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Abstract

Background

Microbial invasion of the intraamniotic cavity and intraamniotic inflammation are factors

associated with spontaneous preterm birth. Understanding the route and kinetics of infec-

tion, sites of colonization, and mechanisms of host inflammatory response is critical to

reducing preterm birth risk.

Objectives

This study developed an animal model of ascending infection and preterm birth with live bac-

teria (E. coli) in pregnant CD-1 mice with the goal of better understanding the process of

microbial invasion of the intraamniotic cavity and intraamniotic inflammation.

Study design

Multiple experiments were conducted in this study. To determine the dose of E. coli required

to induce preterm birth, CD-1 mice were injected vaginally with four different doses of E. coli

(103, 106, 1010, or 1011 colony forming units [CFU]) in 40 μL of nutrient broth or broth alone

(control) on an embryonic day (E)15. Preterm birth (defined as delivery before E18.5) was

monitored using live video. E. coli ascent kinetics were measured by staining the E. coli with

lipophilic tracer DiD for visualization through intact tissue with an in vivo imaging system

(IVIS) after inoculation. The E. coli were also directly visualized in reproductive tissues by

staining the bacteria with carboxyfluorescein succinimidyl ester (CFSE) prior to administra-

tion and via immunohistochemistry (IHC) by staining tissues with anti-E. coli antibody. Each

pup’s amniotic fluid was cultured separately to determine the extent of microbial invasion of

the intraamniotic cavity at different time points. Intraamniotic inflammation resulting from E.

coli invasion was assessed with IHC for inflammatory markers (TLR-4, P-NF-κB) and neu-

trophil marker (Ly-6G) for chorioamnionitis at 6- and 24-h post-inoculation.
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Results

Vaginally administered E. coli resulted in preterm birth in a dose-dependent manner with

higher doses causing earlier births. In ex vivo imaging and IHC detected uterine horns proxi-

mal to the cervix had increased E. coli compared to the distal uterine horns. E. coli were

detected in the uterus, fetal membranes (FM), and placenta in a time-dependent manner

with 6 hr having increased intensity of E. coli positive signals in pups near the cervix and in

all pups at 24 hr. Similarly, E. coli grew from the cultures of amniotic fluid collected nearest

to the cervix, but not from the more distal samples at 6 hr post-inoculation. At 24 hr, all amni-

otic fluid cultures regardless of distance from the cervix, were positive for E. coli. TLR-4 and

P-NF-κB signals were more intense in the tissues where E. coli was present (placenta, FM

and uterus), displaying a similar trend toward increased signal in proximal gestational sacs

compared to distal at 6 hr. Ly-6G+ cells, used to confirm chorioamnionitis, were increased at

24 hr compared to 6 hr post-inoculation and control.

Conclusion

We report the development of mouse model of ascending infection and the associated

inflammation of preterm birth. Clinically, these models can help to understand mechanisms

of infection associated preterm birth, determine targets for intervention, or identify potential

biomarkers that can predict a high-risk pregnancy status early in pregnancy.

Introduction

Spontaneous preterm birth (PTB) and preterm prelabor rupture of the fetal membranes

(pPROM) are major complications of pregnancy that impact ~ 11% of all pregnancies around

the globe [1]. PTB and pPROM are associated with several risk factors, including genetic, race/

ethnicity, geographic location, socio-economic status, prior history, and family history, all of

which may impact more than one pregnancy over time [2, 3]. Conversely, risk factors such as

maternal and intraamniotic infections, inflammation, behavioral, vascular, and endocrine dys-

functions during pregnancy can generate very complex dynamic biochemical and/or bio-

mechanical pathways that can manifest as PTB or pPROM [2, 4] during an index pregnancy.

Maternal and fetal infections and host inflammatory responses are associated with ~ 50% of all

PTB and 70% of all pPROM [2, 3]. Infection and host inflammatory responses are also contrib-

utors to various morbidities in preterm neonates [5–8]. Cerebral palsy, periventricular leuko-

malacia, enterocolitis, and the autism spectrum of disease are linked to infection and

infection-associated host inflammatory responses [9–15]. Understanding these dynamic risk

factors and their interactions with feto-maternal uterine tissues is critical to reducing the inci-

dence of PTB and pPROM and associated morbidities.

