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Lower connectivity of tumor coexpression
networks is not specific to cancer
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Abstract. Global level network analysis of molecular links is necessary for systems level view of complex diseases like
cancer. Using genome-wide expression datasets, we constructed and compared gene co-expression based specific networks
of pre-cancerous tumors (adenoma) and cancerous tumors (carcinoma) with paired normal networks to assess for any possible
changes in network connectivity. Previously, loss of connectivity was reported as a characteristic of cancer samples. Here,
we observed that pre-cancerous conditions also had significantly less connections than paired normal samples. We observed
a loss of connectivity trend for colorectal adenoma, aldosterone producing adenoma and uterine leiomyoma. We also showed
that the loss of connectivity trend is not specific to positive or negative correlation based networks. Differential hub genes,
which were the most highly differentially less connected genes in tumor, were mostly different between different datasets.
No common gene list could be defined which underlies the lower connectivity of tumor specific networks. Connectivity
of colorectal cancer methylation targets was different from other genes. Extracellular space related terms were enriched in
negative correlation based differential hubs and common methylation targets of colorectal carcinoma. Our results indicate
a systems level change of lower connectivity as cells transform to not only cancer but also pre-cancerous conditions. This
systems level behavior could not be attributed to a group of genes.
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1. Introduction

Various studies have associated certain net-
work level (topological) features to cancer [1–6].
Studies using protein-protein interaction networks
showed that differentially expressed or mutated gene
products in cancer are highly connected [1, 2].
Since, protein-protein interaction networks are less
condition-specific than gene expression-based net-
works, these studies give only a stationary view
of cancer related genes. Gene co-expression based
large scale condition specific networks could be topo-
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logically analyzed and compared to reveal possible
system-level changes [5, 7]. It was shown that the
co-expression networks of colorectal, non-small cell
lung, gastric, pancreatic and cervical cancers have
lower connectivity as compared to normal samples
[5]. Having the same observation for the various
cancer types suggests the system level loss of con-
nectivity could be a specific network characteristic
of cancer. However, it is unclear how the connec-
tivity changes progress during cancer development.
Thus, the presence of datasets for a pre-cancerous
stage (adenoma) and a cancerous stage (carcinoma)
provides an opportunity for comparing network char-
acteristics of the different phases during colorectal
cancer progression at a systems level. Thus, one
might gain some insight into the evolution of global

1386-6338/18/19/$35.00 © 2018/2019 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0).

mailto:ertugruld@beun.edu.tr
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gene relationships during the advancement of a
non-malignant tumor (adenoma) to a malignant (car-
cinoma) tumor. Furthermore, to obtain more reliable
results in comparative studies, it is important to use
matched tissue samples, such that both tumor and
adjacent normal tissue samples are obtained from the
same individual. We performed a comparative topo-
logical analysis based on gene expression values from
matched normal-tumor samples.

2. Results and discussion

2.1. Loss of connectivity in colorectal tumor
networks

We constructed specific co-expression networks
by using gene expression datasets from colorectal
adenoma and colorectal carcinoma patient samples.
The normal and tumor samples of the datasets were
derived from the same patient and were paired. The
networks consisted of pairs of highly expressed and
varied genes with a significant differential Pearson
Correlation Coefficient (PCC) value (see Methods).
Several preprocessing steps eliminated genes or
gene pairs, such as the genes with low expression
levels based on an arbitrary threshold value. The
preprocessing steps (differential correlation effect,
correlation method; Pearson or Spearman, variation
method; standard deviation or quartile coefficient
of dispersion) and the threshold values (PCC value
threshold, low expression threshold, low variation
threshold) had no significant influence on our obser-
vations (see Appendix).

We compared the specific networks of the tumors
to their respective paired normal networks. Positive
and negative gene-gene correlations were analyzed
separately. To gain an understanding of the connec-
tivity changes in colorectal cancer, degree values of
genes in tumor networks were compared to paired
normal networks. The degree values in tumor net-
works were lower than their paired normal datasets,
for both adenoma and carcinoma (Fig. 1). The differ-
ence between the normal and tumor was statistically
significant (Mann-Whitney paired one-sided test p-
value < 10−145). The same result was observed for
both positive and negative correlation based net-
works. In order to confirm this observation, we
analyzed a second independent dataset (see Meth-
ods). We observed the same results for the second
dataset (Fig. 2, Mann-Whitney paired one-sided test
p-value < 10−200). In addition to degree values, other

Fig. 1. Comparison of degree values for Normal (N) and Tumor (T)
samples, in colorectal adenoma (Ade 1; GSE8671 dataset) and col-
orectal carcinoma (Car 1; GSE18105 dataset). Positive (Pos) and
Negative (Neg) correlations were analyzed and showed separately.

topological parameters of the tumor and normal net-
works were also analyzed (Table 1). In general,
tumor networks had parameters suggesting lower
connectivity. For instance tumor networks had higher
characteristic path length (average of shortest path
lengths) than normal networks.

