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Kawasaki disease (KD) is a pediatric vasculitis syndrome that is often involves coronary

artery lesions (e. g., coronary artery aneurysms). Although its causal factors and entire

pathogenesis remain elusive, the available evidence indicates that the pathogenesis of

KD is closely associated with dysregulation of immune responses to various viruses or

microbes. In this short review, we address several essential aspects of the etiology of KD

with respect to the immune response to infectious stimuli: 1) the role of viral infections,

2) the role of bacterial infections and the superantigen hypothesis, 3) involvement of

innate immune response including pathogens/microbe-associated molecular patterns

and complement pathways, and 4) the influence of genetic background on the response

to infectious stimuli. Based on the clinical and experimental evidence, we discuss the

possibility that a wide range of microbes and viruses could cause KD through common

and distinct immune processes.
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INTRODUCTION

Kawasaki disease (KD), named after its discoverer Dr. Tomisaku Kawasaki, is a pediatric vasculitis
syndrome which is characterized by clinical manifestations including fever persisting for 5 days
or more, swelling of the cervical lymph nodes, conjunctival infection, changes in oral mucosa
and the tongue, skin rash, and redness of the palms and soles of the feet (1, 2). Although KD
shows a systemic vascular inflammation, the coronary arteries are one of the worst affected sites.
Without adequate treatment in the acute phase, approximately 30% of patients exhibit coronary
artery lesions (CALs) including coronary arterial dilation, stenosis, and aneurysms (3).

Treatment of KD typically features intravenous immunoglobulin (IVIG) therapy (4). In fact,
IVIG has markedly decreased the mortality rate in patients with acute KD. However, a persisting
concern is that the disease may impair cardiovascular health in adults with a history of KD.
Furthermore, approximately 20% of acute KD patients show a low response to IVIG (5). The
therapeutic resistance also results in an increased risk of CALs and future cardiovascular events.

The aetiological mechanism of KD remains unclear and the causal factors are also unknown (6).
Although there is no definitive evidence that KD is an infectious disease, recent studies support the
view that a dysregulated immune response to a variety of infectious stimuli is likely to contribute to
KD pathogenesis (6, 7). Based on these studies, this short review explores the possible relationship
between KD and the immune response to various infectious agents (Figure 1).
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FIGURE 1 | Possible causal microorganisms of Kawasaki disease. Most of the

listed microorganisms were identified on the basis of PCR or serological

examinations of clinical specimens. The asterisks indicate experimental

evidence from animal models, not clinical specimens.

INVOLVEMENT OF VIRUSES IN KD
PATHOGENESIS

The incidence of KD exhibits seasonality and outbreaks occurred
in Japan in 1979, 1982, and 1986 (8, 9). This has led to the
speculation that viral infection may underlie KD pathogenesis.
Based on serological and polymerase chain reaction (PCR) based-
analyses of clinical specimens, at least 14 species of the virus
have been reported to be relevant to KD (10). We consider
here three possible candidates: Epstein-Barr virus (EBV), human
adenovirus, and a putative KD-associated RNA virus.

Epstein-Barr Virus
EBV is a type of human herpes virus. Kikuta et al. (11, 12)
reported that the EBV DNA sequence was detected in 83% of
KD patients and in 18% of control subjects. Chronic active
EBV infection sometimes involves CALs, including coronary
artery aneurysms (13, 14). Although the pathogenesis of EBV-
infection-associated CALs is unclear, it has been demonstrated
in vitro that deoxyuridine 5’-triphosphate nucleotidohydrolase
(dUTPase), an EBV-encoded protein, stimulates monocyte-
derived macrophages through Toll-like receptor 2 (TLR2)-
dependent signaling (15). This up-regulates the production of
interleukin-6 (IL-6) (15), which activates endothelial cells (ECs)
and platelets. Contrary evidence has also been presented on the
involvement of EBV in KD (16, 17).

Adenovirus
It has been known that adenoviral infection exhibits seasonal
pattern and some symptoms similar to that of KD (18, 19).
However, semi-quantitative PCR-based investigations found no
association between adenovirus and KD (20). Genemicroarray of
the blood samples also showed the distinct pattern between KD
and adenovirus-infected patients (21). Further study is needed to
clarify the involvement of adenoviral infection in KD (22).

