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Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases.
Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of
underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as
evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release.
In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems.
Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and
reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-
erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3)
inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3
suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also
mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with
activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together,
this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway,
which may be modulated by Nrf2 activation.

1. Introduction

Subarachnoid hemorrhage (SAH), a detrimental type of
stroke, is considered a life-threatening disease with limited
therapeutic options [1]. There are urgent unmet needs for
intervention that could block progressive brain damage after
SAH. Recently, numerous clinical and experimental studies
have suggested that the robust reactive oxygen species
(ROS) overproduction and neuroinflammation play impor-

tant roles in the secondary brain injury after SAH and
contribute greatly to the neurological deficits [2–5]. Accord-
ingly, identifying new and effective therapeutic strategies to
mitigate excessive oxidative damage and neuroinflammation
is a pressing need.

Luteolin (LUT) is an abundant flavonoid distributed in
vegetables and fruits such as broccoli and carrots [6]. Previ-
ous reports have demonstrated that LUT is a neuroprotec-
tive flavonoid by scavenging free-radical and inhibiting
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inflammation in a series of neurological disorders, including
traumatic brain injury (TBI), ischemic stroke, and Alzhei-
mer’s disease [6–8]. Moreover, LUT can easily penetrate
the blood-brain barrier and improve behavioral perfor-
mance in acute brain injuries [8, 9]. However, whether
LUT could exert cerebroprotective effects against SAH
remains unknown.

There is emerging evidence indicates that nod-like recep-
tor pyrin domain-containing 3 (NLRP3) inflammasome-
mediated neuroinflammation plays a critical role in the
development of secondary brain injury after SAH [10–13].
In addition, ROS generation is closely associated with oxida-
tive damage and is one of the major signals that trigger the
NLRP3 inflammasome activation. Nuclear factor-erythroid
2-related factor 2 (Nrf2) is considered as the most important
endogenous factor in the maintenance of cellular homeostasis.
Under the condition of oxidative stress, Nrf2 translocates into
the nucleus and binds with an antioxidant response element
(ARE), thereby promoting a battery of antioxidative gene
expressions, such as heme oxygenase-1 (HO-1), glutathione
peroxidase (GSH-Px), and superoxide dismutase (SOD)
[14–16]. Accumulating studies have indicated that activating
the Nrf2 signaling pathway plays a key role in attenuation of
oxidative damage in a variety of oxidative disorders [8, 17].
Moreover, recent studies have suggested that NLRP3 inflam-
masome activation is modulated by Nrf2 signaling [18, 19].
Intriguingly, LUT is a powerful Nrf2 activator and can inhibit
NLRP3 inflammasome in a series of disease models [8, 20, 21].
Thus, in this study, we investigated whether LUT had thera-
peutic potential in SAH and verified whether the beneficial
effects of LUT were associated with the inhibition of NLRP3
inflammasome activation by Nrf2-dependent pathway.

2. Materials and Methods

2.1. Animals. All of the procedures were approved by the
Institutional Animal Care and Use Committee of Wannan
Medical University and met the accordance of National
Institutes of Health. Health adult male Sprague Dawley rats
(250–300 g) were bought from the Nanjing Biomedical
Research Institute of Nanjing University. The animals had
free access to food pellets and water ad libitum.

2.2. SAH Model. A prechiasmatic cistern injection model
was used in our study. Anesthesia was induced by intraper-
itoneal injection avertin (200mg/kg). After anesthetization,
rats were positioned prone in a stereotactic frame. And then,
a burr hole was drilled into the skull 7.5mm anterior to the
bregma. A total of 0.35mL of nonheparinized fresh autolo-
gous arterial blood was retracted from the femoral artery
and injected into the burr hole (in the course of 20 s) under
aseptic conditions [22]. Bone wax was employed to block
cerebrospinal fluid leakage. Sham operation animals were
injected with 0.35mL physiological saline instead of blood
into prechiasmatic cistern. Consistent with previous studies
[17, 23], the inferior basal temporal lobe always contained
blood and differed histologically from control rat brain.
Therefore, the basal temporal lobe adjacent to the clotted

blood was used for histopathologic examination in the cur-
rent study.