We also analyzed the degree distributions of
two different pre-cancerous tumors, which were
aldosterone producing adenoma (APA) and uterine
leiomyoma (UL). Specific coexpression networks for
APA and UL were constructed similarly and the
degree values of genes in tumor networks were com-
pared to paired normal networks. For both APA and
UL, the degree values in tumor networks were lower
than their paired normal datasets (Fig. 3). The differ-
ence between the normal and tumor was statistically
significant (Mann-Whitney paired one-sided tests;
APA p-value < 10−268, UL p-value < 10−56).

Our results confirmed a previous report by Anglani
et al. [5], where the colorectal carcinoma tumor net-
work was significantly less connected than its paired
normal specific network. Additionally, we observed



E. Dalgıç et al. / Lower connectivity of tumor coexpression networks is not specific to cancer 43

Fig. 2. Comparison of degree values for Normal (N) and Tumor
(T) samples, in colorectal adenoma (Ade 2; GSE89076 dataset) and
carcinoma (Car 2; GSE89076 dataset). Positive (Pos) and Negative
(Neg) correlations were analyzed and showed separately.

the loss of connectivity trend in not only colorec-
tal carcinoma but also in colorectal adenoma, which
is considered a pre-cancerous disease stage [8]. We

also observed the same trend in two different pre-
cancerous tumor types. Our observations suggest the
loss of connectivity as a common systems-level trend,
and it could be be initiated at an earlier stage of car-
cinogenesis.

2.2. Differentially less connected genes and
differential hubs

We observed the same topological change in
different datasets which were generated by differ-
ent microarray platforms (see Methods). We, next,
focused on colorectal tumors to investigate which
genes underlie the less connectivity trend. The genes
in the paired normal networks of different colorectal
tumor datasets, based on positive or negative coex-
pression, had mostly low overlap, shown by Jaccard
index (Table 2). Only the positive and negative cor-
relation based networks of the same dataset (such
as Ade1Pos and Ade1Neg) showed a high overlap.
Therefore, the networks which all lost connectivity,
mostly shared a low fraction of members. Next, we
analyzed the genes which had less degree value in
tumor specific network compared to paired normal
specific network. Jaccard index values of the different
colorectal tumor networks as well as randomization
based p-values for Jaccard index values were calcu-
lated (see Methods). There were mostly low overlap
values between various differentially less connected
genes, however, the overlap values were mostly statis-
tically significant (Table 3). For instance, the positive
and negative correlation based networks of Adenoma

Table 1
Statistical topological parameters of Positive Correlation based Normal Networks (PCNN), Positive Correlation based Tumor Networks
(PCTN), Negative Correlation based Normal Networks (NCNN), and Negative Correlation based Tumor Networks (NCTN) for colorectal

adenoma 1 (Ade 1), colorectal adenoma 2 (Ade 2), colorectal carcinoma 1 (Car 1) and colorectal carcinoma 2 (Car 2) datasets

Number Number Density Average Clustering Diameter Characteristic Number of Power Power law
of of Degree Coefficient path connected law fit R

