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There are numerous approaches to randomizing patients to treatment groups in clinical trials. The most
popular is permuted block randomization, and a newer and better class, which is gaining in popularity, is
the so-called class of MTI procedures, which use a big stick to force the allocation sequence back towards
balance when it reaches the MTI (maximally tolerated imbalance). Three prominent members of this
class are the aptly named big stick procedure, Chen's procedure, and the maximal procedure. As we shall
establish in this article, blocked randomization, though not typically cast as an MTI procedure, does in
fact use the big stick as well. We shall argue that its weaknesses, which are well known, arise precisely
from its improper use, bordering on outright abuse, of this big stick. Just as rocket powered golf clubs add
power to a golf swing, so too does the big stick used by blocked randomization hit with too much power.
In addition, the big stick is invoked when it need not be, thereby resulting in the excessive prediction for
which permuted blocks are legendary. We bridge the gap between the MTI procedures and block
randomization by identifying a new randomization procedure intermediate between the two, namely
based on an excessively powerful big stick, but one that is used only when needed. We shall then argue
that the MTI procedures are all superior to this intermediate procedure by virtue of using a restrained big
stick, and that this intermediate procedure is superior to block randomization by virtue of restraint in
when the big stick is invoked. The transitivity property then completes our argument.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There are numerous approaches to randomizing patients to
treatment groups in clinical trials, the most popular of these being
permuted block randomization, which holds a near monopoly on
how trials are randomized in practice [1e5]. For example,
randomization.com, when used in this context, offers only what it
calls “randomly permuted blocks” and no other alternatives [6].
Even so authoritative a document as the International Conference
on Harmonization Guideline E9 (Statistical Principles for Clinical
Trials, February 5, 1998) [7] recommends randomizing subjects in
blocks. Given this popularity and near ubiquity of permuted block
randomization, one might expect, on this basis alone, that the
permuted blocks design is also, in some sense, optimal, since it is
fair to ask why it would be used so often if this was not the case.
Unfortunately, this is actually not the case, and for this reasonmany
competitors have been proposed [2], [3], [8e10]. One newer and
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better class, which is gaining in popularity, is the so-called class of
MTI procedures, which use a big stick to force the allocation
sequence back towards balance when it reaches the MTI (maxi-
mally tolerated imbalance). Four prominent members of this class
are the aptly named big stick procedure [11], Chen's procedure [12],
the maximal procedure [13], [14], and the block urn design [3]
which shares many desirable properties with the maximal
procedure.

As we shall establish in this article, permuted block randomi-
zation, though not typically cast as an MTI procedure, does in fact
use the big stick as well. We shall argue that its well-known
inability to ensure comparable comparison groups arises pre-
cisely from its improper use, bordering on outright abuse, of this
big stick. Just as rocket powered golf clubs add power to a golf
swing, so too does the big stick used by permuted block randomi-
zation hit with toomuch power. In addition, the big stick is invoked
when it need not (and should not) be, thereby resulting in the
excessive prediction, selection bias (which can arise even in the
absence of any malice or intention to bias the trial), and baseline
imbalances for which permuted blocks are legendary [4], [5]. These
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are two distinct abuses of the big stick that lead to excess vulner-
ability to prediction.

Consideration of the two weaknesses together may tend to
muddy the waters, so we try here to bring clarity by isolating each
one, and considering it on its own merits. This allows us to bridge
the gap between the MTI procedures and block randomization by
identifying a new randomization procedure that serves as the
missing link, intermediate between the two, namely based on an
excessively powerful big stick (alluded to in Ref. [15]), but one that
is used only when needed. We shall then argue that the MTI pro-
cedures are all superior to this intermediate procedure by virtue of
using a restrained big stick, and that this intermediate procedure is
superior to block randomization by virtue of restraint in when the
big stick is invoked. The transitivity property then completes our
argument.

2. Rocket powered big sticks

Let us suppose that we can agree on a boundary. A chess board
has 64 squares, so a piece may not legally move any further than
that. The dimensions of a soccer field are marked off in advance of
the game, so that all parties can agree onwhere the line is drawn, so
to speak. These are examples of reflective boundaries. If a bishop
moves to the perimeter (outside) of the chess board, then the next
time it moves, that move has to be away from that boundary, not
over it. Likewise, barring a red card, when a soccer player dribbles
the ball to the edge of the soccer field, his or her next move (with
respect to that boundary; we consider movement up and down the
line to be no movement at all with respect to that line, as in pro-
jecting a two-dimensional space onto one dimension) must be
away from that edge, and not over it. This much is clear, and there is
also a rather clear parallel with allocation sequences when viewed
as random walks.

