable and shape
morphing hydrogels with excellent rheological properties, extrudability, and shape fidelity
of the printed structures [144] (Figure 3H). In another report, alginate/polydopamine
bioink was developed for 4D printing of artificial tissues [145]. Continuous efforts for
formulating alginate with other materials might lead to the production of new advances
for diverse biomedical applications.

In conclusion, the advanced material formulation and novel biofabrication approach
allowed the appearance of desired features in conventional alginate bioinks. With improved
versatility and controllability, these innovative strategies could extensively leverage the
strength of the 3D bioprinting technique in biomedical applications, which will be focused
on in the next section.

4. Applications of Alginate-Based Bioink
4.1. Regenerative Implants

With the assistance of advanced strategies, diverse functional artificial tissue constructs
have been 3D bioprinted along with living cells for the regeneration of cartilage, bone, skin,
blood vessel, muscle, heart valve, neuron, etc.

4.1.1. Osteochondral Tissue

Cartilage and bone are typically hard tissues that bear extreme stresses during body
movement. Since these tissues are frequently exposed to dynamic loads (e.g., compression,
tension, bending, etc.), the grafts must provide adequate and stable mechanical/structural
support and sufficient inorganic ECMs to realize the healing of relevant tissue defects [146].
Notably, although various material formulations and fabrication methods have been de-
veloped to match the stringent requirements for the regeneration of hard tissues, these
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approaches are generally not applicable to carrying living cells. Hence, it is unsuitable to
categorize these achievements into the group of bioink and 3D bioprinting.

When alginate bioinks are applied for constructing osteochondral tissues, the limited
mechanical strength of hydrogel is the first challenge. Using the collaborative printing
strategy, the chondrocytes-laden bioinks can be co-deposited in a mechanically robust
thermoplastic scaffold, achieving the requirements for both mechanical properties and
bioactivity [147]. Kundu et al. co-printed PCL struct and alginate bioink carrying chondro-
cytes layer-by-layer to build cartilage structures that can be implanted into the bear-loading
condition in a rabbit model. With the addition of TGF-β, the graft showed a great cartilage-
like extra cellular matrix formation [124]. Similarly, Lee et al. demonstrated that the
substantial improvement of mechanical strength (tensile modulus from 2.5 MPa of pure
alginate scaffolds to 15.4 MPa of PCL/alginate hybrid constructs) was attributed to the
adhesion between PCL structs [148]. However, despite biocompatible thermoplastic poly-
mers such as PCL, PLGA, PLA, and PU being able to assist alginate scaffolds to meet the
requirement of mechanical properties, the degradation rate of these materials should be
carefully considered so that the implants could endure loads during a long-term period of
bone regeneration.

Upon physical combination with other components or chemical modification, ad-
vanced alginate bioinks have proven their advantages for the fabrication of cartilage and
bone tissue constructs. Luo et al. optimized the printability of gelatin-alginate bioink by
mixing cellulose nanofibers, resulting in superior rheological performances and printabil-
ity [149]. The developed bioink not only allows high-precision bioprinting of a specific-
designed meniscal prototype but also achieves long-term cellular viability and acceptable
ECM accumulation of encapsulated fibrochondrocytes. When mixed with highly bioactive
materials, the cytocompatibility of alginate-based bioink can be significantly improved.
Yang et al. combined alginate and collagen to formulate a hybrid bioink for 3D bioprinting,
which can effectively maintain the phenotype of chondrocytes and promote the expression
of cartilage-specific genes [87]. Kelly and colleagues added porcine articular cartilage
extracellular matrix (0.2 or 0.4% w/v) into alginate solution (2.45% w/v) to obtain a bioink
for 3D bioprinting of hMSCs [150]. To improve the printability of the hybrid bioink, 0.018
M solution of CaCl2 was added to induce the pre-crosslinking. Upon the construction of
a 3D construct, the bioink was completely crosslinked in a 0.06 M CaCl2 bath for 20 min.
Their results suggested that the presence of cartilage-tissue-specific ECM can significantly
enhance chondrogenesis by guiding the activity of embedded stem cells.