2.3. Study Design. In the first set of experiments, 108 rats
(127 rats were used, and 19 rats died) were divided into
the following groups: sham (n = 14), sham+vehicle
(n = 16), SAH+vehicle (n = 20, 5 rats died), SAH+10mg/kg
LUT (n = 20, 5 rats died), SAH+30mg/kg LUT (n = 19, 3
rats died), SAH+60mg/kg LUT (n = 19, 3 rats died), and
SAH+90mg/kg LUT (n = 19, 3 rats died) groups. Rats
were killed at 24 h and 72 h after operation. Post-
assessments included behavior performance, brain water
content, and histopathological study.

In the second set of experiments, 48 rats (57 rats were
used, and 9 rats died) were assigned into four groups:
sham+vehicle (n = 12), SAH+vehicle (n = 15, 3 rats died),
SAH+60mg/kg LUT (n = 14, 2 rats died), and SAH
+60mg/kg LUT+ML385 (n = 16, 4 rats died) groups. Rats
were killed at 24 h after SAH. Post-assessments included
immunofluorescence staining, biological estimation, and
behavior performance.

2.4. Primary Cell Culture and In Vitro SAH Model. Primary
cortical neurons and microglia were performed according to
our previous study [24]. Rat pups were sacrificed on postna-
tal days 0-1. For primary neurons culture, cortical cells were
cultured onto poly-D-lysine-coated plates and suspended in
neurobasal media supplemented with B27, glutamate,
Hepes, penicillin, and streptomycin. For primary microglia
culture, cortical cells were placed in serum-free DMEM-
F12 culture medium. Regarding the neurons and microglia
coculture system, microglia were seeded in transwell upper
chamber (Corning, pore size = 0:4μm) and the neurons were
cultured in the plates. Coculture medium was DMEM with
10% FBS.

To mimic SAH in vitro, the coculture system was stimu-
lated with 10μM oxyhemoglobin (OxyHb) for 24h. The
dose of OxyHb was chosen according to our previous study
[23]. Hemoglobin (Sigma, USA) was used to produce
OxyHb as we described in detail before [25]. The neuron–
microglia cocultures were partitioned into the following
groups: control, oxyHb, OxyHb+5μM LUT, OxyHb
+10μM LUT, OxyHb+25μM LUT, and OxyHb+25μM
LUT+ML385. The coculture system was harvested 24 h after
indicated intervention. The culture medium, neurons, and
microglia were collected for cell viability analysis, biochemi-
cal estimation, and immunofluorescence staining.

2.5. Drug Administration. For in vivo experiments, LUT
(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in
dimethylsulfoxide (DMSO) (<1%) and physiological saline
at different concentrations (10, 30, 60, and 90mg/kg). Rats
were intraperitoneally administrated with LUT at different
doses at 2 h after insults and then once daily until euthana-
sia. ML385, a selective Nrf2 inhibitor, was dissolved in
DMSO and physiological saline and was administered intra-
peritoneally (30mg/kg) for 2 days before SAH induction.
For in vitro experiments, LUT (5μM, 10μM, and 25μM)
and ML385 (10μM) were dissolved in 0.1% DMSO (in
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physiologic saline) and then added to culture medium [8,
26]. LUT was administered for 0.5 h prior to OxyHb incuba-
tion. Cells were pretreated with ML385 24 h before OxyHb
stimulation.

2.6. Neurological Behavior. Neurologic functions were
recorded using an 18-point scoring system reported by Zhao
et al. [21]. Rotarod test was used to assess motor function
according to a previous study [16]. The rotating speed was
gradually increased from 4 to 40 rpm over a 5min period.
The latency to fall was recorded. The mean latency was cal-
culated based on three consecutive trials.

2.7. Brain Water Content. In brief, the brains were harvested
immediately after sacrificing the rats and dissected into cere-
brum, cerebellum, and brainstem. Each part was weighed to
record the wet weight. The dry weight was recorded after the
samples were being dried at 80°C for 72 h. Brain edema ratio
was calculated as ½ðwetweight – dry weightÞ/wet weight� ×
100%.