Isolation of microbes from various feto-maternal tissues and increased presence of inflam-

matory mediators in amniotic fluid, cord and maternal plasma, and cervico-vaginal fluid of

women with PTB or pPROM indicates a mechanism by which disease manifests via ascending

infection [16–23]. Ascending vaginal infection leading to microbial invasion of the intraam-

niotic cavity (MIAC) and the establishment of intraamniotic infection and inflammation (IAI)

is the most hypothesized path of infection associated PTB and pPROM [3, 24–26]. Systemic

maternal infections (e.g., periodontal disease, urinary infections, bacteremia) [27–29] or the
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introduction of microbes directly to the amniotic cavity during invasive procedures (e.g., fetal

surgery, chorionic villous sampling, amniocentesis) are also ways by which microbial coloniza-

tion initiates [15, 24, 30–32]. Antimicrobial interventions have not been successful in reducing

the incidence of PTB or pPROM and are often controversial due to developmental impacts on

children exposed to antibiotics in utero [33–35]. These outcomes suggest gaps in our current

understanding of how pathogen propagation and colonization at sterile sites mechanistically

induce labor or cause membrane rupture.

The severity of infection and host inflammatory response are dependent on the type of

pathogen, their load, and polymicrobial etiology [36–38]. Microbial isolates and proinflamma-

tory markers (cytokines, chemokines, matrix degrading enzymes etc.) are often similar in both

PTB with intact membranes and pPROM [39]. In cases with documented intraamniotic infec-

tion, the dichotomy between some women delivering preterm with intact membranes and oth-

ers with pPROM suggests that intrauterine colonization and/or infection (mechanisms,

functional pathways, and biomarkers) can produce distinct pathologic pathways and outcomes

in different subjects [40–45]. In pPROM, microbial colonization has been associated with

membrane weakening due to collagen rich extracellular matrix degradation [46]. However, it

has been reported that bacterial collagenases are not specifically designed to degrade human

collagens. This may suggest that endogenous activation of host inflammatory response is

essential to cause the pathologic changes observed [47, 48]. The precise pathologic mecha-

nisms that can lead to infection-associated diverse pregnancy complications are still unclear. A

reliable model can advance our knowledge and help to develop strategies to mitigate the risk of

infection and inflammation associated with PTB and pPROM.

Animal models have been reliably used to address questions related to infection during preg-

nancy. Intraperitoneal or intrauterine lipopolysaccharide (LPS) and other microbial antigen injec-

tion has been used traditionally to mimic infection by many laboratories including our own [49–

55]. Although several valuable pieces of information have been generated, the doses and route of

LPS administration employed by these studies may bias innate immune responses and bypass nat-

ural host defense mechanisms. Therefore, the effects of these experimentally produced exposures

may not completely mimic the conditions associated with human infection-associated PTB. To

overcome this limitation, several animal models have been created either with live ascending

infection or systemic infection to understand relevant mechanisms. A recent classic report by Suff

et al. demonstrated that intravaginal administration of two bioluminescent strains E. coli, a non-

pathogenic and another pathogenic, induced preterm delivery and development of fetal neuroin-

flammation in response to an ascending infection model [56].

Reliable and reproducible models are needed to show MIAC and IAI. In this study, we rec-

reated an ascending infection model with vaginal inoculation of Escherichia coli (E. coli) in a

CD-1 mouse model of pregnancy. We determined the bacterial dose-dependent pregnancy

outcome (PTB), the kinetics of ascension, route of transmission, and development of uterine

tissue inflammation. Clinically, these models are expected to improve the quality of studies

that will determine various agents of intervention to reduce the risk of adverse pregnancy out-

comes, avoid interventions that may not be beneficial during pregnancy, and generate poten-

tial biomarkers to predict high risk pregnancy status.

Materials and methods

Mouse model of preterm birth

All animal procedures were approved by the Institutional Animal Care and Use Committee

(IACUC) at the UTMB. Timed pregnant CD-1 mice were purchased from Charles River Labora-

tories (Houston, TX, USA) and received on a gestational day 14 (E14) and were housed in a
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temperature and humidity-controlled facility with 12:12-h light and dark cycles. On E15, preg-

nant mice were anesthetized deeply with inhalation of isoflurane and subjected to vaginal admin-

istration of bacteria by delivering 40 μL of bacterial suspension using 200-ml pipet tips. A volume

of 40 μL was chosen based on previous studies showing vaginal administration without leakage

while containing the selected CFU. As controls, the same volume of sterile nutrient broth (Difco™
nutrient broth, BD Biosciences, Cat. # BD234000, Lot. 9219600) was administered for all experi-

ments. Animals were continuously monitored using Wansview cameras (Shenzhen Wansview

Technology Co., Ltd, Shenzhen, China) to determine the timing of delivery.

Escherichia coli (E. coli) culture

The strain of bacteria used in this study is ATCC 12014 Escherichia coli O55:K59(B5):H-

obtained from Remel Laboratory of Thermo-Fisher (Thermo Fisher Scientific, Remel Prod-

ucts, Lenexa, KS, USA, Lot# 496291). The bacteria were cultured in sterile, non-selective nutri-

ent broth (BD Biosciences) and stocks were stored at -80˚C in 20% glycerol.