Bioactive ceramics can effectively improve the regeneration of bone tissue. Hydroxya-
patite (HA) and calcium phosphate (CP) are calcium phosphate compounds commonly
used for bone tissue repair. These biocompatible inorganic materials have negligible cyto-
toxicity when blended into alginate hydrogel with an optimal concentration, which can
effectively improve the biological performances of alginate-based bioink. In an investi-
gation conducted by the group of Hofmann, gelatin, alginate and hydroxyapatite (HA)
were hybridized to obtain a novel hydrogel composite for bone 3D printing [151]. The
thermo-sensitivity of gelatin and the chemical crosslinking of alginate helped to achieve
rapid gelation and long-term structural integrity of the 3D-printed constructs. The em-
bedded hMSCs survived during the printing process and showed high cell viability (over
85%) after three days of subsequent in vitro culture. CP has been also used to improve the
mechanical properties and osteoconductivity of 3D bioprinting hydrogel constructs.

Relevant osteogenic or chondrogenic molecules and growth factors are also useful to
enhance the biological functions of the bioprinting constructs, However, the release kinetic
of carried payloads must be carefully designed. In general, the consecutive bio-instructive
function originating from growth factors is desired during a long-term regeneration period.
Hence, a sustained release profile is necessary. In a representative study conducted by
Park et al., osteoblasts and bone morphogenetic protein 2 (BMP-2) were co-encapsulated in
an alginate/alginate-sulfate bioink, demonstrating the promotion of osteogenesis by the
prolonged BMP-2 activity in the designed composite bioink [152].
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Although these novel approaches have enabled the 3D bioprinting of cell-laden
alginate-based constructs for the regeneration of osteochondral tissues, it still faces unmet
challenges related to biological and mechanical properties. Further efforts should continu-
ously contribute to explore advanced strategies to extend alginate-based orthopedic applications.

4.1.2. Skin Tissue

In comparison with hard tissues, as the hydrogel material is originally soft and fragile,
the cell-laden alginate-based bioink show a greater premise for engineering soft tissues,
such as skin, blood vessel, muscle, etc. Human skin has three layers consisting of epidermis,
dermis, and hypodermis, each of which is composed of different cell types. In addition to
the clear stratification, multiple appendages (e.g., hair folic, sweat glands, vasculature, etc.)
are present in the limit space of skin (0.5–4 mm thickness) [153]. Although skin has greater
self-regeneration capacity than most tissues after being injured, the healing of large-scale or
deep wounds is usually limited, suffering from scar formation. Therefore, to 3D bio-print
this complex and multi-layered architecture to assist in wound healing, bioinks should
show superior printability and biological performances.

To enhance the printability and bioactivity of alginate bioinks, honey and gelatin
have been incorporated. Honey is a readily available natural material, known for its
role in wound healing and skin tissue regeneration. Datta et al. demonstrated that the
involvement of honey in varying concentrations (1–5%) can effectively modulate the
viscosity and printability of 5% alginate bioink [154]. In addition, the presence of honey is
also conducive to the improvement of proliferation when 3T3 fibroblasts are encapsulated
and 3D bioprinted.

Liu et al. blended gelatin and alginate to compose a bioink with improved print-
ability [155]. Upon the results of rheological evaluation, 2% alginate and 15% gelatin
were selected as an optimal formulation, which can help acquire complex constructs (e.g.,
nose and ear) with high printing resolution (151 ± 13.04 µm) in a low temperature (4 ◦C)
chamber due to the presence of gelatin. The ionic gelation of alginate components after
treating 2% CaCl2 further stabilized the fabricated structures. Using this hybrid bioink,
human amniotic epithelial cells (hAECs) and Wharton’s jelly-derived mesenchymal stem
cells (WJMSCs) were encapsulated to bio-print a skin-biomimetic bi-layered membranous
construct. The outcomes of in the vitro study indicated that the hAECs displayed a su-
perior epithelial cell phenotype, while WJMCSs showed great angiogenic potential and
fibroblast phenotype.