2.8. Nissl Staining. In brief, the brain tissue was first fixed in
4% paraformaldehyde for 48 h and then performed as we
described in detail before [17]. Afterward, tissue sections
were stained with Nissl solution for 10min and mounted
with Permount. All the sections were photographed in the
microscope.

2.9. Immunofluorescence Staining. Immunofluorescence
staining was performed as we described in detail before
[17]. In brief, the sections were first fixed by 0.1% Triton
X-100 and then were blocked by 5% BSA for 2 h. After three
washes with PBS, brain tissues or cultured neurons were
incubated with primary antibodies against Iba-1 (1: 50,
Santa Cruz Biotechnology or 1 : 100, Abcam), myeloperoxi-
dase (MPO, 1 : 50, Santa Cruz Biotechnology), 8-
hydroxydeoxyguanosine (8-OHdG) (1 : 100, Abcam), Nrf2
(1 : 100, Abcam), caspase-1 p20 (1 : 50, Santa Cruz Biotech-
nology), and NeuN (1 : 200, EMD Millipore). Sections were
then incubated with corresponding secondary antibodies
(Alexa Fluor 488 and Alexa Fluor 594) overnight at 4°C.
Fluorescence microscopy imaging was examined under a
ZEISS HB050 inverted microscope system. The fluorescently
stained cells were recorded using Image J program.

2.10. TUNEL Staining. TUNEL staining was detected by a
terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labeling (TUNEL) detection kit (Roche Inc., India-
napolis, USA) in line with the manufacturer’s instructions.
The brain slices and coverslips were incubated with the
primary antibody anti-NeuN (1 : 200, EMD Millipore) over-
night. And then, a reaction solution and converter-AP were
incubated subsequently. The fluorescently stained cells were
recorded using Image J program.

2.11. ELISA. Brain samples and culture medium were col-
lected. The levels of IL-1β, tumor necrosis factor-α (TNF-
α), and IL-6 were evaluated in line with the manufacturer
instructions (Multi Sciences. China).

2.12. Biochemical Estimation. The contents of malondialde-
hyde (MDA), GSH-Px, glutathione (GSH), and SOD were
evaluated by using commercially available kits in line with
the manufacturer instructions (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China). For MDA, brain samples
were mixed with thiobarbituric acid, acetic acid, and sodium
dodecyl sulphate at 95°C for 30min. And then, the sample
was centrifuged at a rate of 4,000 rpm for 10min. The
MDA contents in all tubes were measured at the wavelength
of 532nm using a spectrophotometer. For H2O2, the fresh
brain tissue was homogenized using the assay buffer and
processed per kit instructions (Abcam). Absorbance at
590 nm was recorded. For GSH-Px, the supernatant was
mixed with sodium azide, glutathione reductase enzyme,
NADPH, and H2O2. The GSH-Px activity was measured at
the wavelength of 340nm using a spectrophotometer. For
GSH, the supernatant was mixed with 1% trichloroacetic
acid and centrifuged at 10,000 × g for 15min. The reaction
mixture consisted of lysates and 5,5′-dithiobis-(2-nitroben-
zoic acid). GSH was measured at the wavelength of
405 nm. For SOD, sample was mixed with the xanthine
and xanthine oxidase in potassium phosphate buffer at
37°C for 20min. SOD was measured at the wavelength of
450 nm using a spectrophotometer.

2.13. Western Blotting. The brain samples and the primary
microglia in transwell upper chambers and neurons in the
plates were collected for Western blotting. In brief, the
extracted proteins were separated by Tris-glycine SDSPAGE
and then transferred to PVDF membranes for 30min. Pri-
mary antibodies used were Nrf2 (1 : 1000, cat# ab31163,
Abcam), HO-1 (1 : 1000, cat# ab13243, Abcam), NLRP3
(1 : 200, cat# SC-66846, Santa Cruz Biotechnology), adaptor
apoptosis-related speck-like protein (ASC) (1 : 200, cat#
SC-22514, Santa Cruz Biotechnology), caspase-1 (1 : 200,
cat# SC-56036, Santa Cruz Biotechnology), caspase-1 p20
(1 : 200, cat# SC-398715, Santa Cruz Biotechnology), His-
tone H3 (1 : 3000, cat# BS7416, Bioworld Technology), and
β-actin (1 : 3000, cat# AP0060, Bioworld Technology, Min-
neapolis, MN, USA). Then, the membranes were incubated
for 2 h at room temperature with corresponding second anti-
body. Detection was conducted by using chemiluminescence
solution.