Nodes Edges length components value squared

Ade 1 PCNN 2820 45677 0.01 32.40 0.02 4 2.64 1 0.97 0.26
Ade 1 PCTN 2812 14688 0.004 10.45 0.01 7 3.56 1 1.75 0.65
Ade 1 NCNN 2815 16559 0.004 11.77 0.01 7 3.38 1 1.50 0.65
Ade 1 NCTN 2669 5509 0.002 4.13 0.002 11 5.11 6 2.12 0.86
Ade 2 PCNN 4724 60392 0.005 25.57 0.01 6 2.90 1 1.36 0.56
Ade 2 PCTN 3712 5675 0.001 3.06 0.005 15 5.43 68 1.68 0.79
Ade 2 NCNN 4721 73217 0.01 31.02 0.01 5 2.79 1 1.24 0.46
Ade 2 NCTN 4105 8093 0.001 3.94 0.005 13 5.00 30 1.83 0.83
Car 1 PCNN 7880 863446 0.03 219.15 0.04 3 1.99 1 1.07 0.25
Car 1 PCTN 7880 317777 0.01 80.65 0.02 4 2.39 1 1.48 0.48
Car 1 NCNN 7880 776269 0.03 197.02 0.03 3 2.00 1 1.18 0.31
Car 1 NCTN 7880 222308 0.01 56.42 0.01 4 2.61 1 1.58 0.57
Car 2 PCNN 6090 202178 0.01 66.40 0.02 4 2.44 1 1.25 0.38
Car 2 PCTN 6089 70276 0.004 23.08 0.01 6 3.02 1 1.50 0.59
Car 2 NCNN 6090 139454 0.01 45.80 0.01 4 2.66 1 1.25 0.40
Car 2 NCTN 6089 66193 0.004 21.74 0.01 6 3.08 1 1.52 0.60
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Fig. 3. Comparison of degree values for Normal (N) and Tumor
(T) samples, in aldosterone producing adenoma (APA; GSE60042
dataset) and uterine leiomyoma (UL; GSE31699 dataset). Positive
(Pos) and Negative (Neg) correlations were analyzed and showed
separately.

2 dataset (Ade2Pos and Ade2Neg) had a Jaccard
value of 0.85 with a p-value of 0.001, therefore the
less connectivity trend of these two sample sets were
mostly based on the same set of genes. However,
the negative correlation based networks of Carci-
noma 1 dataset (Car1Neg) and Adenoma 1 dataset
(Ade1Neg) had a Jaccard value of 0.19 with a p-
value of 0.965, therefore the less connectivity trend
of these two sample sets were not based on a com-
mon set of genes. Hence, the presence of low Jaccard
index values and high p-values showed that there was
not a common set of gene list underlying the less
connectivity trend in all colorectal tumor based net-
works. However, there were some common gene lists
which could be underlying the less connectivity trend
of some networks such as the various networks of
Adenoma 1 and Adenoma 2 datasets.

The topology of the colorectal tumor gene coex-
pression networks were mostly weakly similar to
scale-free networks (Table 1, see Appendix). Hub
genes, the most highly connected genes, could be

Table 2
Jaccard index values of the coexpression networks of normal

samples

Table 3
Jaccard index values of differentially less connected genes (upper

value) and the p-values for the overlap (lower value)

considered responsible for most of the connectiv-
ity of the networks. We examined the differential
hub genes, which were the most highly differen-
tially connected genes, thus greatly contributed to the
loss of connectivity. Therefore, the less connectivity
trend in tumor networks were investigated by ana-
lyzing the lists of differential hub genes. Top 5% of
genes were selected as differential hubs, based on
the difference of the degree values between tumor
and normal networks. Differential hub gene lists were
defined for two separate colorectal tumor datasets for
positive and negative correlations. Pairwise compar-
ison of differential hubs between different networks
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Table 4
Jaccard index values of the differential hubs (top 5% most highly
differentially less connected genes) (upper value) and the p-values

for the overlap (lower value)

showed a very low overlap (Table 4). Jaccard index
values ranged from 0.00 to a maximum of 0.13. How-
ever, some differential hub pairs had a significant
overlap suggesting that some common hub genes
could underlie the differential connectivity trend for
some cases. However, there were also some non-
significant hub pairs (Table 4). In addition, there
was no common gene among the hub lists. There
was not also any common gene among hubs, when
positive and negative correlation based networks
were considered separately. These values indicate
that no common list of important differential hub
genes could be defined, therefore, different genes
were responsible for the less connectivity of differ-
ent tumor networks. Furthermore, we selected the
direct neighbors of differential hub genes to gen-
erate the hub neighborhoods. Pairwise comparison
of the hub neighborhoods showed a greater over-
lap, with Jaccard index values ranging from 0.04 to
0.99 (Table 5). However, the overlap of hub neigh-
borhoods was mostly nonsignificant, so that these
overlap values were randomly expected (Table 5).
Therefore, differential hubs mostly have different dif-
ferential connections among various colorectal tumor
based networks. Thus, the presence of low overlap
values and the lack of all significant Jaccard index
values indicate that no common gene neighborhood

Table 5
Jaccard index values of the differential hub neighborhoods in the
normal specific networks and the p-values for the overlap (lower

value)

is responsible for the loss of connectivity in colorectal
tumors.