Beyond the successful fabrication of skin tissue mimicries, mechanical properties
should be also considered to match that of natural skin for better clinical handling and
wound-healing effect. Shi et al. modulated the mechanical strength of alginate/gelatin
bioink using a three-step crosslinking strategy [156]. Gelatin components in the 3D bio-
printed structure were first physically crosslinked at 4 ◦C for 30 min, followed by the
ionic gelation of alginate by immersing in 1% CaCl2 solution for 1 h. Eventually, the con-
struct was further treated with 1% EDC and 0.25% NHS for 1 h at 4 ◦C to induce covalent
crosslinking of gelatin. Through such a series of crosslinking courses, dermal substitutes
with physicochemical properties that match human skin tissue can be created. However,
despite the reported high proliferation rate of seed cells being able to demonstrate the
biocompatibility of the printed structure, such a process (e.g., low-temperature incubation,
chemicals exposure) is inevitably harmful to cells, and thus not applicable for printing
living cells.

4.1.3. Vascular Tissue

Blood vessels, especially artery and vein, contain three concentric layers—a monolayer
of endothelium tissue in contact with the bloodstream, a dense layer containing circum-
ferentially aligned smooth muscle cells, and a layer of connective tissue in the abluminal
side [156]. Each layer involves specific cell types that undertake distinctive missions. For
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this reason, an ideal blood vessel graft should compartmentally possess all these elements
to fully recapitulate vascular functions.

The emergence of the coaxial bioprinting strategy paves a way for the convenient
fabrication of tubular constructs. Due to rapid gelation, alginate has been considered as
an optimal bioink for this approach. Zhang et al. coaxially bioprinted perfusable vascular
conduits using primary human umbilical vein smooth muscle cells- (HUVSMCs) laden
alginate bioinks with different concentrations (3–5% wt) [157]. The dimension of the printed
tubes (inner diameter and wall thickness) are tunable by printing diameters. Gao et al.
revealed that the sizes of the bioprinted hollow tubes depend on the gauge of the inner
needle as well as the flow rate and concentration of alginate bioink and crosslinkers (CaCl2),
demonstrating that coaxial bioprinting is a flexible technique for producing conduits [158].

On the other hand, the hydrogel-made vascular tissue constructs might have lim-
ited mechanical strength and stability to be used as a graft and in vitro tissue-modeling
platform. To overcome this challenge, additional strategies can be integrated. For exam-
ple, Jia et al. fabricated HUVECs- and hMSCs-laden bioink consisting of alginate, 4-arm
poly(ethylene glycol)-tetra-acrylate (PEGTA), and GelMA pre-polymer solutions [159].
Upon a UV illumination procedure, the PEGTA and GelMA were covalently crosslinked,
which provided a secondary polymeric network forming IPN hydrogel, significantly en-
hancing the mechanical properties of the bioprinted vascular tissue constructs. In addition,
the blended bioink was proven to support the spreading and proliferation of embedded
cells due to the presence of bioactive GelMA.

As exhibiting physiological functions (e.g., anti-thrombosis, responsive contraction
and relaxation) are critical for ensuring the safety of vascular grafts, the bioink should show
superior bioactivity to guide cells activities and form relevant functional tissues. In this
regard, the involvement of bioactive components is an effective manner. In a recent report,
small-diameter blood vessel grafts comprising compartmentally organized endothelial
cells and muscle cells were successfully 3D bioprinted using a bioink that is composed
of alginate and VdECM [160]. The application of a triple-layered coaxial nozzle helps to
produce a small diameter tube (approximately 2 mm) consisting of a thin HUVEC layer
(50 µm) surrounded by a thicker HAoSMCs layer (800–1000 µm). The prematured con-
struct under a customized dynamic culture condition showed uniaxial and circumferential
alignment of HUVECs and HAoSMCs, respectively, emulating that of the natural counter-
parts. Meanwhile, the massive accumulations of de novo human ECM proteins (collagen
and elastin) were found to help reinforce the mechanical strengths (burst pressure and
ultimate tensile strength). After being implanted into the abdominal aorta of the rat for
three weeks, the grafts showed muscular layer remodeling and integration into the host
tissue, as well as good patency and preservation of intact human endothelium tissues.