2.14. Cell Viability Analysis. Cell viability was detected by the
cell counting kit- (CCK-) 8 assays or lactate dehydrogenase
(LDH) activity with commercially available kits (Beyotime
Biotechnology, China) in accordance with the manufac-
turer’s instructions.

2.15. DCFH-DA Staining and Propidium Iodide Staining. For
ROS measurements, primary cultured neurons were
incubated with 2,7-dichlorodihydrofluorescein diacetate
(DCFH-DA, Sigma) for 10min at 37°C. For propidium
iodide (PI) staining, the primary neurons were stained with
2μg/mL of PI for 10min at 37°C. Quantifications were per-
formed with Image Pro Plus 6.0.

2.16. Statistical Analysis. Statistical software GraphPad
Prism 8.02 (GraphPad Software, La Jolla, CA, USA) was
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used for statistical analysis. All data were expressed as
mean ± SD. Differences among multiple groups were com-
pared by one-way or two-way analysis of variance with
Bonferroni post hoc test. Statistical significance was inferred
at P<0.05.

3. Results

3.1. Dose-Response Effects of LUT on SAH. No animals died
in the sham and sham+vehicle groups. The mortality rate
of the rats was 22.9% (8 of 35) in the SAH+vehicle group,
17.6% (16 of 91) in the SAH+LUT group, and 25% (4 of
16) in the SAH+LUT+ML385 group. In a dose-response
study, LUT was administered to rats after SAH at 10, 30,
60, and 90mg/kg. Doses of 30mg/kg, 60mg/kg, and
90m/kg, but not 10mg/kg, markedly improved neurologic
scores and rotarod performance in the early period after
SAH (Figures 1(a) and 1(b)). In addition, LUT treatment
at 60mg/kg and 90m/kg, but not 10mg/kg and 30mg/kg,
significantly reduced brain water content in cerebrum after
SAH (Figure 1(c)). Nissl staining further showed that evi-
dent damage was seen in the SAH+vehicle group, with a
decrease of cell number, sparse cell arrangements, and loss
of integrity. In contrast, LUT treatment at 30mg/kg,
60mg/kg, and 90mg/kg, but not 10mg/kg, significantly
improved neuronal survival after SAH (Figures 1(d) and
1(e)). There were no significant differences among
30mg/kg, 60mg/kg, and 90mg/kg LUT treatment in ame-
liorating neurological deficits, brain edema, and neuronal
degeneration after SAH (Figures 1(a)–1(e)). Based on the
results of these tests, we found that 60mg/kg was the opti-
mum dosage. Therefore, we used this dose for the remain-
ing experiments.

3.2. Effects of LUT on the Nrf2 Signaling Pathway and
NLRP3 Inflammasome Activation after SAH. LUT has been
considered as a powerful Nrf2 activator in a variety of disor-
ders. In addition, numerous studies have suggested that

NLRP3 inflammasome activation is modulated by Nrf2 sig-
naling [18, 19]. Thus, we used Western blot analysis to
determine whether LUT induced Nrf2 activation and inhib-
ited NLRP3 inflammasome signaling after SAH. ML385, a
selective Nrf2 inhibitor, was further employed to inhibit
Nrf2 signaling in this experiment. As shown in Figure 2,
nuclear and total expression levels of Nrf2 protein and
HO-1 protein were significantly increased after SAH, which
could be further enhanced after LUT supplementation
(Figures 2(a)–2(d)). In addition, SAH significantly induced
the expression of NLRP3, ASC, and cleaved caspase-1, which
was effectively inhibited by LUT administration
(Figures 2(e)–2(h)). In contrast, ML385 pretreatment
reversed LUT-induced Nrf2 expression and further
increased protein levels of NLRP3, ASC, and cleaved
caspase-1 (Figures 2(a)–2(h)). Double immunofluorescent
staining confirmed the Western blot results, indicating that
LUT enhanced nuclear translocation of Nrf2 after SAH,
which was abrogated by LUT administration (Figures 2(i)
and 2(j)). These data suggested that LUT could induce
Nrf2 signaling and inhibit NLRP3 inflammasome activation
after SAH.

