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The purpose of our study was to compare the apparent diffusion coefficient (ADC) derived from diffusion-weighted imaging
(DWI) of prostate cancer (PCa) patients with three classes of pathological Gleason scores (GS). Patients whose GS met these
criteria (GS 3 + 3, GS 3 + 4, and GS 4 + 3) were included in this study. The DWI was performed using b values of 0, 50, and
400 s/mm? in 44 patients using an endorectal coil on a 1.5T MRI scanner. The apparent diffusion coefficient (ADC) values were
calculated from the DWI data of patients with three different Gleason scores. In patients with a high-grade Gleason score (4 + 3),
the ADC values were lower in the peripheral gland tissue, pathologically determined as tumor compared to low grade (3 + 3 and
3+ 4). The mean and standard deviation of the ADC values for patients with GS 3 + 3, GS 3 + 4, and GS 4 + 3 were 1.135 + 0.119,
0.976 + 0.103 and 0.831 + 0.087 mm?/sec. The ADC values were statistically significant (P < 0.05) between the three different
scores with a trend of decreasing ADC values with increasing Gleason scores by one-way ANOVA method. This study shows that

the DWI-derived ADC values may help differentiate aggressive from low-grade PCa.

1. Introduction

Prostate cancer (PCa) is the most common malignancy
among men in the USA, with an estimated 217,730 new cases
and 32,050 PCa-related deaths in 2010 [1]. The incidence
of PCa increases with age, and it is very uncommon in
men younger than 50 years old. With greater longevity and
increased awareness of the disease leading to more men
requesting screening, it is to be expected that there will be an
increase in the number of patients diagnosed with PCa in the
future. Most men diagnosed with PCa ultimately survive the
disease and die of other causes. The overall 5-year survival
rate is 99% for all stages, but only 34% when there are
distant metastases [2]. The aim of PCa management is to
identify, treat, and cure patients with aggressive disease that
may prove fatal but to avoid overtreating those in whom
the disease is unlikely to be life threatening. Most patients
diagnosed with PCa have localized disease confined to the

prostate. A small number with high-grade tumors will
progress to develop local, extracapsular tumor extension and
distant metastases.

Prostate tumors are graded according to their patholog-
ical appearance with a Gleason score (GS), which represents
the sum of the dominant and subdominant histological
patterns (grades). High GSs indicate aggressive tumors with
increased potential for local and distant spread; Gleason
grading has been shown to provide a spectrum of risk for
all patients [3]. Magnetic resonance imaging (MRI) provides
incremental value to clinical findings in staging patients
of intermediate risk. For example, organ-confined disease
implies that the patient may benefit from local therapy such
as surgery [4]. MRI is more accurate than either digital
rectal examination (DRE) or transrectal ultrasound (TRUS)
biopsy in preoperative anatomical localization of PCa [5].
The sensitivity and specificity of T,-weighted imaging for
PCa vary widely due to differences in imaging techniques,
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reference standards, criteria for defining disease involvement
on MRI, and interobserver variability [6]. In a meta-analysis
by Sonnad et al. T,-weighted imaging showed a maximum
joint sensitivity and specificity rate of 74% for the staging
of PCa [7]. In T,-weighted imaging, regions of PCa show
decreased signal intensity relative to normal peripheral (PZ)
tissue because of increased cell density and a loss of prostatic
ducts [8]. This finding is nonspecific, however, because other
diseases such as prostatitis or hyperplasia can also cause low
signal intensity in T,-weighted imaging [9-12].

Diffusion-weighted imaging (DWI) is another MR-based
technique that probes functional characteristics of tissues.
The clinical success of DWI has led to a broadening ap-
plication in the prostate gland. Rapid changes in diffusion
properties can be identified by calculating the apparent
diffusion coefficient (ADC). Dickinson et al. [13] showed the
standardizing multiparametric magnetic resonance imaging
(mpMRI) for PCa detection, localization, and characteri-
zation. The use of DWI as a tool for the evaluation and
management of prostatic cancer has grown steadily in the
past decades [14—-16]. The purpose of the study was to record
DWTI and to compare ADC values derived from DWTI in PCa
patients with three different Gleason scores (3 + 3, 3 + 4, and
4+3).

2. Materials and Methods

A total of 44 clinically localized PCa patients who underwent
radical retropubic prostatectomy between January, 2007 and
May, 2008 were selected for this study. The entire protocol
was approved by the institutional review board (IRB), and
an informed consent was obtained from each human subject.
The ages of the patients ranged from 47 to 75 years, and the
patients fell into three different groups by surgery GS: 3 + 3
(mean + SD, 60.1 + 6.7 years), 3 + 4 (mean + SD, 58.1 + 4.2
years), and 4 + 3 (mean = SD, 60.3 + 3.9 years). The mean
prostate-specific antigen (PSA) value for the patients with GS
3+ 3,GS 3 + 4, and GS 4 + 3, respectively, were 5.0 ng/mL,
6.8 ng/mL, and 7.4 ng/mL.