Collectively, the ultimate objective of tissue engineering is to build functional con-
structs that regenerate or replace the damaged tissue or entire organ. Recent efforts
regarding 3D bioprinting of alginate-based bioinks have been used to establish a variety of
regenerative tissue implants. Except for the cases reviewed above, representative studies
contributed to constructing other types of tissues are summarized (Table 1) to provide
relevant information and comparisons.

4.2. In Vitro Tissue Modeling

Upon a period of cultivation and stimulation, even under an in vitro condition, the
cells residing in bioinks can populate, migrate, and self-assemble, possibly resulting in
maturation and functionalization of targeted tissue/organ. For this reason, except when
regarding as tissue substitutes, a variety of 3D bioprinted alginate-based constructs can
be also used as in vitro tissue/organ equivalents, since these models can resemble the
complex anatomical and pathological features of the emulated targets, including skin,
kidney tubules, blood vessels, cornea, and skeletal muscle. Relevant reports have been
comprehensively summarised with insightful comments elsewhere, which can provide an
overview of this point [180,181].
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Table 1. Representative cases of 3D bioprinting regenerative implants using alginate-based bioinks.

Tissue Bioink Cell Type Strategy Achievement Ref.

Cartilage

Nanocellulose-alginate
bioink

Human nasoseptal
chondrocytes Physical combination Constructs with high

fidelity and stability [161]

hyaluronic acid/alginate
bioink, PCL as a scaffold

Human articular
chondrocytes Physical combination

Improved printability,
gelling abilities, stiffness

and degradability
[162]

Alginate
Sulfate–Nanocellulose

Bioinks
Bovine chondrocytes Chemical modification High shape fidelity,

good printability [163]

Nanocellulose/Alginate
Bioink iPSCs Physical combination Bioprinted iPSCs for

cartilage regeneration [164]

Collagen-alginate bioink Rat chondrocytes Physical combination
Improved mechanical

strength, enhanced cells
adhesion, proliferation

[87]

Polylactic Acid (PLA)
Nanofiber−Alginate

Hydrogel Bioink

Human
adipose-derived

stem cells
Physical combination

Improved hASC
metabolic activity and

proliferation
[165]

Alginate, gelatin, and
fibrinogen as bioink hMSCs Physical combination

The addition of TGF-β1
and BMP-2 promoted

cells differentiation
[166]

Alginate and short
sub-micron polylactide

(PLA) fibers

Human
chondrocytes Physical combination High cell viability [167]

Bone

alginate-sulfate bioink MC3T3-E1
osteoblasts Chemical modification

Improved osteoblastic
proliferation and

differentiation
[152]

Graphene oxide/alginate
bioink hMSCs Physical combination

Enhanced osteogenic
differentiation,

improved printability
[168]

Alginate CaCl2 bioink
Human bone

marrow-derived
MSCs

Chemical modification Increased osteogenic
differentiation [169]

RGD-γ-irradiated alginate
and nano-hydroxyapatite

(nHA) complexed to
plasmid DNA (pDNA)

Human bone
marrow-derived

MSCs
Chemical modification

Superior levels of
vascularization and

mineralization
[170]

Vessel

Sodium alginate
Fibroblasts

L929 mouse
fibroblasts

Collaborative 3D
bioprinting

Multilevel fluidic
channels [171]

Sodium alginate, collagen HUVECs Microgel-bioink-based
3D bioprinting

Achieved rapid and
efficient in vivo
angiogenesis.