3.3. Influence of LUT on Oxidative Damage at 24 h Post-
SAH. Nrf2 plays an important role in maintenance of redox
homeostasis after SAH. We next evaluated whether LUT
could ameliorate oxidative stress after SAH. As shown,
SAH insults significantly induced oxidative damage, as evi-
denced by increases in lipid peroxidation, H2O2 generation,
and 8-OHdG immunity (Figures 3(a)–3(d)). In addition,
SAH markedly decreased the endogenous antioxidant sys-
tems including SOD, GSH, and GSH-Px activities as com-
pared with those of the sham+vehicle group (Figures 3(e)–
3(g)). In contrast, LUT administration significantly
decreased oxidative insults and restored the impairment
antioxidant systems after SAH (Figures 3(a)–3(g)). However,
the antioxidant effects of LUT against SAH were abated by
ML385 administration (Figures 3(a)–3(g)).
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Figure 1: Dose-response effects of luteolin (LUT) on subarachnoid hemorrhage (SAH) in rats. Effects of three LUT doses on (a) neurologic
scores (n = 8‐10 per group), (b) rotarod performance (n = 8‐10 per group), and (c) brain water content (n = 6 per group). (d) Representative
photomicrographs of Nissl staining at 72 h after SAH. (d) Magnification ×200, scale bar 50μm. For Nissl staining, the basal temporal lobe
adjacent to the clotted blood was evaluated. (e) Quantification of the proportion of surviving neurons at 72 h after SAH (n = 6 per group).
Bars represent the mean ± SD. ∗P < 0:05.
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Figure 2: Effects of LUT treatment on Nrf2 and NLRP3 inflammasome signaling pathway after SAH. (a) Western blot assay for the
expression of Nrf2, HO-1, NLRP3, ASC, cleaved caspase-1, and caspase-1 in the indicated groups. Quantitative analyses of (b) nucleus
Nrf2, (c) total Nrf2, (d) HO-1, (e) NLRP3, (f) ASC, (g) cleaved caspase-1, and (h) caspase-1 expression in each group (n = 6 per group).
(i, j) Representative photomicrographs and quantification of Nrf2 immunofluorescence staining (n = 6 per group). Magnification ×200,
scale bar 50 μm; (i) inset magnification ×400, scale bar 25 μm. For immunofluorescence staining, the basal temporal lobe adjacent to the
clotted blood was evaluated. Bars represent the mean ± SD. ∗P < 0:05.
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Figure 3: Continued.
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3.4. Influence of LUT on Neuroinflammation at 24 h Post-
SAH. NLRP3 inflammasome plays a critical role in initiating
a series of immune-inflammatory reactions after SAH. We
also evaluated whether LUT was able to mitigate neuroin-
flammation after SAH. The immunofluorescence staining
showed that SAH insults significantly induced microglia
activation and neutrophil infiltration when compared with
those of the sham+vehicle group. LUT treatment signifi-
cantly inhibited microglia activation and neutrophil infil-
tration after SAH, and that these effects were abolished
by ML385 (Figures 4(a)–4(d)). In addition, SAH signifi-
cantly induced the proinflammatory cytokine generation,
which was suppressed by LUT treatment, while the
decreased proinflammatory cytokine generation by LUT
administration was reversed by Nrf2-specific inhibitor
ML385 (Figures 4(e)–4(g)).