Putative RNA-Associated Virus
Immunoglobulin A (IgA)-producing plasma cells are observed
in the affected arterial tissue of KD patients (23, 24). Rowley
et al. (25, 26) detected RNA virus-like inclusion bodies in the
cytoplasm of bronchoepithelial cells of KD patients. It was
detected using synthetic antibodies generated from the alpha
and kappa chain-encoding DNA sequences, which were cloned
from the affected arterial tissue of KD patients (27). However, the
putative KD-associated RNA virus has not been identified yet.

Previous studies suggest that the involvement of viruses in
KD is still very controversial. However, a recent transcriptomic
study reported the significant up-regulation of a set of type
I interferon (INF)-induced genes closely related to cellular
antiviral processes in the coronary arteries of KD patients
(28). Furthermore, the increased plasma level of C-X-C motif
chemokine ligand 10 (CXCL10/IP-10), a representative INF-
alpha2a/gamma-inducible protein was recently reported as a

promising biomarker for the early acute phase of KD (29). These
two studies raise the possibility that KD pathogenesis might be
associated with a common immune response to viral infections.

BACTERIAL INFECTION AND
SUPERANTIGENS HYPOTHESIS

Superantigens (SAgs) are a group of proteins, which can activate
approximately 20% of the T cells in the peripheral blood.
SAgs stimulate these cells by forming a bridge between the T-
cell receptor and the major histocompatibility complex class
II (MHC-II) of antigen presenting cells in the absence of any
antigenic peptide presentation (30, 31). This results in the
overproduction of pro-inflammatory cytokines, including tumor
necrosis factor-alpha (TNF-α), by the activated T cells (32).
Human MHC-class II and co-stimulators are also expressed in
the endothelial cells (33). In fact, SAgs can directly injure these
cells in conjunction with T cells (34, 35) in vitro.

SAgs are produced by a wide range of organisms, including
bacteria, viruses, fungi, and plants (36–38). The pathological
role of SAgs has been well-studied with respect to toxic shock
syndrome and scarlet fever, which are caused by Staphylococcus
aureus and Streptococcus pyogenes, respectively (39, 40). KD
displays some clinical similarities to these two diseases (41).

Staphylococcus aureus and
Streptococcus pyogenes
Staphylococcus aureus produces a SAg designated TTS toxin-
1 (TSST-1), which induces expansion of Vβ2 T cell receptor
(TCR)-positive T cells. Some early studies reported the frequent
detection of TSST-1-producing S. aureus or the specific antibody
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to the SAg in KD-patients (42, 43). As ECs express MHC-II and
co-stimulators, TSST-1 can activate human umbilical vein ECs
in vitro in the presence of T cells (34). Considering that specific
types of vessels (e.g., coronary arteries), are preferentially affected
in KD., it might be worth investigating the pathophysiological
significance of the role of ECs as a semi-professional antigen-
presenting cells in KD (44, 45).

Streptococcal pyrogenic exotoxin C (SPEC) selectively
activates Vβ2-bearing T-cell subsets and Vβ6.5-bearing ones
(46). The number of Vβ2-/Vβ6.5-bearing T-cell subsets and
anti-SPEC antibody levels are increased in the peripheral
blood of acute KD patients (47). DNA fragments encoding
these SAgs were also significantly more prevalent in the stool
of KD patients than in that of non-KD febrile subjects (48),
indicating that these bacteria-derived SAgs are involved in
KD pathogenesis. Streptococcus pyogenes infection occasionally
triggers autoimmune heart diseases, such as rheumatic fever.
The serum level of IgM-type autoantibody to the cardiac
myosin heavy chain, which is highly homologous to group A
streptococcal M5 protein (49), was increased in KD patients (50).
A variety of autoantibodies has also been detected in KD patients
(51–53). Besides molecular mimicry, SAgs could be implicated
in the activation of potentially autoreactive peripheral T and B
cells (54).

Although the physiological role of circulating follicular T
helper cells (cTfh) remains elusive, the cells could be stimulated
by SAgs and/or other pathogen-derived molecules. Xu et al.
(55) reported that IL-4 and the cTfh2 subpopulation of total
cTfh cells significantly increased during the acute phase of
KD. Increases in cTfh2 and IL-4 are observed in IgA-vasculitis
and IgG4-related disease (IgG4-RD) (56–58). Although the
general clinical features of IgG4-RD are apparently dissimilar
to those of KD, IgG4-RD occasionally involves abnormalities
of large- and intermediate-sized vessels, including coronary
arteritis (59).

Despite the foregoing evidence, the involvement of SAgs in
KD has not been definitively confirmed. Some studies have
independently found no significant elevation of antibodies
against S. aureus or S. pyogenes-derived SAgs in KD patients
(60, 61). Although these bacterial-derived SAgs may provide a
rationale to understand the pathogenesis of KD, its aetiological
significance is still very controversial.