[172]

VdECM/alginate bioink HUVEC/HAoSMCs Collaborative 3D
bioprinting

As transplants in vivo
for three weeks [160]

gelatin-based
alginate/carbon

nanotubes blend bioink
Fibroblasts Physical combination Enhanced mechanical

properties [173]

Gelatin-methacryloyl
(GelMA) + PEGDA +

alginate lyase

Vascular smooth
muscle

cells/vascular
endothelial cells

Collaborative 3D
bioprinting & Physical

combination

Two-cell-layered
structure [174]
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Table 1. Cont.

Tissue Bioink Cell Type Strategy Achievement Ref.

Skin

Gelatin and sodium
alginate hydrogel,

fibroblast cells
Fibroblasts Physical combination Situ 3D bioprinting [175]

Sodium alginate, sodium
carboxymethyl cellulose / Physical combination Repaired rabbit

wound defeat [176]

Nerve
scaffold Sodium alginate, gelatin Rat Schwann cells Physical combination

Improved cell adhesion
and related factor

expression, in vivo
[177]

Muscle

Gelatin
Methacryloyl-Alginate

Bioinks

Mouse C2C12
myoblast cells

Collaborative 3D
bioprinting

Dually crosslinking can
provide the optimal

niche for muscle
tissue formation

[178]

PEG-Fibrinogen
(PF)/alginate

Human C2C12
myoblast cells

Collaborative 3D
bioprinting

Formed multinucleated
myotubes [179]

Besides the tissue/organ analogs, advanced in vitro tissue models, organoids and
organ-on-a-chip, emerged in recent years for convenient modeling of physiological process
and disease pathology, as well as evaluating drug safety and therapeutic effects. Given the
high flexibility, the 3D bioprinting technique has been translated to establish a variety of
diagnostic and monitoring platforms. Although in its infancy, alginate-based bioink has
demonstrated its advantages for achieving this objective.

4.2.1. 3D Bioprinting of Alginate-Based Organoids

Organoids, defined as miniature organs, are generally developed by the 3D culture of
mammalian stem/progenitor cells or embryonic stem cells in the presence of necessary
physiological cues and matrices. The formation of organotypic constructs relies on cell
proliferation, self-organization, and differentiation into specific lineages, whereby multiple
types of cells resembling both the architectural and functional features of the target organ
can be generated [182,183].

Despite the 3D bioprinting of organoids still being at an incipient stage, undifferen-
tiated pluripotent stem cells or differentiated stem cells have been 3D bioprinted using
alginate-based bioinks to generate organoids in vitro. For instance, Gu et al. extruded
human iPSCs within a hybrid bioink composed of alginate, carboxymethyl-chitosan, and
agarose, differentiated in situ to self-assemble 3D embryoid bodies expressing three germ
markers [184]. The study demonstrated that the 3D bioprinting process has no adverse
impacts on the pluripotency and differentiation lineage of stem cells.

The formulation details of a bioink play a pivotal role not only in maintaining cell
viability but also in offering stem cell niches for directing cell fates. It is worth noting
that unexpected adhesion to ECM may adversely affect the self-assembly of stem cells,
hindering the formation of organoids. Resultingly, the non-adhesive property of alginate
can be useful for organoid construction. In a recent report, Nguyen et al. compared the
activity of human-induced pluripotent stem cells (hiPSCs) co-cultured with chondrocytes in
bioinks consisting of nanofibrillated cellulose (NFC) with alginate or hyaluronic acid [164].
While the hiPSCs sustained pluripotency and formed cartilaginous tissue in NFC/alginate
bioink after five weeks, the regressed proliferation and pluripotency were found among
the cells encapsulated in NFC/hyaluronic acid. Hence, the selection of bioink materials is
critical for the 3D bioprinting of organoids. In another work, Capeling et al. demonstrated
that alginate supports the growth of human intestinal organoids (HIOs) in vitro and leads to
HIO epithelial differentiation virtually indistinguishable from Matrigel-grown HIOs [185].
Their findings indicated that purely mechanical support from alginate might be sufficient to
promote the survival and development of specific organoids. Due to the low cost and easy-
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to-use advantages of alginate, novel and cost-effective manners for organoid construction
can be available.