We also performed a functional gene set enrich-
ment analysis for differential hub genes (see Meth-
ods). Interestingly, the differential hubs obtained
from positive correlation based networks did not
have any significant gene ontology terms, whereas
the negative correlation based differential hubs had
several terms such as ‘extracellular space’, ‘extra-
cellular matrix’, etc. (Table 6). Ade1Neg, Ade2Neg
and Car2Neg shared ‘extracellular exosome’ as a
significant term. In addition, Car1Neg also had ‘extra-
cellular exosome’ with 21% coverage, however its
Benjamini corrected p-value was 0.08, therefore it
was omitted in Table 6. Thus, all negative correlation
based differential hubs had an association with extra-
cellular exosome. When we analyzed the overlaps
among the extracellular exosome associated negative
correlation based differential hubs, there was no com-
mon gene among all 4 datasets; adenoma datasets
did not share any gene, whereas carcinoma samples
shared only 5 genes; FBXO2 (F-box protein 2), GPC1
(glypican 1), NEU1 (neuraminidase 1), PHGDH
(phosphoglycerate dehydrogenase), and RARRES2
(retinoic acid receptor responder 2). Overall, differ-
ential hubs generated from negative correlation based
networks had an enrichment of genes which were
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Table 6
Functional Gene Set Enrichment Values of Differential Hubs in Colorectal Samples and Common Methylation Targets of Carcinoma Networks

Gene Set Percentage of Benjamini
Genes (%) Corrected p-value

Ade 1 Pos – – –
Ade 2 Pos – – –
Ade 1 Neg O-glycan processing 7.4 0.0003

Extracellular space 22.3 0.0003
Extracellular exosome 27.7 0.046

Ade 2 Neg Extracellular matrix 8.0 0.0003
Extracellular space 15.9 0.003
Extracellular exosome 24.4 0.01
Plasma membrane 30.1 0.017
Heparin binding 6.2 0.0004

Car 1 Pos – – –
Car 2 Pos – – –
Car 1 Neg Trans-Golgi network 3.4 0.025
Car 2 Neg Oxidation-reduction process 10.7 0.0013

Xenobiotic metabolic process 3.9 0.0075
Platelet degranulation 3.9 0.048
Extracellular exosome 26.2 0.0004
Blood microparticle 4.4 0.0025
Extracellular space 14.6 0.0056
Pyridoxal phosphate binding 3.4 0.01

Common Methylation
Targets of
Carcinoma
Networks

Extracellular matrix organization 9.2 0.001
Planar cell polarity pathway involved in neural tube closure 3.3 0.037
Digestive tract morphogenesis 3.3 0.032
Extracellular space 20.8 0.0007
Extracellular matrix 9.2 0.0019
Basement membrane 5.0 0.0091
Plasma membrane 36.7 0.016
Sequence-specific DNA binding 14.2 0.0001
Calcium ion binding 12.5 0.035
RNA polymerase II core promoter proximal region sequence-specific

DNA binding
8.3 0.049

Heparin binding 5.8 0.043

related to extracellular exosome, however, no com-
mon gene list was responsible for this enrichment.

2.3. Mutation and methylation targets with less
connectivity in tumor

We analyzed the distribution of the degree values of
mutation and methylation target genes for colorectal
tumors. Mutation targets did not show a statistically
significant degree distribution (see Appendix). Next,
the degree distribution of methylation targets was
compared to random gene lists. Methylation was pre-
viously linked to loss of connectivity in colorectal
cancer [9]. Genes with significantly higher methy-
lation levels in colon cancer were obtained from
COSMIC database [10]. Methylation targets, showed
a decrease of connectivity in tumor samples, similar
to the overall network (Figs. 4, 5). When compared to
random distribution, methylation targets, had higher

connectivity in tumor samples of positive correla-
tion based networks of colorectal carcinoma datasets
(Figs. 4, 5). The connection and unique neighbor
number distributions were close to being significant
in the tumor networks of carcinoma 1, and car-
cinoma 2. There were 199 methylation targets in
the colorectal carcinoma 1 tumor network, whereas
there were 233 methylation targets in the colorec-
tal carcinoma 2 tumor network. 120 of them were
common. Functional gene set enrichment of these
common methylation targets showed extracellular-
related terms (Table 6). This was similar to the
enrichment results for the negative correlation based
differential hubs. There was no consistent significant
distribution in the other networks (normal and tumor
networks of adenoma 1 and 2, and normal networks of
carcinoma 1 and 2). There was also no consistent sig-
nificant distribution of methylation targets in negative
correlation based networks (results not shown).
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Fig. 4. Total number of connections and unique number of neigh-
bors of methylation targets compared to random lists for Normal
(N) and Tumor (T) samples of positive correlation based networks
of colorectal adenoma 1 (Ade 1; GSE8671 dataset) and colorectal
carcinoma 1 (Car 1; GSE18105 dataset). The percentage of random
values with lower values than methylation targets was shown.