The question before us is how far away from the boundary (as
defined by the MTI condition) must one be sent upon reaching it?
The rules of chess, for example, could bemodified so that any time a
king, queen, rook, bishop, or knight reaches any edge of the board
(with the possible exception of the starting position), it must travel
from there directly towards one of the central four squares, much
the same way that the reflecting barrier works in monopoly, with
the “go to jail” property serving as the boundary and the jail itself
serving as center. In monopoly, the piece does not simply move
back one property; it gets sent all the way back.

Nor is monopoly the only such example; in black jack, get to 21
and keep going and you get sent all the way back to zero (busted, as
some call it). In soccer, the rules could state that whenever the ball
reaches the edge of the field, it must be taken from there to the
center circle. That would, of course, dampen the excitement sur-
rounding corner kicks. Chess, soccer, black jack, and monopoly are
just examples. We cannot on that basis make a determination
regarding what is and is not appropriate for randomization in
clinical trials, as the situations are entirely different. The games are
presented as parallels only to illustrate the distinction between
forced returns to the center and forced returns towards the center.
Strictly on its own merits, which one makes more sense in our
context, randomization in clinical trials? The standard big stick, to
knock the allocation sequence back towards balance by one unit, or
the super charged big stick that blasts the sequence all theway back
towards perfect balance each time it dares to reach the edge? We
cannot answer this question in a vacuum. Rather, wemust consider
the purpose of the reflecting boundary. Why is it so important that
the boundary not be crossed? And is there commensurate harm
caused by mere proximity to the boundary? Or is it instead a
threshold effect, kicking in only when the boundary is actually
crossed?
The key idea here is chronological bias [16], which has been
adequately described in the literature. Briefly, we do not wish to
allow the numbers of patients allocated to each treatment group to
differ by too much at any one point in time, because this, coupled
with time trends in key indicators of disease severity, can result in a
substantial baseline imbalance across treatment groups, or con-
founding. Operationally, we deal with this by specifying a
maximum tolerated imbalance (MTI). This is the reflecting
boundary.

For example, even though one does not generally speak of an
MTI when permuted blocks are used, blocks of size four (with two
treatment groups) will induce an MTI of two. In general, when
permuted blocks are used with any fixed block size (and two
treatment groups), the MTI is half that block size. When varied
block sizes are used, the MTI is half the largest block size (with two
treatment groups), or the largest block size divided by the number
of treatment groups (assuming equal allocation). In full generality,
although this rarely comes up, the MTI induced by the use of
permuted blocks, with arbitrary number of treatment groups and
arbitrary allocation ratios, is the product of the largest block size
and the largest allocation ratio for any one treatment group. So, for
example, with three treatment groups, and varied block sizes of five
and ten, with allocations in the ratio of 2:2:1, the MTI is (10) (2/
5) ¼ 4, since this randomization plan exposes us to the risk of an
initial sequence of four consecutive allocations to A.

It is objectively clear that large imbalances at any point in time
can lead to problems, as already discussed. It is less clear where to
draw the line, since this is not really a binary phenomenon. If we
use anMTI of four, then is this to suggest that an imbalance of three
(or even four itself) is not a problem? What if we keep hitting the
MTI boundary again and again, so we reach this level of imbalance
fairly often during the course of the patient allocation process? One
could certainly argue that there is harm done not only by crossing
the MTI threshold but also by pressing right up against it repeat-
edly, especially if these swings are always in the same direction.

That is to say that if the MTI is three, then AAABBBAAABB-
BAAABBB might be considered a problematic allocation sequence,
even while not crossing the boundary and therefore not being
disallowed, since the accession numbers associated with treatment
group A are systematically smaller than those associated with
treatment group B. In other words, there are systematically more
early allocations to treatment A and fewer to treatment B, so
therefore this allocation sequence might also be considered worse
than AAABBBBBBAAAAAABBB, which hits the boundary equally
often, but hits both sides of the MTI boundary, rather than hitting
the same side repeatedly, so that imbalances go in both directions
over the course of the trial, rather than always going in the same
direction. There would be an equal number of overall imbalances,
but these are at least spread more evenly across the two treatment
groups.