3.5. Effects of LUT on Neurologic Function and Neuronal
Death after SAH. We next evaluated whether LUT could
improve neurological function and ameliorate neuronal
death. As shown, SAH caused significant neurologic impair-
ment that was alleviated by LUT treatment (Figures 5(a) and
5(b)). In contrast, the beneficial effects of LUT on neurolog-
ical function were reversed by ML385 pretreatment. Both
neuronal apoptosis and pyroptosis contribute to the devel-
opment of EBI after SAH. Cleaved caspase-1 is the canonical
executor of pyroptosis. We further performed caspase-1
staining and TUNEL staining to examine neuronal pyropto-
sis and apoptosis, respectively. As shown, rats with SAH had
greater numbers of caspase-1- and TUNEL-positive neurons
when compared with sham-operated rats. LUT treatment sig-
nificantly reduced the number of caspase-1- and TUNEL-
positive neurons after SAH (Figures 5(c)–5(f)), while ML385
treatment reversed the LUT-induced decreases in neuronal
apoptosis and pyroptosis after SAH (Figures 5(a)–5(f)).

3.6. Effects of LUT on Cell Viability, Oxidative Stress, and
Inflammatory Response In Vitro. We further confirmed the

potential beneficial effects of LUT in vitro. As shown, our
data indicated that LUT significantly improved neuronal
viability, reduced oxidative damage, and decreased expres-
sion of proinflammatory cytokines including IL-1β, IL-6,
and TNF-α after OxyHb stimulation (Figures 6(a)–6(g)).
However, all these changes were abrogated by ML385 treat-
ment (Figures 6(a)–6(g)).

3.7. Effects of LUT on Nrf2 and NLRP3 Inflammasome
Signaling In Vitro. We next evaluated the effects of LUT
on Nrf2 and NLRP3 inflammasome signaling in vitro. West-
ern blot analysis showed that LUT treatment significantly
increased the expression of Nrf2 and reduced expression of
NLRP3, ASC, and cleaved caspase-1 in primary microglia
and neurons exposed to OxyHb. These changes were abro-
gated by Nrf2-selective inhibitor ML385 (Figures 7(a)–
7(e)). Double immunofluorescence staining further showed
that LUT enhanced the expression of Nrf2 in primary corti-
cal neurons, which was abated by ML385 treatment
(Figures 7(f) and 7(g)).

3.8. Effects of LUT on Neuronal Degeneration In Vitro. It has
demonstrated that both neuronal apoptosis and pyroptosis
contribute to the development of EBI after SAH. PI cannot
pass intact plasma membrane and can only be present in
DNA of cells where the plasma membrane has been com-
promised. During pyroptosis, pores can be formed in the cell
membrane and can be detected by PI staining [26]. TUNEL
staining can detect the DNA breaks when DNA fragmenta-
tion occurs in the last phase of apoptosis. Therefore, in this
experiment, we used PI and TUNEL staining to examine
neuronal pyroptosis and apoptosis, respectively. As shown,
OxyHb stimulation significantly increased the number of
PI- and TUNEL-positive neurons, which were decreased by
LUT treatment (Figures 8(a)–8(d)). In contrast, the
improvement by LUT was reversed by ML385 administra-
tion (Figures 8(a)–8(d)). These suggested that LUT could
reduce neuronal pyroptosis and apoptosis in vitro.

Sh
am

+v
eh

ic
le

SA
H

+v
eh

ic
le

SA
H

+L
U

T

SA
H

+L
U

T+
M

L3
85

0

100

200

300

G
SH

-p
x 

le
ve

ls 
(U

/m
g)

⁎

⁎ ⁎

(g)

Figure 3: Effects of LUT on oxidative damage after SAH. Quantification of (a) MDA and (b) H2O2 levels in all groups (n = 6 per group). (c,
d) Representative photomicrographs and quantification of 8-OHdG staining (n = 6 per group). (c) Magnification ×200, scale bar 50 μm. For
immunofluorescence staining, the basal temporal lobe adjacent to the clotted blood was evaluated. Quantification of (e) SOD, (f) GSH, and
(g) GSH-Px in all groups (n = 6 per group). Bars represent the mean ± SD. ∗P < 0:05.
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4. Discussion

Neuroinflammation and oxidative damage are two major
etiological factors resulting in the secondary brain injury
after SAH [27–29]. After the initial hemorrhage, blood com-
ponents enter the subarachnoid space and activate innate
and adaptive immune cascade responses. Microglia activa-
tion and neutrophils recruit to the damaged tissue and
release a variety of inflammatory factors that exacerbate
neurons [30]. Excessive ROS can elicit neuronal damage by
promoting lipid peroxidation and DNA damage. Moreover,

the robust inflammatory response produces additional
excess ROS, further aggravating the redox imbalance and
thereby inducing neuronal cell death and neurological defi-
cits after SAH [31–33]. Accordingly, pharmacologically
reducing neuroinflammation and oxidative damage might
provide a means to ameliorate SAH.