Dose determination for E. coli inoculation. To introduce bacteria at the specified doses,

we generated a standard curve to predict live bacteria quantity based on their colony forming

unit (CFU) [57, 58]. For each independent experiment, 0.5 ml of bacterial stock was trans-

ferred to 200 ml of Luria Broth (LB) and cultured for 16 hr at 37˚C with 200 rpm agitation. On

the day of experiment, OD600 value was determined for the culture in triplicate measurements

with a spectrophotometer (D30 BioPhotometer, Eppendorf, Hamburg, Germany). Using the

average value of OD600, we estimated the CFU for that culture via a predetermined formula

[required volume (mL) = (target (CFU) x number of animals) / current (CFU/mL)]. Occasion-

ally, we prepared 1.5x of the needed volume for the target CFU by transferring the bacterial

culture to a centrifuge tube and centrifuging at 4000 xg for 10 min. This pellet was resuspended

in a pre-determined volume of LB. In these circumstances, the main fraction of culture (1x)

was used for the animal experiment and remaining fraction (0.5x) was diluted and spread on

LB-agar plates (Difco™ nutrient agar, BD Biosciences, San Jose, CA, USA, Cat. # BD213000,

Lot. 9218604) (in triplicates). After overnight culture at 37˚C, the colonies were counted and

the CFU were calculated. Finally, actual CFU was compared to the target CFU and throughout

the study the variability of the CFUs were within ±18% from the target CFU [58].

Preparation of E. coli for vaginal administration. On the day before the experiment, 0.5

mL of frozen bacterial stock was transferred to 200 mL of nutrient broth and cultured over-

night at 37˚C with shaking at 200 rpm. Sixteen h later, an OD600 was measured in order to cal-

culate the equivalent CFU, then the required volume of culture was transferred to a centrifuge

tube and spun at 4000g for 10 min. After centrifugation, the aqueous phase was carefully

removed without disturbing the pellet, and the resulting bacterial pellet was resuspended in a

predetermined volume of sterile broth and introduced to the mouse, as described above.

Determination of dose required to induce preterm birth

Bacteria were administered vaginally to the mice on E15 at varying doses (103, 106, 1010, and

1011 CFU) or equivalent volume of sterile nutrient broth as control. Mice were then recorded

via camera and timing of delivery (defined as delivery of first pup) was documented. Delivery

on or before E18.5 contributing to developmentally immature pups was considered PTB [59].

DiD staining of E. coli for IVIS imaging

Lipophilic tracer DiD (DiIC18(5); 1,10-dioctadecyl-3,3,30,30- tetramethylindodicarbocyanine,

4-chlorobenzenesulfonate salt; Invitrogen, Thermo Fisher Scientific, Carlsbad, CA, Cat. #

D7757, Lot. 2186103) was used to stain the bacteria for subsequent imaging to monitor
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ascending infection through the uterine cavity. We used DiD to label E. coli for whole tissue

imaging with IVIS to avoid autofluorescence and phototoxic effects. Bacteria (1011 colony

forming units, CFU) were stained with either 100 μM or 500 μM DiD for 30 min at 37˚C, and

excess dye was washed three times with broth. The bacteria were centrifuged at 4000 g for 10

minutes for each wash. DiD-stained bacterial pellets were resuspended in 40 μL of broth and

administered vaginally to E15 mice as described above. Mice were sacrificed at 6 hr after the

bacterial administration because our ascending infection kinetic showed bacterial invasion

within 6 hr, and the reproductive organs, whole intact uterus, including the embryos, were

removed, and transferred on ice to Biomedical Imaging Facility, UTMB, and imaged with

IVIS Spectrum CT In Vivo Imaging System (PerkinElmer, Waltham, MA, USA). After imag-

ing the uterus, proximal and distal embryos were removed from the uterine cavity and the pla-

centa, fetal membrane, embryo, and cervix were imaged separately with IVIS.

Carboxyfluorescein succinimidyl ester (CFSE) staining of E. coli for

immunofluorescence imaging

For E. coli detection in the tissue sections with histology, we used fluorescent dye CFSE to label

the bacteria. Bacteria (1010 CFU) were stained with 10 μM of CFSE (Invitrogen, Carlsbad, CA,

USA, Cat. # 65-0850-84, Lot. 2178212) for 30 min at RT, washed three times with broth, and

spun down at 4000 xg for 10 min for each wash. The bacterial pellets were resuspended in

40 μL of broth and vaginally administered to E15 mice as described above. Mice were then sac-

rificed at 6, 24, or 48 hr after bacterial administration. Frozen sections of reproductive tissues