3. Conclusion

In this study, we showed a trend for lower con-
nectivity between genes in the gene coexpression
networks of colorectal adenoma and carcinoma as
well as aldosterone producing adenoma and uterine
leiomyoma. The results suggest a loss of coexpres-
sion in tumors, starting from precancerous stages.
Our results confirm other studies suggesting that
biological systems lose coherence when exposed
to perturbations [11]. Thus, the loss of coherence
starts from earlier stages than malignancy. We lim-
ited our analysis only to those datasets which included
paired normal-tumor samples from patients, therefore
our conclusions about the transformation of normal
networks to tumor networks are stronger than conclu-
sions made from nonpaired normal-tumor network
analysis. We analyzed 4 different datasets of 3 differ-
ent types of pre-cancerous stages, which was limited
by available public data. Future work should include
more pre-malignant tumors so that a stronger conclu-
sion could be made for the system level connectivity
change of different tumor types. Additionally, future

Fig. 5. Total number of connections and unique number of neigh-
bors of methylation targets compared to random lists for Normal
(N) and Tumor (T) samples of positive correlation based networks
of colorectal adenoma 2 (Ade 2; GSE89076 dataset) and colorectal
carcinoma 2 (Car 2; GSE89076 dataset). The percentage of random
values with lower values than methylation targets was shown.

studies could include more tumor stages to fully
describe the stage by stage transformation of tumor
networks, so that we could have a topological view
of carcinogenesis. We also showed that no particular
genes could be defined as being responsible for the
loss of connectivity trend. There was mostly low or
nonsignificant overlap among differentially less con-
nected genes or differential hubs. Functional gene set
enrichment analysis suggested exosome related genes
to be enriched among differential hubs which were
highly less connected in negative correlation based
networks of tumor, when compared to paired normal
networks. Lastly, methylation targets had higher con-
nectivity values in the tumor networks of colorectal
carcinoma samples. These genes also had enrich-
ment of extracellular-associated gene ontology terms.
Future studies could investigate more on the rea-
sons for the loss of negative correlations of exosome
related genes during tumorigenesis and the unex-
pectedly higher connectivity levels of extracellular
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space related methylation targets in colorectal carci-
noma. Results from these studies could enable a better
system level understanding of cancer so that more
efficient perturbation strategies could be developed
based on cancer system design principles.

4. Methods

4.1. Gene expression datasets

We collected patient-derived, paired tumor and
normal (adjacent tissue to tumor) sample gene expres-
sion data from NCBI GEO database (http://www.
ncbi.nlm.nih.gov/geo/). The datasets in this study
included 2 datasets for colorectal adenoma (GSE8
671, GSE89076) and 2 datasets for colorectal
carcinoma (GSE18105, GSE89076), 1 dataset for
aldosterone producing adenoma (GSE60042) and
1 dataset for uterine leiomyoma (GSE31699). For
colorectal adenoma 1, GSM215051-GSM215114 of
GSE8671 were used. For colorectal adenoma 2,
GSM2358439, GSM2358440, GSM2358441, GSM
2358442, GSM2358443, GSM2358444, GSM2358
471, GSM2358472, GSM2358501, and GSM2358
502 of GSE89076 were used. For colorectal carci-
noma 1, GSM452629-GSM452662 of GSE18105
were used. For colorectal carcinoma 2, GSM235
8438, GSM2358445-GSM2358470, GSM2358473-
GSM2358516, GSM2358B7:BL7437 of GSE89076
were used. For aldosterone producing adenoma,
GSM1464109- GSM1464122 of GSE60042 were
used. For uterine leiomyoma, GSM786770- GSM
786801 of GSE31699 were used. The datasets con-
tained paired samples from the same patient such that
direct comparison can be made between the tumor
and normal samples. The platforms of GSE8671
and GSE18105 were Affymetrix Human Genome
U133 Plus 2.0 Array. The platform of GSE89076
and GSE60042 were Agilent SurePrint G3 Human
GE 8x60K Microarray. The platform of GSE31699
was Illumina HumanHT-12 V3.0 expression bead-
chip. The datasets contained paired samples from
the same patient such that direct comparison can be
made between the tumor and normal samples. For
the Affymetrix Microarray based datasets (GSE8671,
GSE18105), the raw values were obtained and nor-
malized with Bioconductor Affy package Robust
Multichip Average (RMA) method [12, 13]. For
GSE89076 adenoma and carcinoma datasets, back-
ground subtracted processed signal intensity values
were obtained and were converted to log values and