Yersinia pseudotuberculosis
Based on the similarity in clinical manifestations and the data
from some serological studies, it has been argued that Y.
pseudotuberculosis (YP) infections might be involved in the
pathogenesis of KD (62). Some species of YP produce YP-
derived mitogens (YPM), which are SAg-like virulence factors
(63). Consistent with the increased prevalence of KD in Far East
countries, YPM-positive pathogenic YP are also predominantly
distributed in these countries and are less frequent in western
countries (64). However, in a recent clinical study involving 108
Japanese KD patients, it was found that 90% of patients were
negative for antibodies to YP and YPM (65). Vβ2-bearing T-
cell subsets be preferentially activated in KD, whereas Vβ3, Vβ9,

Vβ13.1, or Vβ13.2-bearing T-cell subsets are activated in YP
infection (66).

Mycobacterium
Reactivation of Bacillus Calmette-Guérin (BCG) scar is a well-
established clinical manifestation in acute KD, indicating that
Mycobacteria or immunologically related pathogens might
be involved in KD. Although Mycobacteria have not been
isolated from KD patients as a causal pathogen, antibody and
CD4+/CD8+ T-cell clones specific to Mycobacterium heat shock
protein 65 have been detected in KD patients (67, 68).

Besides M. tuberculosis, M. leprae, and M. lepromatosis,
non-tuberculous mycobacteria (NTM) can cause self-
limited infections in humans. M. avium complex (MAC) is
a representative NTM. The immune response to MAC infections
involves peculiar macrophages, which are characterized by the
co-expression of anti-inflammatory M2 macrophage markers
(e.g., CD163, IL10) and markers of pro-inflammatory M1
macrophages (e.g., CCR7, IL1β) (69). These cells promote Th17
cell-differentiation (69). Intriguingly, the coronary arteries
affected in acute KD also often feature marked infiltration of
macrophages, which are negative for CD80 (an M1 marker),
and positive for CD163 (an M2 marker) (70). Plasma level of
Th17-related cytokine sets are also increased (71). Considering
these recent findings and BCG scar reactivation in KD, re-
visiting the possible implication of mycobacteria in KD could
be warranted.

Fungi
Although there is no definitive clinical evidence suggesting that
fungi are a causal factor for KD, it has been well-established
that Candida albicans extracts develop KD-like experimental
model of vasculitis in mice. Based on the meteorological and
enviromentological study, Rodo et al. (72) recently reported that
KD is associated with tropospheric winds containing Candida
species as a predominant fungus. Similar investigation in Canada
also suggested the implication of westerly wind-associated fungi
in KD (73).

It might be possible to validate phlogogenic activity of
the wind-blown microbes / molecules with established animal
models for KD.

Possible Triggers and Diagnostic Criteria
of Kawasaki Disease
Except Y. pseudotuberculosis infection (65, 74, 75), few cases
satisfy the six diagnostic criteria for Kawasaki disease (KD)
among the infectious diseases caused by the aforementioned
agents. Considering that genetic background is closely associated
with the susceptibility to KD (see section Influence of
Genetic Background Affecting Response to Infectious Stimuli),
polymorphisms in some specific genes of infected children
might affect the clinical futures of the infectious diseases (76).
Moreover, it is not exclusive that unidentified agents could
be involved in the onset of KD. Caution should be exercised
when considering the possible causal agents on the basis of the
symptom similarity.
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AETIOLOGICAL SIGNIFICANCE OF INNATE
IMMUNE RESPONSE IN KD

While innate immunity is the first line of self-defense against
infectious agents, it is also accompanied by inflammatory
reaction (77). Thus, its inadequate regulation gives rise
to inflammatory tissue damage. Accumulating evidence
indicates that KD could be associated with dysregulated innate
immune response.

Insight From Experimental Studies With
Animal Model for KD
Apart from SAgs, a variety of microbes or virus-derived
biomolecules (e.g., lipopolysaccharides, glucans, and nucleotides)
can stimulate immune cells or other cell types, including
ECs. These biomolecules are designated pathogen-associated
molecular patterns (PAMPs) and microbe-associated molecular
patterns (MAMPs). PAMPs and MAMPs are recognized by a
type of cellular or soluble receptors, which are designated pattern
recognition receptors (PRRs) (e.g., TLRs) to trigger innate
immune responses, including the production of inflammatory
cytokines through intracellular signaling pathways. A possible
implication of these PAMPs or MAMPs in KD has been
demonstrated in mouse models and more recently in clinical
specimens from KD patients (78, 79).