(cervix, uterus, placenta, fetal membrane, and pups) were subjected to microscopic analysis for

the CFSE signal as described previously [60]. Briefly, the collected tissues were fixed in 4%

PFA overnight at 4˚C, then incubated in 30% sucrose for additional 24 hr at 4˚C for cryopro-

tection. The next day, tissues were embedded in Tissue-Tek optimal cutting temperature

(OCT) compound (Sakura Finetek, Tokyo, Japan). Sections (10 μM) were air-dried at RT for

40 min to allow tissues to adhere to precoated hydrophilic slide glasses (Matsunami Glass,

Osaka, Japan). After washing with TBS-T (Tris-buffered Saline + Tween-20) to remove OCT,

the sections were stained with DAPI for 5 min, mounted with Mowiol (Calbiochem, San

Diego, CA, USA, Cat. # 475904), and visualized with a Keyence microscope (Keyence Corp.,

Osaka, Japan). Images were analyzed with BZ-X800 Analyzer (Keyence Corp).

Bacterial culture from amniotic fluid and maternal blood

A dose of 1011 CFU E. coli versus sterile nutrient broth was administered vaginally to E15

mice. The mice were sacrificed 6 or 24 hr after administration. Maternal blood was collected

from the right ventricle, cooled on ice for 30 minutes, and centrifuged at 2000g for 10 min.

The serum was collected and stored at -80˚C and a bacterial loop full of blood was cultured on

MacConkey agar (Millipore Sigma, Louis, MO, USA, Cat. # M7408-250G), incubated at 37˚C,

and examined and photographed on days 1 and 5 for microbial growth. The amniotic fluid

from each gestational sac was collected using aseptic technique and centrifuged at 4000g for 10

minutes. The supernatant was collected and stored at -80˚C and the pellet was resuspended in

sterile Endotoxin-Free Dulbecco’s PBS (1X) (w/o Ca++ & Mg++) (Millipore Sigma, Cat. #

TMS-012-A), cultured on MacConkey agar, incubated at 37˚C, and examined and photo-

graphed on days 1 and 5.

Tissue collection for formalin-fixed paraffin embedded (FFPE)

Each pup, fetal membranes, placenta, and corresponding uterine segment were separately

stored in 10% neutral buffered formalin for 30–48 hr. The tissues were then processed through
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gradient ethanol for dehydration followed by xylene and were embedded in paraffin as

reported previously [61–63].

Immunohistochemistry (IHC)

Paraffin-embedded sections were cut 5 μm thick, mounted on precoated hydrophilic glass

slides (Matsunami Glass), dried at 37˚C to ensure adherence to the slides, and stored at 4˚C

until use. Sections were baked at 50˚C overnight before staining. Paraffin sections were depar-

affinized in 3 changes of xylene for 10 min each, then rehydrated through a series of graded

alcohols with a final rinse in distilled water. Sections were then subjected to antigen retrieval

by heating at 121˚C in citrate buffer for 20 min. The slides were then rinsed in distilled water,

TBS, and blocked with 3% BSA/TBS-T for 1 h at RT. Then, tissues were stained with anti—E.

coli antibody (Abcam, Cambridge, MA, USA, Cat. # ab137967, 1:1000 df), anti-Ly-6G/Ly-6C

antibody (RB6-8C5) (Novus Biologicals, Littleton, CO, USA, Cat. # NBP2-00441, 1:100 df) and

anti-TLR-4 antibody (Novus Biologicals, Littleton, CO, USA, Cat. # NBP2-24821, 1:200 df)

diluted in 3% BSA/TBS-T overnight at 4˚C. The next day, the tissues were washed then incu-

bated with secondary antibody (Alexa Fluor1 594, Abcam, Cat# ab150080, Lot: GR3323881-1

with 1:1000 df for E. coli, TLR-4, and DyLight 650, Novus Biologicals, Cat # NBP2-60688C,

Lot: 39933-102120-c with 1:1000 df for Ly-6G/Ly-6C) for 2 h at RT followed by DAPI staining.

Images were obtained and analyzed as described above using the BZ-X800 Analyzer (Keyence

Corp).

Gentamicin administration

To determine if antibiotic intervention can delay ascending infection-induced PTB, 1011 CFU

E. coli infected mice were treated with a single dose of 20mg/kg of gentamicin [64] via tail vein

intravenous injections 4 and 24 hr after the exposure to the bacteria. Mice then were video

monitored until delivery.

Statistical analysis

Statistical analysis was performed using the GraphPad Prism 8.0 software (GraphPad, San

Diego, CA). Statistical parameters associated with the figures are reported in the figure legends.