But is this enough of a problem to merit the draconian measures
used to curtail it? If these sequences (and others like them) could be
avoided with no dire consequences, then we would be in favor of
eliminating them. But there is a cost, and a rather steep one at that.
Each forced allocation is a deterministic allocation, and these are
predictable, and have the potential to lead to selection bias by
eliminating the possibility of allocation concealment [10]. It is not
possible to simultaneously eliminate both chronological bias and
selection bias [9]. So which one represents the more serious threat
to the integrity of the trial? It seems fairly clear that selection bias is
the more serious issue, since it can be steered in a preferred di-
rection by a zealous investigator. That is, it is a true bias. But
chronological bias, despite its name (a misnomer, actually), is not a
bias. It is equally likely to go either way, and it is hard to imagine
any plausible scenario under which an investigator exploits it to
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create a bias intentionally, in a preferred direction.
At least it is hard to imagine such a scenario without also

positing simultaneous selection bias, because the investigator
would need to know in advance that there are more early alloca-
tions to A and more late ones to B (thereby violating allocation
concealment) to then influence the future stream of patients
enrolled so that healthier ones are enrolled early and sicker ones
are enrolled late. This is not the usual paradigm by which selection
bias works, as the usual way involves selecting sicker or healthier
patients for a specific allocation known or suspected to be A or B,
rather than following a general trend. If we can accept that chro-
nological bias cannot be manipulated for gain without also being
able to predict future allocations and, therefore, engaging in se-
lection bias, thenwewould have to consider selection bias to be the
more serious threat, and if that is the cost of controlling chrono-
logical bias, then the cure is worse than the disease.

3. The rocket big stick randomization procedure

We already noted, in Section 1, that the permuted blocks pro-
cedure can be obtained from an MTI procedure by modifying two
aspects of how the big stick is used. In other words, the two pro-
cedures can be said to be twice removed from each other. This
raises the obvious question of what a randomization procedure
would look like if it were just once removed from either one. Of
course, there are two such intermediate procedures, or at least
there would seem to be, but in fact one implies the other. That is,
the periodic forced returns to perfect balance that characterize
permuted block randomization also imply that this must be the
case when the MTI is reached. Therefore, we cannot have the sec-
ond condition without the first, but we can consider the first
without the second. That is, we can define new randomization
procedures based on the rocket-powered big stick.

In particular, the rocket big stick procedure would use equal
allocation to both treatment groups until the MTI is reached, at
which point the next few allocations are all forced (deterministic)
to completely restore the balance. Likewise, the rocket version of
Chen's procedure would go with equal allocation when the group
sizes are equal, the specified biasing probability p when the group
sizes are not equal but the MTI has not been reached since the last
return to perfect balance, and the rocket big stick once the MTI is
reached. Beforewe consider themerits of these procedures, we first
note that it would not make sense to define the rocket big stick as
sending the pendulum all the way to the far side, rather than just to
perfect balance. In other words, the rocket big stick we consider
forces BBB after AAA (if the MTI is three), but does not force
BBBBBB, as it could, because if it did (which may seem like the
intuitive form of a rocket big stick), then that would have to be
followed by AAAAAA, and we see that the entire remainder of the
allocation sequencewould be deterministic. This would be glorified
alternation, and alternation is certainly frowned upon, since it is
not even randomization [17].

If we accept the earlier arguments in favor of preferring the
control of selection bias to the control of chronological bias, then
we must conclude that the standard big stick procedure is superior
to the rocket big stick procedure, and also that the standard version
of Chen's procedure is superior to the rocket version. There simply
is insufficient compensation to warrant the excessive prediction
associated with the rocket versions of these procedures. Of course,
we could also modify Chen's procedure so that two biasing prob-
abilities are specified, p1 when ascending the imbalance mountain
(towards imbalance; the last sojourn at perfect balance was more
recent than the last sojourn at the MTI boundary) and p2 when
coming down the imbalance mountain (towards balance; the last
sojourn at the MTI boundary was more recent than the last sojourn
at perfect balance). Presumably, p2 would be more extreme than
p1. So, for example, on the way up the smaller group might have a
70% allocation probability and on the way down an 80% probability.
This would tend to push the allocation in the direction opposite to
the one that resulted in hitting the last MTI boundary.

It is also possible to modify Chen's procedure so that the biasing
probabilities used are sensitive to the number of times each
boundary has been reached so far. With an MTI of three, AAABB-
BAAABBB might, despite the equal group sizes, use a biasing
probability to encourage (without forcing) an allocation to B, in
recognition of the imbalance in the frequency of visits to the two
boundaries. We might even base the biasing probabilities on some
measure of the difference between the two CDFs, similar to the
Smirnov test for ordered categorical data. But this is for future
work. For now, we note that the rocket versions of the standard
methods are not improvements.