KD-like vasculitis can be induced in rabbit, swine, and
mouse models by various methods (80–83). The known
genetic background and ease of genetic manipulation have
made mouse models the preferred model to investigate
molecular pathogenesis of KD and to discover its therapeutic
targets (84–88).

In a murine model of vasculitis, Candida albicans water-
soluble fraction (CAWS) is used as the inducer. Marked
inflammatory change is observed in the aortic root, including
the coronary arteries in CAWS-treated mice (89, 90). While
CCR2 and GM-CSF play an indispensable role in its pathogenesis
(89, 90), T and B cells are also involved in the vasculitis (89).
Sensitivity and severity of CAWS-induced vasculitis apparently
depend on mouse strain, suggesting that genetic background
affects its pathogenesis (also see section Influence of Genetic
Background Affecting Response to Infectious Stimuli).

Another KD-like murine coronary arteritis model involves
induction by Lactobacillus casei cell wall extract (LCWE). TLR2-
dependent signaling, ILβ-dependent signaling, and CD8+ T cells
(cytotoxic T cells) play a crucial role in its pathogenesis (91–93).

KD-like coronary arteritis can also be induced in mice
by NOD1 ligand, FK565 (94, 95), a synthetic derivative
of acylpeptide produced by Streptomyces olivaceogriseus (96).
The experimental model of vasculitis reportedly underlies the
interaction between the CCR2 expressed in monocytes and the
CCL2 induced by the NOD1-dependent signaling in EC (78).

It is important to consider whether these models accurately
represent the actual molecular mechanisms of KD (97). However,
some evidences indicate that the experimental murine vasculitis
is relevant to KD pathogenesis. The antibodies to β-glucan,
another major CAWS component, was increased in KD patients

(98). Regarding findings in CAWS-induced or FK565-induced
mouse model, it was also reported that genetic polymorphisms
in the CCR3-CCR2-CCR5 gene cluster are associated with KD
susceptibility (99). Furthermore, it has been found that lipophilic
substances almost identical to MAMPs derived from Bacillus
cereus, Bacillus subtilis, Y. pseudotuberculosis, and S. aureus,
have been detected in the serum of KD patients (79). This
finding supports the possibility that KD underlies the molecular
pathogenesis similar to the aforementioned mouse models. The
possible involvement of Y. pseudotuberculosis and S. aureus in
KD has been argued based on other clinical evidence (also
see sections Staphylococcus aureus and Streptococcus pyogenes
and Yersinia pseudotuberculosis). The collective findings indicate
the possible relationship between PAMPs/MAMPs and the
aetiological mechanism of KD vasculitis.

Other Insight to PAMPs/MAMPs
Hypothesis in KD
Regarding the implication of PRRs, Huang et al. (100) reported
that the CpG sites of TLR genes were reversibly hypomethylated
in the peripheral whole blood cells of acute KD patients,
resulting in upregulated expression of TLRs. This transient
epigenetic change supposedly potentiates the TLR-dependent
innate immune response. DNA demethylation in immune cells is
also observed in patients infected with mycobacteria and certain
viruses (101, 102), possibly implicating these intracellular-living
pathogens in KD.

While killer immunoglobulin-like receptor (KIR) expressed in
natural killer cells interacts with HLA-I to suppress activation
of NK cells, KIR3DL1/2, a subtype of KIR, also recognizes and
KIR3DL2 engulfs pathogen-derived CpG-oligodeoxynucleotide
(CpG-ODN) to activate TLR9-dependent signaling (103). A
recent case-control study of HLA-A and -B genotypes in
Caucasian KD patients proposed the hypothesis that high
abundance of HLA ligands for KIR3DL1/2 in KD patients
interferes with KIR-dependent cellular CpG-ODN sensing to
impair effective clearance of pathogens during infection (104).
Consequently this impaired clearance might allow expansion
of PAMPs/MAMPs. Although accumulating evidence suggests
that PAMPs/MAMPs are involved in KD pathogenesis, their
pathophysiological significance may be more complex than is
currently appreciated.

Possible Implication of Complement
Pathways
Three complement pathways (classical, lectin, and alternative
pathway) are major components of the innate immune system
against infectious agents. However, their excess activation
causes inflammatory tissue injury. Indeed, accumulating
evidence suggests that their dysregulated activation underlies
the pathogenesis of vascular inflammation and aortic aneurysms
(105, 106). Nevertheless, a limited number of studies had been
undertaken regarding the involvement of complement pathways
in KD (107, 108).