quantile normalized. GSE8671 adenoma was denoted
as adenoma 1, GSE18105 carcinoma was denoted
as carcinoma 1, GSE89076 adenoma was denoted as
adenoma 2 and GSE89076 carcinoma was denoted as
carcinoma 2. For GSE31699 and GSE40062, already
log transformed and quantile normalized values were
obtained from NCBI GEO database.

There were 3 criteria for the pre-processing of
the normalized datasets, before calculating pairwise
correlations between genes. Firstly, there were mul-
tiple probeset values for a single gene (based on the
NCBI Entrez Gene ID) in microarray datasets, from
which we selected only one probeset with the max-
imum variation. Secondly, we removed the genes
with average expression levels lower than a certain
threshold (5), as very low values would cause false-
positive correlations. Thirdly, we removed the genes
with standard deviation values lower than a certain
threshold (0.5), as very lowly varied values would
also cause false-positive correlations. The arbitrary
thresholds have no effect on our results as shown in
the Appendix.

4.2. Co-expression networks

To construct networks with the most informa-
tive lists of genes, we collected highly and variably
expressed genes (see Appendix). Using these genes,
we constructed specific networks for paired normal
and tumor samples from adenoma, leiomyoma and
carcinoma datasets. To assess for co-expression, PCC
values were calculated for normal and tumor sam-
ples separately. To test for the significance of the
correlation, normal and tumor samples of a dataset
were randomized and PCC values were re-calculated
and a random value distribution was obtained. From
this distribution a one-sided p-value was calculated
for higher (or equal) values than the real (non-
randomized) dataset PCC value. Then, the p-values
were corrected for multiple testing by False Discov-
ery Rate (FDR). FDR corrected p-value threshold
of 0.05 was used to define significantly correlated
gene pairs in normal or tumor samples separately.
To denote a connection between a significantly cor-
related gene pair in tumor samples a differential
correlation threshold was used; PCC value above a
threshold (0.5) in tumor samples and a PCC value
below a threshold (0.2) in paired normal samples were
required. The same approach was taken to denote
a connection in normal samples. Defining the con-
nections in this way provided us with differential
connections. Changing the preprocessing threshold

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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values (for defining highly and variably expressed
genes), the correlation threshold values, and even
removing the differential correlation requirement had
no effect on our results (see Appendix). Positive
and negative gene-gene correlations were consid-
ered separately. We constructed weighted positive
and negative; normal and tumor networks. In each
network, we calculated the degree value of a gene,
as the sum of significant correlations of a gene with
other genes, excluding the self-correlation. Visual-
ization and topological analysis of the networks were
performed by using Cytoscape 3.7.1 [14].

4.3. Differentially less connected genes,
differential hubs and mutation/methylation
targets

Differential degree values of genes were defined
based on the difference of the normal network degree
value from the tumor network degree value. The
genes with positive differential degree values were
defined as differentially less connected genes. For
selecting differential hubs, differentially less con-
nected genes were ranked from the one with the
highest degree difference to the one with lowest, top
5% genes from the list were defined as differential
hubs. Overlap of network members, differentially less
connected genes and differential hubs were analyzed
by Jaccard index, which is the ratio of intersection to
union for two sets. For significance testing, a back-
ground was selected (all genes in the normal network
for the analysis of differentially less connected genes,
all differentially less connected genes for the dif-
ferential hubs) and random lists of the same size
were generated and Jaccard index values for random
sets were calculated, thus, a random value distribu-
tion was obtained. From this distribution a one-sided
p-value was calculated for higher (or equal) values
than the real (non-randomized) Jaccard index value.
Lastly, p-values were corrected for multiple testing
by FDR.

Functional gene set enrichment analysis of differ-
ential hubs was done by using DAVID 6.8 (https://
david.ncifcrf.gov/home.jsp) [15, 16]. For colorectal
adenoma 1 and carcinoma 1 datasets, Affymetrix
Human Genome U133 Plus 2.0 Array, for colorec-
tal adenoma 2 and carcinoma 2 datasets, Agilent
HumanGenome background were used. Significant
Gene Ontology terms (Benjamini p-value < 0.05)
were shown in Table 6.