All patients underwent prostate imaging with an en-
dorectal coil on a 1.5 Tesla Avanto-Tim MRI scanner with
high-performance gradients (Siemens Medical Solutions,
Erlangen, Germany). Sequences included axial turbo spin-
echo (TSE) T,-weighted imaging through the prostate and
seminal vesicles (TR/TE, 3800/101 ms; slice thickness, 3 mmy;
no interslice gap; field of view (FOV), 140 mm, matrix 205 X
256, slice thickness 3 mm, interslice gap 0 mm, echo-train
number 32, turbo factor 13). In addition, echo-planar
diffusion-weighted sequences sensitized in three orthogonal
planes (TR/TE 2000/83 ms, bandwidth 1396 Hz in the EPI
frequency direction) with b values of 0, 50, 400 s/mm? were
obtained at the same slice positions as the axial T,-weighted
images. Twelve 4-mm-thick slices with no interslice gap
(27 cm FOV) with three averages provided coverage of the
prostate with an image acquisition time of less than a minute.
Isotropic ADC maps were generated with the system software
using all b values and taking an average value for the two
directions of diffusion sensitization.
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MR Images were initially reviewed without clinical infor-
mation, but the final report was generated after the clinical
information was reviewed. The histology was reviewed by
an experienced pathologist. The edge and the contour char-
acteristics of the lesions were defined using the same slices
on which regions-of-interest (ROI) analyses were performed.
ROIs were drawn independently on the ADC maps, and
differences in measurement were resolved by consensus.
ROIs were drawn in the tumor PZ of all the 44 PCa patients.
ADCs were calculated for all slices by

_ 11’1(81 - So)

ADC =
(by = bo)

mm?/s, (1)

where S; is the signal intensity of a voxel after application of
a diffusion gradient and S is the echo magnitude without
diffusion gradients applied (b = 0s/mm?). Diffusion
sensitivity is determined by the difference between b, and by.
If multiple tumors were present in the peripheral zone, the
average ADC value was recorded for each lesion. The MRI
sections and histological slices were matched on the basis of
the sextant level, anterior/posterior, and peripheral/central
(transitional).

At the time of these examinations, other sequences
performed as part of the routine prostate MRI protocol at
our institution but not assessed in this study included sagittal
and coronal TSE T,-weighted imaging sequences through the
prostate and seminal vesicles.

3. Statistical Analysis

Statistical analyses were performed to assess the statistical
differences between ADC values for the three different
Gleason scores (GS 3 + 3, GS 3 + 4, and GS 4 + 3) using
one-way analysis of variance (ANOVA) with SPSS software
package assuming parameters were normally distributed. A
P value of less than 0.05 was considered to indicate a statis-
tically significant difference. To explore for any relationship
between the ADC value, tumor volumes, and the Gleason
score, Pearson correlation was performed on the data.
Also, analysis of covariance (ANCOVA) was done on ADC
values of different Gleason scores with tumor volume as a
covariate to see its effect.

4, Results

The patients mean and standard deviation (SD) of age and
PSA and ADC values for tumor PZ regions of three Gleason
scores are shown in Table 1. Figure 1(a) shows the T,-
weighted MRI of a 68-year-old PCa patient with GS 3 + 4
and Figure 1(b), corresponding ADC map with low signal on
the left base PZ. Figure 2 illustrates a box plot of ADC values
for PCa in the peripheral zone tissue categorized by the three
Gleason scores. In 13 patients with GS 3 + 3, the (mean +
SD) ADC value was 1.135 + 0.119 mm?/sec using 32 ROIs. In
22 patients with GS 3 + 4, the (mean + SD) ADC value was
0.976 + 0.103 mm?/sec using 52 ROIs. In 9 patients with GS
4 + 3, the (mean = SD) ADC value was 0.831+0.087 mm?/sec
using 24 ROIs. Although a statistically significant difference
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F1GURE 1: (a) T,-weighted MRI of 68 yo prostate cancer patient with GS 3 + 4 and (b) corresponding ADC map with low signal on the left

base PZ.
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F1GURE 2: Box-Whisker plots of ADC values of Gleason score (GS)
3 +3,(GS) 3 +4and (GS) 4 + 3 patients. The center horizontal line
indicates the median.

TaBLE 1: Patient clinical information and ADC values.

ADC values
PSA mean +
Gleason scores Age mean = SD mean + SD
SD (ng/mL) )
(mm?/sec)
3+3(n=13) 60.1 = 6.7 50+2.8 1.135 £ 0.119
3+4(n=22) 58.1+42 6.8 1.7 0.976 = 0.103
4+3(n=9) 60.3 +3.9 7.4+28 0.831 + 0.087
P value NS NS <0.05%**
NS—Nonsignificant
***__Significant.

existed between the three groups (P < 0.05), a certain degree
of overlap between tissue types was evident. There was no
statistical significance between the PSA and patients ages
with three different Gleason scores.