In recent years, mounting evidence has suggested that
LUT is a promising neuroprotective agent in a variety of
neurological disorders [6]. It has been demonstrated that
LUT has a wide range of pharmacological properties
including antioxidant free-radical scavenging and anti-
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Figure 4: Effects of LUT on inflammatory response after SAH. Representative photomicrographs and quantification of (a, b) Iba-1 and (c, d)
myeloperoxidase (MPO) staining (n = 6 per group). (a, c) Magnification ×200, scale bar 50 μm. For immunofluorescence staining, the basal
temporal lobe adjacent to the clotted blood was evaluated. Quantification of (e) IL-1β, (f) IL-6, and (g) TNF-α in all groups (n = 6 per
group). Bars represent the mean ± SD. ∗P < 0:05.
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Figure 5: Effects of LUT on neurological function and neuronal death after SAH. Effects of LUT on (a) neurologic function and latency to
fall in the (b) rotarod test after SAH (n = 12 per group). Representative photomicrographs and quantification of (c, d) caspase-1 and (e, f)
TUNEL staining (n = 6 per group). (c, e) Magnification ×200, scale bar 50μm. For immunofluorescence staining, the basal temporal lobe
adjacent to the clotted blood was evaluated. Bars represent the mean ± SD. ∗P < 0:05.
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Figure 6: Continued.
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inflammatory effects [20, 34, 35]. For example, Kou et al.
reported that LUT alleviated cognitive impairment in
Alzheimer’s disease mouse model via inhibiting endoplasmic
reticulum stress in astrocytes and subsequent neuroinflam-
mation [36]. Tan et al. demonstrated that LUT provided
autophagy and antioxidative effects in both in vivo and
in vitro models of intracerebral hemorrhage [7]. However,
to our knowledge, no study has yet investigated the potential
effects of LUT in experimental SAH and the underlying
molecular mechanisms.

Nrf2 as a critical translate factor in maintenance of redox
homeostasis is widely studied in recent years. After stimula-
tion by oxidative stress, Nrf2 translocates into the nucleus
and binds to the ARE, subsequently inducing antioxidant
enzyme expression [37, 38]. Loads of evidence have indi-
cated that Nrf2 signaling activation could significantly ame-
liorate SAH-induced oxidative damage and brain injury [39,
40]. Intriguingly, LUT has been considered as a powerful
Nrf2 activator in a variety of disorders [7, 8]. Xu et al.
reported that LUT could provide neuroprotective effects in
TBI models both in vivo and in vitro through the activation
of Nrf2-ARE pathway [8]. Xiao et al. indicated that LUT
attenuated cardiac ischemia/reperfusion injury in diabetic
rats by activation of Nrf2 signaling [41]. Thus, it is reason-
able to predict that LUT can activate Nrf2 signaling and con-
fer cerebroprotective effects in SAH. It has been clarified that
Nrf2 can transcriptionally induce numerous antioxidative
genes including HO-1, GSH-Px, and SOD. HO-1 plays a
prominent role in maintenance of cellular homeostasis by
degrading heme [42]. SOD and GSH-Px are antioxidant
enzymes which play fundamental and indispensable role in
against free radical attack [43]. Consistent with these previ-
ous studies, we found that LUT also markedly enhanced
the translocation of Nrf2 into the nucleus and Nrf2-
involved antioxidative enzyme expression. Meanwhile,
LUT significantly reduced the brain MDA and 8-OHdG

contents after SAH insults. MDA and 8-OHdG are two key
biomarkers for lipid peroxidation and DNA oxidative dam-
age caused by excessive ROS, respectively. These results indi-
cated that LUT could protect against SAH injury through
scavenging ROS and enhancing the endogenous antioxida-
tive system by the modulation of Nrf2 signaling.