All data are reported as the mean ± SEM. Statistical significance in differences between experi-

mental groups to controls was assessed as following: unpaired t-test for E. coli dose dependent

preterm birth study, paired t-test for neutrophils quantification and Fisher’s exact test for the

rates of preterm birth. Significance was considered at P< 0.05.

Results

Dose dependent induction of preterm birth by E. coli
As shown in Fig 1, animals injected with liquid broth (LB, plain microbial culture medium—

control) delivered at term whereas a dose dependent shortening of time interval to delivery

was seen in E. coli injected animals. Time to delivery after administration of varying doses of

E. coli demonstrated shorter latency periods with increasing doses of E. coli. Administration of

103 and 106 CFU E. coli induced PTB in 78.4 ± 8.9 and 64 ± 18.7 h, respectively whereas 1010

CFU induced PTB within 48 hr (41.73 ± 7.5) and 1011 CFU induced preterm birth within 30 h

(29.5 ± 6.3) of E. coli administration (S1 Fig). PTB produced non-viable pups regardless of

dose. Phenotypic outcome (PTB) was our primary objective and fetal tissue inflammation, or

other maternal or neonatal clinical outcomes were not determined.
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Vaginally administered E. coli ascends through the uterine cavity

IVIS imaging detected no signal from reproductive tissues after administration of sterile liquid

broth (microbial culture media -control) or unstained E. coli. DiD dye alone showed limited signal

at the cervix; however, DiD stained E. coli showed stronger signal intensity in the cervix and prox-

imal portions of the uterine cavity, but not in the distal portion (Fig 2). When the reproductive tis-

sues were imaged separately, strong DiD signal was observed in the placenta, fetal membranes,

and fetus of the most proximal to cervix, but not in the same tissues of the most distal (to cervix)

gestational tissues. This suggested that the bacteria carrying the dye invaded from the vagina and

through the proximal reproductive tissues before reaching the distal portion of the uterus.

When tissues from animals injected with CFSE-stained E. coli were examined, CFSE signal

was detected in the uterus, fetal membranes, and placenta of the infected mice compared to

control. This signal was detectable at 6 hr after administration but became stronger at 24 hr.

The signal was noted to become diffuse, likely through death and division of stained E. coli (S2

Fig). To better localize the E. coli within gestational tissues, we used an anti-E. coli antibody
and immunohistochemistry. This method showed the presence of an E. coli signal in the cer-

vix, uterus, fetal membranes, and pups (Figs 3A, 4B, 5A, 5D and S3 Fig).

At 6 hr after inoculation, the uterus and fetal membranes showed signal in proximal gesta-

tional tissues, but not in the distal tissues (Fig 5A and 5D). Interestingly, the oropharynx of

the pup nearest to cervix showed colonization by E. coli, but the pup farthest from the cervix

showed no signal (S3 Fig).

Recovery of E. coli from amniotic fluid

Amniotic fluid samples collected from each horn on both sides were cultured on MacConkey’s

agar for testing for microbial growth. Colonies of E. coli showing classic characteristics of E.

Fig 1. E. coli induced preterm birth (PTB) in dose dependent manner. Higher dose of E. coli (1011 CFU and 1010

CFU) significantly shortened gestational day of delivery compared to control (LB) (P = 0.0012 and P<0.001,

respectively). Low dose of E. coli (106 CFU and 103 CFU) shortened gestational day of delivery compared to control,

however it was not significant (P = 0.17 and P = 0.2, respectively). CFU- colony forming unit.

https://doi.org/10.1371/journal.pone.0260370.g001
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coli were seen (dry, flat, round, and lactose fermenting). None of the amniotic fluid from con-

trol mice grew colonies on the MacConkey agar (Fig 3B). Additionally, none of the maternal

blood cultures showed growth, indicating absence of maternal bacteremia (S5A and S5B Fig).

However, when the amniotic fluid from each gestational sac was cultured separately, it was

noted that the proximal amniotic fluid specimens formed colonies more often than the distal

amniotic fluid specimens (Fig 3B, S4C Fig). The farthest pups (from cervix) were negative in

the first 6 hr compared to proximal ones. However, cultures were positive in all amniotic sam-

ples collected at 24 hr, suggesting microbial invasion in all amniotic cavities (Fig 3B). This sug-

gests that bacteria invade the amniotic sacs in a stepwise sequential fashion from proximal to

distal intraamniotic cavities (Fig 4A).

Vaginally administered E. coli induces inflammation

Serial sections and immunohistochemistry were used to localize E. coli, as well as to show the

presence of inflammatory markers in the same region. As shown in Fig 4B, E. coli was seen in

cervical tissues within 6 hr and TLR-4 and P-NF-κB was also localized in the same region (Fig

4C and 4D). Positively stained inflammatory markers were detected in sections from E. coli-
injected animals than in sections from control media-injected animals. Similar localization

using immunohistochemical staining was done in uterine and fetal membrane tissues (Fig 5).