We did not have the biopsy report for 14 patients out
of 44 patients. Out of which 15 patients whose biopsy
and prostatectomy Gleason scores were the same. For the
remaining 15 patients, We had four patients with GS 3 +
3, eight patients with GS 3 + 4, and 3 patients with GS 4 +
3 whose biopsy Gleason scores were different from prosta-
tectomy. Hence, we have not done the correlation between
biopsy and prostatectomy Gleason scores. Out of 44 patients,
in 35 patients (GS3 +3 (n = 13), GS3 + 4 (n = 13),
and GS 4 + 3 (n = 9)) tumors were detected by the DWI
technique. Nine patients (GS 3 + 4 (n = 9)) were missed
by the MRI technique. To evaluate the association between
ADC value, tumor volumes, and the Gleason grade, all the
ADC values and tumor volumes were first summarized at
the individual patient level, followed by applying Pearson’s
correlation coefficients. We observed negative correlation
between Gleason score and ADC values and positive cor-
relation between Gleason score and tumor volume. In the
ANCOVA analysis, the results were statistically significant
(P = 0.0001) between the Gleason score and ADC values.

5. Discussion

To increase the accuracy of MRI, a number of authors have
used special techniques to study a particular characteristic of
the prostate tumor and surrounding tissues such as dynamic
contrast-enhanced (DCE) MRI [17-19] and MR spec-
troscopy (MRS) [20-24]. MR spectroscopy requires a sub-
stantially longer examination time than DWI, and, addition-
ally, shimming process and placement of saturation bands
during the examination are time consuming. For evaluation
of MRS, baseline correction and phase correction have to
be performed in some cases.

DWI is the only functional imaging technique that is
able to assess molecular diffusion in vivo and provides infor-
mation about biophysical properties of tissues such as cell
organization, density, and microstructure [25]. DWI may be
helpful in differentiating high-risk patients from those at low
and intermediate risks, since there is a significant correlation
between the ADC values from patients with three different
Gleason scores. The patients with the Gleason score of 4 + 3



have a higher likelihood of biochemical recurrence, partic-
ularly for the increasing proportion of patients with organ-
confined disease after radical prostatectomy than those with
3 + 4 as reported by Sakr et al. [26]. Also, our results showed
decreased ADC values in patients with GS 4 + 3 than those
with GS 3 + 4 significantly (P < 0.05). This may be useful to
assess the aggressiveness of the PCa. The sensitivity of DWI
is better in the PZ than the central gland [27]. DWI has
also been shown to be helpful in the identification of PCa
in patients with previous negative biopsies and persistently
elevated PSA [28].

McNeal et al. [29] reported that 65% of prostate cancers
arise in the PZ and up to 30% arise in the transition
zone (TZ). The transrectal MRI is generally considered less
specific for use in the evaluation of TZ cancers because of
the heterogeneously low T, signal intensity in normal TZ
[30], and the presence of benign prostatic hyperplasia in TZ
[31, 32]. The endorectal coil offers poor signal sensitivity
when it comes to the TZ. Hosseinzadeh and Schwarz [33]
successfully investigated T, relaxation rates and diffusion-
weighted images of the human prostate using an endorectal
coil. DWI can provide valuable cellular information about
tissue in addition to the conventional T and T,-weighted
imaging [34-38]. In this present study, ADC values show
a decreasing trend with increasing Gleason scores. The
calculated ADCs for cancer in the PZ were consistent
with those previously reported studies [25, 39-41]. These
findings suggest that measurement of ADC may provide an
additional feature that could further increase the specificity
of diagnosis for PCa. The variation in reported ADC values
could be due to a number of physiologic factors (e.g., age
tumor size) as well as technical factors (e.g., variations
in acquisition parameters, inhomogeneous signal reception
using the endorectal MRI coil, and postprocessing methods).

Our study suffered some limitations. We analyzed cancer
only in the PZ, where most cancers occur. DWI itself also
has some limitations as this sequence is affected by magnetic
susceptibility, resulting in spatial distortion and signal loss.
Moreover, there is no consensus on the optimal b value for
DWI of the prostate.

In conclusion, this study shows that the DWI correlates
with pathological Gleason scores. DWI-acquired ADC values
are a very potential measure to delineate prostate carcinoma
from the PZ and are able to predict the presence of low,
and high-grade components in PCa with great accuracy. The
ADC values derived from the 1.5 T diffusion-weighted MRI
demonstrate tumor aggressiveness and could be of future
use in treatment decisions and in patient followup in active
surveillance.
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