4. Capricious use of the big stick

What is it that keeps the rocket version of Chen's procedure
(with suitably chosen biasing probabilities) from coinciding exactly
with the permuted blocks procedure? It turns out that, while both
use the same rocket big stick, there is still one difference between
the two. Namely, Chen's procedure, with either the standard big
stick or the rocket big stick, invokes this big stick onlywhen theMTI
is reached. Permuted block randomization, in contrast, invokes it
even when the MTI is not reached. If the MTI is two, and we start
with ABA, then the MTI is not reached, and either form of Chen's
procedure would allow for freedom. But the permuted blocks
approach would invoke the big stick even here. And, what is worse,
excessive force is used even here, as in, if an MTI of three is never
reached, but the imbalance does get to two, then the stick hits all
the way to zero.

It may be true that parole involves regular checking in with the
parole officer, so there is precedent for these forced returns.
Nevertheless, they are not an appealing feature of an allocation
procedure, as they result in deterministic (predictable) allocations
whose harm far outweigh any benefit in attaining perfect balance
more often than would otherwise be the case. We could easily
modify either the big stick procedure or Chen's procedure to
include these forced returns home on a regular basis, but we do not
do so becausewe recognize that this would represent a degradation
of the method, and not an improvement. Parsimony is the key
when it comes to forcing deterministic allocations.

5. Transitivity

In Section 3 we argued that the standard version of the big stick
procedure is superior to the rocket version, and, likewise, the
standard version of Chen's procedure is also superior to its rocket
version. This seems rather clear. In Section 4 we argued that even
the rocket version of Chen's procedure is superior to the permuted
blocks procedure. We can summarize by noting that Chen's pro-
cedure is objectively superior to the rocket Chen procedure which
in turn is objectively superior to the permuted blocks procedure
when we consider vulnerability to prediction. Before we go on, we
shall demonstrate this superiority, both with a tabular display
(Table 1) and with a graphical display.

Table 1 illustrates the above considerations, specifically that the
rocket big stick invokes the big stick only when it should, which is
to say only when theMTI boundary is reached. However, the stick it
uses is too powerful, and on this basis it is inferior to the standard
big stick procedure. Moreover, the permuted blocks procedure also
uses too powerful a big stick, but in addition to this, it also invokes
this overly powerful big stick at the wrong times, as in, when the



Table 1
Visual comparison of the randomization techniques.

Randomization Specifics of the big stick invoked

Procedure Frequency Power

MTI Procedures Appropriate Appropriate
Rocket Big Stick Appropriate Inappropriate
Permuted Blocks Inappropriate Inappropriate

Fig. 2. Path map for the rocket big stick procedure.
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MTI boundary has not even been reached. For example, if the MTI is
three, then the sequence ABBB never reaches this MTI, since the
sequence of imbalances is 1012, all remaining less than three.
Nevertheless, the permuted blocks procedure would, at this point,
invoke the big stick, and force the next allocation to be A, ABBBA,
nor would it even be satisfied here, as it would also force the next
allocation after that to also be A, ABBBAA, thereby demonstrating
both the inappropriate use of the big stick and the overly powerful
big stick.

Table 1 may help some readers to understand the major differ-
ences among the three classes of randomization procedures, but
graphical representations can also help to compare and contrast
them. With this in mind, we present path maps of each randomi-
zation procedure. Fig.1 shows the pathmap for theMTI procedures,
including the maximal procedure. Note that the word “maximal” in
the title refers to the set of admissible allocation sequences, and not
to the set of restrictions, which, perhaps somewhat paradoxically,
are not maximal but ratherminimal. We see from Fig. 1 that only at
the MTI are there any forced allocations. This is, of course, part and
parcel of what it means to be an MTI randomization procedure, the
very definition. Recall that fewer forced allocations translates into
less prediction and more allocation concealment, which in turn
translates into less selection bias and more comparable treatment
groups.