To date, diverse types of human organoids, such as brain, retina, lung, liver, kidney,
pancreas, stomach, and intestine, have been established to study infectious diseases, genetic
disorders, and cancers [186]. In a representative study, Yang et al. micro-extruded HepaRG
cells (a differentiated hepatic cell line) embedded in a bioink formulated from alginate and
gelatin to 3D bioprinting hepatorganoids [187]. The organoids not only demonstrated the
detoxification function of the liver in vitro but also facilitate liver injury when implanted
into a mouse model.

Drug screening and discovery is another potential application of organoids. However,
for industrial use, the platform must be high-throughput (10,000–100,000 compounds tests
per day) to ensure the efficiency and repeatability of investigations [188]. 3D bioprinting, as
an automated biofabrication technique, can construct massive and reproducible organoids.
Lawlor et al. replaced the manual production of kidney organoids with automatic bio-
printing of iPSCs into multi-well plates, which improved throughput, quality control,
scale, and structure [189]. Although no report has used the 3D bioprinting technique to
produce alginate-based organoids on a large-scale, recent attempts have demonstrated
that microfluidic devices can produce massive alginate droplets which encapsulate tumor
pieces, resulting in the generation of mammary tumor organoids for high-throughput drug
screening [190]. Considering the similar working principle of some advanced fabrication
strategies (e.g., coaxial extrusion, core-shell inkjet-based printing), such results are possibly
achievable by 3D bioprinting techniques.

4.2.2. 3D Bioprinted Alginate-Based Organ-on-a-Chip

Compared with organoids, the organ-on-a-chip (OoC), generally defined as a mi-
crofluidic cell culture device, includes microchannels in well-organized multiple types of
cells. The presence of microchannels allows both the control of nutrient delivery and the
manipulation of biomechanical stimulus (e.g., stress, flow, cyclic motion) or biochemical
microenvironments (e.g., oxygen gradients and chemotaxis) [191]. When 3D bioprinting is
applied to establish an OoC platform, one essential goal is the incorporation of microflu-
idic channels within organized living constructs to mimic the dynamic conditions in the
human body.

Using a classical approach, the reversible ionic crosslinking feature permits the use
of alginate as a sacrificial bioink to create microchannels in bulk hydrogels. For instance,
interconnected 3D vascular networks in hydrogels can be obtained after the removal of
a previously embedded alginate lattice template upon the treatment of EDTA solution.
The ensuing seeding of HUVECs on the luminal wall could lead to the development of
a vasculature-on-a-chip [192,193]. The construction of a complex template requires great
printability of alginate, which can be tackled by relevant strategies discussed in an earlier
section. However, the indirect fabrication process usually requires cell-seeding as an addi-
tional procedure to achieve vascular function, which could result in low efficacy or deficient
endothelium formation. In past years, this methodology has been widely utilized to con-
struct diverse OoCs that reflect the pathophysiology of blood vessels, vascularized tissues,
tissue interfaces, and disordered microenvironments (e.g., inflammation and cancer).