As shown in Fig 5A, the number of cells positive for E. coli was much higher in the proximal

Fig 2. DiD-stained E. coli ascending infection in the uterine cavity with ex-vivo IVIS imaging. Fetuses, fetal membranes, and placentas collected

from proximal to cervix and distal to cervix were imaged with in vitro imaging system (IVIS) 6 hr after vaginal administration of 1011 CFU of E. coli to

E15 pregnant mice (N = 3). Cervix and proximal placentas, fetal membranes and fetuses show bacterial invasion (red), while distal organs show no

bacterial invasion. DiD—(DiIC18(5); 1,10-dioctadecyl-3,3,30,30- tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt).

https://doi.org/10.1371/journal.pone.0260370.g002
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uterus within 6 hr. Expression of both TLR-4 and P-NF-κB were also higher in proximal com-

pared to distal horns (Fig 5B and 5C). Liquid broth (control) injected animal tissues remained

negative for E. coli as expected with minimal levels of TLR-4 and P-NF-κB. This is expected as

a low-level inflammation is expected in these tissues on E15 and E16 as the process of labor is

expected to begin around this time in this model. Fig 5D and 5F shows a similar trend in fetal

membranes. E. coli reached the fetal membranes of proximal horns within 6 hr (Fig 5D) along

with increased TLR-4 (Fig 5E) and P-NF-κB (Fig 5F). As seen in the uterus, distal horns

showed a weak staining suggesting time dependency of microbial invasion.

Fig 3. E. coli ascending invasion occurs in a stepwise fashion from proximal to distal embryos. (A) Graphic illustration of ascending infection evaluation via

MacConkey agar culture and immunohistology. CFU- colony forming unit. AF- amniotic fluid. Reprinted from biorender under a CC BY license, with

permission from biorender, original copyright. (B) E. coli culture on MacConkey agar using amniotic fluid collected from each separate embryo. Control

culture shows no growth of bacteria (blue) for both 6 and 24 hr after bacterial administration. Culture of amniotic fluid from E. coli-administered (1011 CFU)

mice indicates incomplete invasion at 6 hr (half-way green) for both uterine horns (L-left, R-right) and complete invasion (full-way green) at 24 hr for both

uterine horns (L and R).

https://doi.org/10.1371/journal.pone.0260370.g003
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E. coli induces histologic chorioamnionitis (HCA)

Next, we examined induction of HCA, a classic inflammatory signature in the fetal mem-

branes, indicative of severity of infection and host inflammatory response by the presence of

neutrophils (ly-6G+ cells). For determining HCA, Ly-6G staining was performed on mem-

branes collected at 6 and 24 hr. As shown in Fig 6, a few Ly-6G positive cells were seen in tis-

sues from liquid broth injected animals, indicative of normally resident neutrophils in the

membranes [51, 65]. We have shown that normal fetal membranes (in humans) have ~7%

CD45+ cells of which neutrophils are a predominant constituent [65]. A slight increase, but

not significant numbers, in Ly-6G+ cells were seen at 6 hr in the fetal membranes of animals

injected with E. coli (Fig 6B) that was increased substantially within 24 hr (Fig 6A and 6B).

Discussion

PTB and pPROM are associated with MIAC and IAI [3, 4, 6, 25]. However, these conditions

are often clinically diagnosed very late and management strategies focus primarily to delay

Fig 4. E. coli induced inflammation in mouse reproductive tissues. (A) Schematic illustration of mouse reproductive tissues and close-up display of an

embryo in the uterine cavity. Reprinted from biorender under a CC BY license, with permission from biorender, original copyright. (B-D, N = 3).

Immunohistochemical analysis of cervix collected 6 hr after vaginal administration of 1011 CFU of E. coli. E. coli detected in the cervical sections (B, see white
arrow, E. coli positive staining). Infected cervix shows higher expression of TLR-4 (C) and P-NFkB (D) compared to control cervix (Scale bar, 100 μm). The

close-up displays the enlarged tissue area marked by white boxes (Scale bar, 50 μm).

https://doi.org/10.1371/journal.pone.0260370.g004
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labor by a few hours or days for administration of antibiotics or steroids. Unfortunately, these

approaches have not reduced the risk of prematurity (low birth weight < 2,500 grams) or mor-

bidities associated with PTB [1, 66, 67]. To improve pregnancy outcomes, better models that

can provide mechanistic evidence of establishment of infection and development of inflamma-

tion causing PTB and or pPROM are needed. Using an ascending model of infection of E. coli,
we determined the following: 1. We developed an ascending infection model where vaginal

inoculation of E. coli produced a dose dependent pregnancy outcome (PTB). Higher dose of E.