Mutation targets were obtained from Cancer
Gene Census as of April 2018 (https://cancer.sanger.

ac.uk/census) [17]. Both somatic and germline muta-
tion targets of colorectal cancer were selected,
which was a total of 50 genes. 11–25 out of 50
genes were in the differential correlation networks.
Methylation targets were obtained from COSMIC
database (https://cancer.sanger.ac.uk/cosmic) [10].
Genes with significantly higher levels of methylation
in colon cancer, compared to normal, were obtained.
We omitted the genes, which were grouped in both
lower and higher methylation lists. Total number of
methylation targets were 746. In the differential cor-
relation networks 69–233 of them were present. The
degree distribution of mutation targets was compared
to random gene lists of the same size.
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M. Ala-Korpela, P. Pajukanta, N. Zaitlen and J. Ayroles,
Genetic and environmental perturbations lead to regulatory
decoherence, bioRxiv, 2018. doi: 10.1101/369306

[12] R.A. Irizarry, B. Hobbs, F. Collin, Y.D. Beazer-Barclay, K.J.
Antonellis U. Scherf, T.P. Speed Exploration, normaliza-
tion, and summaries of high density oligonucleotide array
probe level data, Biostatistics 4(2) (2003), 249-264.

[13] L. Gautier, L. Cope, B.M. Bolstad and R.A. Irizarry, affy–
analysis of Affymetrix GeneChip data at the probe level,
Bioinformatics 20(3) (2004), 307-315.

[14] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang,
D. Ramage, N. Amin, B. Schwikowski and T. Ideker,
Cytoscape: A software environment for integrated models
of biomolecular interaction networks, Genome Res 13(11)
(2003), 2498-2504.

[15] W. Huang da, B.T. Sherman and R.A. Lempicki, Systematic
and integrative analysis of large gene lists using DAVID
bioinformatics resources, Nat Protoc 4(1) (2009), 44-57.
doi: 10.1038/nprot.2008.211

[16] W. Huang da, B.T. Sherman and RA. Lempicki, Bioinfor-
matics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists, Nucleic Acids Res
37(1) (2009), 1-13. doi: 10.1093/nar/gkn923

[17] P.A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R.
Wooster, N. Rahman and M.R. Stratton, A census of human
cancer genes, Nat Rev Cancer 4(3) (2004), 177-183.
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5. Appendix

5.1. Scale-free distribution

Degree distribution of most networks in this study
was weakly similar to scale-free topology. An exam-
ple distribution was shown below (Fig. 6).

5.2. Analysis of preprocessing steps

Using the GSE8671 colorectal adenoma dataset,
we experimented with the preprocessing steps and
analyzed the possible effects on the networks. We
omitted the randomization based assessment of sig-
nificant correlations in these trials of the effects
of preprocessing. Firstly, we examined various dif-
ferential correlation thresholds, based on PCC. We
analyzed positive and negative correlation separately.
First, no differential correlation was required; so
only a correlation threshold of 0.5 was used. In
each case tumor network was significantly less con-
nected for both positive and negative correlation
(p-value < 10−33, paired Mann-Whitney test). Next,
differential correlation was required; so that a corre-
lation difference of at least 0.1 was required between
the paired normal-tumor samples, in addition to the
correlation threshold of 0.5. In each case tumor
network was significantly less connected for both
positive and negative correlation (p-value < 10−34,
paired Mann-Whitney test). Next, correlation differ-
ence threshold was raised to 0.3. Tumor network
was significantly less connected for both positive and

Fig. 6. Degree distribution of colorectal adenoma 1 positive cor-
relation based tumor network. Distribution of degree values were
shown as open circles. Power-law fit line was shown as a solid line.
Power value was 1.75 with an R squared value of 0.65.

Fig. 7. Comparison of degree values for Normal (N) and Tumor
(T) samples, in colorectal adenoma (GSE8671 dataset). Positive
and negative correlations were analyzed and showed separately.
Networks were constructed by a PCC threshold of 0.8.

negative correlation (p-value < 10−34, paired Mann-
Whitney test). This analysis showed that the differen-
tial correlation threshold does not have an impact on
the less connectivity trend of tumor networks com-
pared to normal. The only effect of the differential
correlation is the reduction in degree values.