Stereolithography can directly build microfluidic devices immediately. Due to the
high resolution of the laser source, the printing precision is markedly better than that
produced by the template-sacrificing method. Upon specific chemical modifications (e.g.,
methacrylation), the photocurable alginate is certainly adaptable to this strategy for build-
ing an OoC. Surprisingly, through physical combination with photoacid generators and
divalent cation salts, the stereolithographic printing of ionically-crosslinked alginate OoC
has also been achieved by a research group of Wong [102]. The ironical crosslinking does
not deprive the dissolubility of the alginate hydrogel, which contributes to direct collective
cell migration from different initial geometries, revealing differences in front speed and
leader cell formation.
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As an advanced strategy, coaxial bioprinting techniques can directly fabricate free-
standing and perfusable tubes by co-dispensing alginate bioinks and crosslinkers contain-
ing Ca2+ ions through a core/shell nozzle. However, because alginate lacks cell-adhesive
moieties, bioactive materials are usually supplemented to improve their cell-friendly per-
formance. Gao et al. proposed a hybrid bioink composed of VdECM and alginate. By
coaxially printing it with pluronic F127 accommodating Ca2+, vasculature-on-a-chip and
atherosclerosis-on-a-chip capable of recapitulating the physiological functions and inflam-
matory responses of vascular tissues were successfully constructed [194,195]. Similarly,
Singh et al. developed an advanced renal-tubule-on-a-chip using a triple coaxial noz-
zle [196]. By simultaneous or individual switch-on the middle and shell nozzles, a renal
tube with either monolayer or dual layers can be fabricated, enabling the construction of
a vascularized renal proximal tubule on a chip-like device. In another study, bioprinted
blood and lymphatic vessel pair were achieved by Cao et al. using an identical strategy,
which was applied as a tumor-on-a-chip system to evaluate transportation mechanisms of
pharmaceutical compounds inside the tumor microenvironment [197]. Notably, despite
the eye-catching achievements, a main drawback of the coaxial bioprinting strategy lies in
its inability to fabricate branched channels, and thus significantly impedes its applications
in engineering an OoC with complex patterns of microchannels.

5. Conclusions and Future Perspectives

Due to non-bioactivity, poor printability, uncontrollable biodegradability, and unstable
structural/mechanical stability, it is difficult to regard alginate as an acceptable bioink
for 3D bioprinting of biological constructs. To overcome these limitations, diverse ad-
vanced strategies have been proposed in recent years, relying on either the reformulation
of bioink recipes (e.g., physical blending and chemical modification) or the innovation of
the biofabrication process (e.g., aerosol assistance, microgel bioink, collaborative printing,
micro-/nano-scale printing, and 4D bioprinting). Employing these solutions, the applica-
tions of alginate have been drastically extended to construct a variety of tissue-equivalent
for tissue regeneration and repair, as well as novel in vitro platforms (organoids and organ-
on-a-chip) that facilitate the interpretation of disease pathophysiology and screening of
drug safety/efficacies.

Given the current achievements summarized in this article, future efforts that continu-
ously dive into innovative strategies would keep harvesting much more promising results.
For instance, an interesting work has demonstrated the possibility of in situ 3D bioprinting
of skin tissue using a handheld skin printer [198]. The rapid crosslinking merit of alginate
is a key prerequisite for the direct printing of cell-laden bioinks onto wound regions. Their
proof-of-concept verifications for the formation of biomaterial sheets in murine and porcine
excisional wound models suggest the capacity of printing-assisted healing for wounds
that are subject to respiratory motion. This attempt may strengthen the bridge between
fundamental research of 3D bioprinting and clinical applications.

Besides, the freestanding and biofunctional vasculatures can be continuously fabri-
cated using the coaxial bioprinting strategy at present. Using this method, it might be
possible to create a circulatory system in vitro, which can structurally and biologically
connect multiple individual tissue/organ-on-a-chip to obtain an organ-cluster-on-a-chip
(e.g., a digestion system consisting of stomach, intestine, liver, and kidney chip modules)
or even human-on-a-chip platform.

On the other hand, several strategies might be still in their infancy, and thus no rel-
evant reports are provided in the current review. However, the great potential of these
innovative ideas might bring great revolutions. One intriguing work is the 4D bioprinting
technique. The human body is a highly dynamic environment entailing various phys-
iological processes (e.g., a beating heart and intestine peristaltic movement). Growing
awareness has justified that the recapitulation of such dynamic physical features play an im-
portant role in tissue and organ morphogenesis. Therefore, exploring the shape-morphing
ability of the 4D bioprinted constructs can be an advisable approach for emulating the
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physiological dynamics of organs (e.g., periodical and consecutive motions) in fabricated
tissue constructs to provide cells with a stimulative environment that is analogous to their
natural counterparts.
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