coli (1010 CFU) caused PTB in 48 hr compared to lower doses (103 CFU and 106 CFU) that

delivered near term, 2. After high dose infection, E coli was localized in cervix, uterus and in

the amniotic cavity of pups proximal to cervix within 6 hr and in amniotic fluid and tissues

from distal horns within 24 hr. 3. Ascending high dose infection induced TLR-4 activation, a

ligand for LPS (Gram negative [E. coli] cell wall component) and activated proinflammatory

transcription factor P-NF-κB expression. Both TLR-4 and P-NF-κB were co-localized in tis-

sues along with E. coli, 4. Activation of inflammatory markers was not widespread in 6 hr;

however, all feto-maternal uterine tissues showed signs of inflammation within 24 hr, 5.

Fig 5. E. coli induced inflammatory marker stepwise progression is consistent with ascending bacterial infection in mice uterine cavity.

Immunohistochemical analysis proximal and distal uterine (A-C) and fetal membrane tissues (D-F) collected 6 hr after vaginal administration of 1011 CFU of

E. coli (N = 3). Proximal portions of the uterine sections show higher rates of E. coli than distal portions (A). Inflammatory markers, TLR-4 and P-NF-κB

expressions were higher in the proximal uterine section than distal sections (B-C). Control uterine sections show comparable expression of the inflammatory

markers (TLR-4 and P-NF-κB) to distal sections (B-C). Proximal fetal membrane section shows higher rate of E. coli than distal portion (D). Inflammatory

markers, TLR-4 and P-NFkB expressions were higher in the proximal fetal membrane section than distal sections (E-F), and control sections show comparable

expression of the inflammatory markers (TLR-4 and P-NFkB) to distal sections (E-F). (Scale bar, 100 μm). The close-up displays the enlarged tissue area

marked by white boxes (Scale bar, 50 μm).

https://doi.org/10.1371/journal.pone.0260370.g005
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Inflammation of all horns and feto-maternal tissues preceded preterm delivery and 6. MIAC

and IAI induced histologic chorioamnionitis where fetal membranes of infected animals

showed higher number of neutrophil infiltrations compared to control animals. This model

not only replicated the results from Suff et al. [56] but determined the kinetics of microbial

ascension further. We were able to show the tissue specific inflammation and development

HCA with our model. Fetal tissue (lung, brain, heart etc.) testing for infection and/or inflam-

mation associated changes was not attempted in this study. We conclude that the model

described here showed natural progression of infection and development of inflammation

leading to PTB. This model is suitable to study MIAC and IAI associated mechanistic pathways

in PTB.

To introduce experimental rigor and to test validity of our data, a subset of our animals was

injected with gentamicin (20 mg/kg) 4 and 24 hr after the E. coli injection. Gentamicin after 4

hr led to 100% term delivery whereas gentamicin after 24 hr delayed PTB in 40% of animals

(S6 Fig). Multiple inferences can be made from this outcome: 1. Although invasion of amni-

otic cavity may begin as early as 6 hr of injection in this model, establishment infection in all

fetal sacs does not occur until 24 hr. Administration of antimicrobial agents prior to establish-

ment of IAI may reduce the risk of PTB, 2. Similarly, inflammation is also limited at early

stages; however, HCA and increased inflammatory marker expressions seen at 24 hr dimin-

ished antimicrobials’ effect to mitigate PTB. The condition observed at 24 hours is often faced

in high-risk clinics and late administration of antimicrobials neither delays nor minimizes tis-

sue inflammation including HCA.

Although our model established MIAC and IAI associated PTB, multiple challenges still

remain to further define and mitigate the process in humans. 1. The exact timing of a pregnant

subject getting infected is difficult to assess unless there is a clinical indicator 2. The kinetics of

Fig 6. E. coli induced neutrophil infiltration in the fetal membranes. A. Immunohistochemistry analysis of mice fetal membranes collected from 6 and 24 hr

after 1011 CFU of E. coli vaginal administration (N = 3). Neutrophil infiltration detected at 24 hr after the bacterial infection in the fetal membrane tissues

(white arrows pointing to Ly-6G positive cells). However, 6 hr after bacterial infection, neutrophil detection was comparable to non-infected controls. (Scale

bar, 100 μm). B. Quantification of neutrophils in fetal membrane in (A). Number of Ly-6G positive cells per random fields (N = 3). The data are presented as

means ± SEM.� P = 0.0219, paired t-test.

https://doi.org/10.1371/journal.pone.0260370.g006
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MIAC in humans (subclinical infection) is difficult to predict, especially during a polymicro-

bial infection, and 3. Inflammation and inflammatory markers show tremendous heterogene-

ity and therefore, a biomarker indicative of an underlying specific infectious etiology is

difficult to assess. In several instances, non-infectious (sterile infections) etiologies also show

similar inflammatory biomarker profiles both in humans and mouse models [61, 68–71].