We examined various PCC threshold values. Dif-
ferential correlation was omitted. First, we used the
correlation threshold of 0.4. In each case tumor
network was significantly less connected for both
positive and negative correlation (p-value < 10−35,
paired Mann-Whitney test). Next, we tested the cor-
relation threshold of 0.8. In each case tumor network
was significantly less connected for both positive and
negative correlation (Fig. 7, p-value < 10−4, paired
Mann-Whitney test). This analysis showed that the
correlation threshold does not have an impact on the
less connectivity trend of tumor networks compared
to normal.

We tried both Spearman and Pearson correlation
tests for the construction of the specific networks.
Spearman correlation gave the same result as tumor
networks were significantly less connected for both
positive and negative correlation (p-value < 10−16,
paired Mann-Whitney test).

Genes with very low expression values can cause
false positive results in correlation analysis. We chose
arbitrary average expression cutoff values to remove
the genes with values lower than the selected thresh-
old. Considering the distribution of the average gene
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Fig. 8. Total number of connections and unique number of neigh-
bors of mutation targets compared to random lists for Normal (N)
and Tumor (T) samples of positive correlation based networks of
colorectal adenoma (Ade1; GSE8671 dataset) and colorectal car-
cinoma (Car 1; GSE18105 dataset). The percentage of random
values with lower values than mutation targets was shown.

expression values, we constructed specific networks
for normal and tumor samples, with the low expres-
sion thresholds of 3, 5 and 7. The original dataset
had 20186 genes, which was based on NCBI Entrez
Gene ID. The threshold of 3 reduced the number
of genes to 19821. The low variation threshold of
0.5, resulted in 3472 genes. Tumor networks were
significantly less connected for both positive and
negative correlation (p-value < 10−89, paired Mann-
Whitney test). The threshold of 5 reduced the number
of genes to 12046. After applying the low variation
threshold of 0.5, there were 2774 genes. The tumor
network was significantly less connected for both
positive and negative correlation (p-value < 10−34,
paired Mann-Whitney test). Finally, the threshold of
7 reduced the number of genes to 5624. After apply-
ing the low variation threshold of 0.5, there were
1130 genes. The tumor network was significantly
less connected for both positive and negative corre-
lation (p-value < 10−17, paired Mann-Whitney test).

Fig. 9. Total number of connections and unique number of neigh-
bors of mutation targets compared to random lists for Normal (N)
and Tumor (T) samples of positive correlation based networks of
colorectal adenoma (Ade 2; GSE89076 dataset) and colorectal car-
cinoma (Car 2; GSE89076 dataset). The percentage of random
values with lower values than mutation targets was shown.

Increasing the low expression cut-off value decreased
the number of genes in the network and resulted in
lower degree values. However, in each case, normal
networks had significantly higher degree values than
tumor networks and the low expression threshold
value did not have any effect on this result.

Genes with very low variation across samples
can also cause false positive results in correlation
analysis. Therefore, we chose arbitrary low varia-
tion thresholds based on standard deviation. Using
the quartile coefficient of dispersion instead of stan-
dard deviation did not affect the results. For instance,
using the quartile coefficient of dispersion threshold
of 0.035 resulted in 2315 genes, and both pos-
itive and negative correlation based networks of
tumor were significantly less connected than nor-
mal (p-value < 10−30, paired Mann-Whitney test).
The standard deviation threshold values of 0.4, 0.5
and 0.6 resulted in 4866, 2774, and 1567 genes to
build correlation networks. In each case both pos-
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itive and negative correlation based networks of
tumor were significantly less connected than nor-
mal (p-value < 10−19, paired Mann-Whitney test).
Increasing the variation threshold made the networks
smaller, however the trend of less degree values in
the tumor networks remained the same.

5.3. Mutation targets with less connectivity in
tumor

Common mutation targets in colorectal cancer
were obtained from Cancer Gene Census [17]. The
degree distribution of mutation targets was compared
to random gene lists of the same size. Considering
only positive correlation based networks, mutation

targets had lower degree values in tumor compared
to normal network for both adenoma and carcinoma
samples but their degree values were not statisti-
cally significant (Figs. 8, 9). When unique number
of neighbors instead of the total number of connec-
tions were considered, a similar trend was observed
(Figs. 8, 9). Similarly, mutation targets had lower
degree values in tumor compared to normal network
for both adenoma and carcinoma samples in nega-
tive correlation based networks and the degree values
of mutation targets were not statistically significant
(results not shown).