Recently Okuzaki et al. (109) found that ficolin-1, a circulating
soluble PRR that is responsible for activating the lectin pathway,
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FIGURE 2 | Schematic depicting possible mechanisms of KD pathogenesis.

Various infectious agents produce superantigens (SAgs) and

pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). SAgs

non-specifically activate T cells, probably including potentially autoreactive T

cells. PAMPs/MAMPs also stimulate immune cells [e.g., macrophages (Mφ),

dendritic cells (DCs), monocytes (MCs)] and endothelial cells (ECs) through

cellular pattern recognition receptors (PRRs) (e.g., TLRs, NOD1, Dectin-1/-2).

This stimulation up-regulates production of pro-inflammatory

cytokines/chemokines and reactive oxygen/nitrogen species (ROS/NOS),

leading to a systemic inflammatory reaction. On the other hand,

PAMPs/MAMPs also activate the complement lectin pathway through soluble

PRRs (e.g., ficolin-1, mannose binding lectin-2). Activated complement

pathways can elicit inflammatory vascular damage through recruitment of

innate inflammatory cells and direct injury to ECs. The extent of the

inflammatory reaction is influenced by the genetic backgrounds of the

individuals, resulting in a limited number of children developing KD in response

to infectious stimuli.

was increased in acute KD. They also demonstrated that KD-
like murine vasculitis is ameliorated by infusion of an inhibitory
antibody to ficolin-1 (110), suggesting that the lectin pathway
could participate in KD pathogenesis. The lectin pathway is
triggered by activation of mannose-binding lectin-associated
serine proteinases (MASPs). In addition to their role in the
complement system, MASPs are involved in coagulation and EC
activation (111), both of which are closely connected to KD.

Complement systems are rigorously regulated by more
than ten protein species to prevent their undesirable excess
activation. Genetic polymorphisms of these proteins might affect
susceptibility of KD under infectious condition (106, 112).

INFLUENCE OF GENETIC BACKGROUND
AFFECTING RESPONSE TO INFECTIOUS
STIMULI

While a variety of microorganisms could be causative agents
of KD, the prevalence of KD in children is potentially limited,

suggesting that the genetic background of an individual
likely affects the disease susceptibility. A series of clinical
genetic investigations have revealed KD-related gene
polymorphisms in more than 20 genes (113), although its
aetiological significance is elucidated only in a limited number of
these polymorphisms.

Statistical genetic studies identified an SNP associated with
KD susceptibility and resistance to IVIG therapy in the gene
encoding inositol-triphosphate 3-kinase C (ITPKC), which
suppresses T-cell activation and regulates inflammasome activity
in macrophages (114, 115). This SNP destabilizes ITPKC mRNA
and reduces the cellular level of ITPKC protein (115). KD-
associated gene polymorphisms have been discovered in the
CASP3 gene, which might also influence the down-regulation of
activated immune cells (116). In addition, Onouchi et al. (114)
reported KD-associated polymorphisms in the gene encoding
ORAI1, a calcium release-activated calcium channel protein
1. Notably, these proteins are also involved in the calcium-
dependent nuclear factor-activated T cell (NFAT) pathway (117,
118).which regulates the function of T and B cells. EBV-encoded
latent membrane protein 1 (LMP-1) up-regulates ORAI1 (119).
Considering that EBV is a possible trigger for KD (see section
Epstein-Barr Virus), it is intriguing whether the identified genetic
polymorphisms could affect immune response to EBV infection.

The collective molecular genetic data indicate that most
genes with KD-associated polymorphisms are responsible for
the modulation of inflammatory responses, including T-cell
activation, which is compatible with the postulated roles of SAg
and PAMPs/MAMPs. This strengthens the possibility that the
dysregulated immune response to infectious stimuli underlies the
pathogenesis of KD.

Induced pluripotent stem cell technique has been
successfully used to establish some human EC lines
harboring genetic backgrounds of KD patients (120).
Studies with these cells enable the verification of the
aetiological significance of individual genetic backgrounds in
KD in vitro.

CONCLUSION

Although the etiology of KD is far from being resolved,

the evidence collected so far drives the following hypothesis
(Figure 2): Diverse pathogens could be potential causative agents
of KD. However, such different infectious stimuli converge

on a similar/common immune process associated with the
activation of T cells, innate immune cells, and ECs. The
genetic background of infected children affects the magnitude
of the immune responses to develop KD in a limited number
of children.
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