Current biomarker clinical trials in humans have not generated a serum marker specifically

indicative of early signs of preterm birth [72–75]. Therefore, novel strategies of biomarker

research have been discussed and several potential approaches have been discussed to predict

high risk pregnancies at very early stages pregnancy [76] and the studies of animal models,

such as the one we present here, could potentially guide future human studies that will be criti-

cal in delineation of clinical signs and predictive markers specific for very early infection.

Some of these strategies include, cervico-vaginal microbiome, cell free mRNA and proteome-

based biomarkers in maternal plasma, fetal membrane and placental cells in maternal circula-

tion, and fetal and maternal exosomes and their cargo profile are a few such approaches [76].

Although these biomarkers are in their early stages of discovery and validation, many of these

markers have yielded promising results to show that they may predict high risk pregnancies as

early as first trimester [77–80]. Future studies of animal models, such as the one we present

here, may be critical in delineation of clinical signs and predictive markers specific for very

early infection.

There are several animal models reported for PTB; however, only limited number of articles

had experimental models and approaches that can yield data to understand microbial invasion

and potential mechanisms [59, 81, 82]. Although no animal models completely mimic human

parturition, preclinical mouse models have provided valuable information regarding mecha-

nisms as seen in humans to design future human trials. This model also has limitations as we

did not perform live imaging of microbial ascension and E. coli is not the most common

microbial pathogen associated with PTB and pPROM. Therefore, this model needs to be fur-

ther tested with microbes that are more commonly associated with MIAC, IAI and PTB (e.g.,

genital mycoplasmas, Gardnerella). Recently, we developed an organ-on-a-chip (OOC) model

of ascending infection [83]. Using multiple cells from the feto-maternal interface, we were able

to demonstrate the kinetics of ascending infectious stimulus and generation of inflammatory

mediators in response to a stimulus [83]. OOC model is developed to overcome certain limita-

tions associated with animal models, 2D cell cultures, transwell models and organ explant

models and it maintains intercellular interactions, flow of biochemical between tissues and

generate scenarios like that seen in utero. These models need further development and valida-

tion and simultaneous testing with animal models to show that human cell based OOCs can

adequately replace animal models to study pregnancy complications. This new step, along

with models such as delineated here, may enhance translatability to the human condition.

In summary, the animal model presented here is reproducible and provides a model for

testing various ascending infection of various severities. Clinically, these models can generate a

knowledge base from which to understand mechanisms of infection associated preterm birth,

determine targets for intervention or identify potential biomarkers that can predict a high-risk

pregnancy status early in during pregnancy.

Supporting information

S1 Fig. E. coli induced preterm birth (PTB) in a dose dependent manner. Higher doses of E.

coli (1011 CFU and 1010 CFU) delivered significantly shorter time frame compared to control

(LB) (P<0.001 and P = 0.002, respectively). Low dose of E. coli (106 CFU and 103 CFU) deliv-

ered in shorter time frame compared to control, however not significantly (P = 0.17 and
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P = 0.3, respectively). CFU-colony forming unit.

(TIF)

S2 Fig. CFSE-stained E. coli ascending infection in fetal membrane and uterine tissues col-

lected from 6 hr, 24 hr, and 48 hr after 1010 CFU dose (N = 3). Scale bar, 50 μm.

(TIF)

S3 Fig. Higher rate E. coli detected in pups from proximal part than distal part 6 hr after

1011 CFU of E. coli vaginal administration (N = 3). Scale bar, 200 μm.

(TIF)

S4 Fig. E. coli growth on MacConkey agar. Representative images of amniotic fluid recovered

bacterial growth on MacConkey agar. (A) Control plate. Negative for E. coli growth. (B) Posi-

tive E. coli growth plate.

(TIF)

S5 Fig. Bacterial culture from maternal blood collected from control (LB) and 1011 CFU of

E. coli administered mice. (A) MacConkey’s agar culture showed no bacterial growth (N = 3).

(B) Confirmational culture in the liquid nutritional broth using the samples directly trans-

ferred from MacConkey’s agar culture from A.

(TIF)

S6 Fig. Gentamicin treatment reduced preterm birth rate. Gentamicin (20 mg/kg) at 4 hr

after E. coli administration showed 100% prolonged gestation to term delivery compared to

controls (PBS only) (P< 0.001) (N = 3); however, same dose given after 24 hours shows 40%

effect on increased length of gestation to term delivery compared to controls (P< 0.001)

(N = 5).

(TIF)
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