Fig. 2 is the path map for the rocket big stick procedure. We note
a few differences between it and Fig. 1. Though it does remain the
case that the big stick is invoked only at theMTI boundary (three, in
this case), now the arrows are longer to indicate that once the big
stick is invoked, it forces the sequence all the way back to the bull's
eye at perfect balance (on the 45� angle line). Note that the rocket
big stick randomization procedure is not Markovian; the transition
probabilities depend on more than just the current location. If, e.g.,
the sequence is at (3,2), then the next allocation is forced to go to
(3,3) only if we arrived at (3,2) by passing through (3,0). Otherwise,
Fig. 1. Path Map For The Maximal Procedure. Arrows indicate forced allocations and
dashed lines indicate MTI boundary.
it is not deterministic. We have circled the home bases (so to speak)
that serve as the destinations of the rocket big stick when it is
invoked.

Fig. 3 displays the path map for the permuted blocks randomi-
zation procedure. Notice that there are now two home bases,
instead of the four we saw with the rocket big stick procedure. This
is because now it is no longer conditional; every sequence must
pass through the point (3,3), whether or not it already hit the MTI
boundary. Because of this, points such as (4,2), which are reachable
when using either an MTI procedure or the rocket big stick pro-
cedure, are not reachable when using the permuted blocks proce-
dure. The forced returns to perfect balance are not free; they come
at a price, and a rather steep one at that. These forced returns to
perfect balance are attained with deterministic allocations that are
predictable, thereby violating true allocation concealment (even
when allocation concealment is claimed), and expose the trial to
the potential for selection bias.

We now have a visual display to help understand why the MTI
procedures are superior to their rocket big stick counterparts,
which in turn are superior to permuted blocks randomization.
There might be some small benefit in the control of chronological
Fig. 3. Path map for permuted block randomization.
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bias of the permuted blocks procedure to the rocket Chen proce-
dure, but this needs to be established, as does any similar superi-
ority along this dimension of the rocket versions to the standard
versions. Even if this is the case, overall superiority still follows
superiority with regard to prediction, since this is a larger effect,
and since it is themore important bias to control. By transitivity, we
conclude that the MTI procedures are objectively superior to the
permuted blocks procedure, which should no longer be used in
practice.

6. Summary and conclusions

Despite the analogies to games in discussing clinical trial allo-
cation sequences, clinical trials themselves are not a game. They
have consequences, in that their results go on to inform future
medical decisions, and this remains true whether these results
reflect reality or not. Therefore, it is clear that tangible harm results
when trials produce results that do not reflect reality. Though one
can never be sure that the trial results do reflect reality, one can at
least do all that is possible to help that outcome along. Doing so
necessarily means using the best research methods possible. There
simply is no room in seriousmedical research for anything less than
the best research methods. This obvious fact should have elimi-
nated permuted block randomization from use a long time ago, but
instead its use continues unabated. This highlights the fact that
self-regulation does not work. Researchers cannot be granted carte
blanche to essentially do whatever they want. We see clearly, and
not only with regards to randomization methods, that far too many
researchers will, when left to their own devices, use the research
method with which they are most familiar [18]. Others will select
the method that produces the most favorable outcome, or at least
that can be expected to [19]. The actual rigor of themethod plays no
role whatsoever in these choices, for some researchers, as long as
they can justify the choice. This is a problem even if we cannot say
that this applies tomost researchers. One is one toomany, and there
have been documented cases, but moreover, even in the absence of
documented cases, it is still a problem if the system allows for such
abuse. Loopholes need to be closed irrespective of how often they
are exploited. Society needs demonstrably reliable trials, and this
comes from systems that disallow abuses, rather than from having
to rely on the good intentions of all researchers.

Unfortunately, real standards are almost never imposed exter-
nally, so it is not at all difficult to justify the use of even a fatally
flawed method. The most common justification seems to be that
the method in question is an industry standard, as in, everyone else
is using it too. So precedent reigns supreme, and the standards that
are imposed deal more with conformity than with actual meth-
odological rigor. Everyone else uses permuted blocks randomiza-
tion, so it must be OK. It is difficult to dislodge a precedent that is so
entrenched. Just exposing it as fatally flawed ought to be enough,
but in reality, much more is needed. We look forward to the day
when the powers that be start to use that power to effect changes
that will result in a system that simply does not allow for the use of
such fatally flawed research methods. In the meantime, we hope to
1) point out the flaws in permuted block randomization; 2) provide
the logical basis for using more appropriate randomization
methods, as we do here; and 3) remove barriers, to the extent
possible, that serve to keep permuted block randomization in use.
To this end, we note that there is nowa publicly available R program
[20] that can be used to implement the three MTI randomization
procedures discussed here, namely the big stick procedure, Chen's
procedure, and the maximal procedure.
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