Another interesting finding in the current study was that
LUT ameliorated neuroinflammation and inhibited NLRP3
inflammasome signaling activation. NLRP3 inflammasome
is a cytoplasmic multiprotein complex of the innate immune
system that can initiate a series of immune-inflammatory
reactions [44]. It has been proved that NLRP3
inflammasome-mediated neuroinflammation plays a promi-
nent role in the secondary brain injury after SAH [11, 12].
Once activated, NLRP3 inflammasome cleaves procaspase-
1 resulting in pro-IL-1β and pro-IL-18 activation. The
inflammatory cytokines can further activate immune-
related cells, such as neutrophils, to generate the correspond-
ing immune effects. In addition to amplify inflammation,
cleaved caspase-1 is the canonical executor of pyroptosis to
further exacerbate neuronal cell death after SAH [10]. Accord-
ing to recent studies, LUT is able to inhibit NLRP3 inflamma-
some activation in different research fields [20, 21]. In our
current study, we also observed that LUT significantly sup-
pressed NLRP3 inflammasome activation after SAH and the
subsequent inflammatory response, including microglia acti-
vation, neutrophil infiltration, and inflammatory cytokine
release. In addition, the SAH-induced neuronal apoptosis
and pyroptosis were markedly reduced after LUT administra-
tion. However, the underlying mechanism that mediates the
inhibition of NLRP3 inflammasome by LUT in SAH needs
to be elucidated.

It is known that ROS production is one of the major sig-
nals that trigger the NLRP3 inflammasome activation [13].
Both ROS overproduction and neuroinflammation are con-
sidered crucial elements of EBI after SAH, and each of them
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Figure 6: Effects of LUT treatment on oxidative stress, inflammatory response, and neuronal damage in vitro. Quantitative analysis of (a)
cell viability and (b) LDH activity in the indicated groups (n = 6 per group). (c) Representative photomicrographs and (d) quantification of
DCFH immunofluorescence (n = 6 per group). (c) Magnification ×200, scale bar 50μm. Quantification of (e) IL-1β, (f) IL-6, and (g) TNF-α
in culture medium (n = 6 per group). Bars represent the mean ± SD. ∗P < 0:05.
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Figure 7: Effects of LUT treatment on Nrf2 and NLRP3 inflammasome activation in vitro. (a) Representative Western blots and
quantification of expression of (b) Nrf2, (c) NLRP3, (d) ASC, (e) cleaved caspase-1, and (f) caspase-1 (n = 6 per group). (g)
Representative photomicrographs of Nrf2 immunofluorescence staining. (g) Magnification ×200, scale bar 50μm. (h) Quantification of
Nrf2 immunofluorescence staining in all experimental groups (n = 6 per group). Bars represent the mean ± SD. ∗P < 0:05.
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promotes and amplifies the other one [23]. Under normal
conditions, the basal level of the NLRP3 inflammasome is
low in immune cells. Upon stimulation by ROS, the NLRP3
inflammasome is assembled and activated to amplify the
innate immune response after SAH [23]. Previous studies
have proved that decreasing ROS overproduction could pre-
vent NLRP3 inflammasome activation and mitigate the ele-
vated levels of proinflammatory cytokine release in
different neurological disorders, thereby ameliorating neuro-
inflammation [13, 23, 45]. As discussed above, we hypothe-
sized that LUT might affect ROS production by modulating
Nrf2 activation, thereby preventing NLRP3 inflammasome
signaling after SAH. The relationship between Nrf2 signal-
ing and NLRP3 inflammasome in other research fields has
been well discussed in a variety of studies in recent years
[46, 47]. Mounting evidence has demonstrated that Nrf2
activation could inhibit NLRP3 inflammasome by inducing

numerous antioxidative genes including HO-1, thereby scav-
enging ROS production [48, 49]. HO-1, one of the cytopro-
tective enzymes induced by the Nrf2-ARE pathway, has been
widely regarded as a protective mechanism against oxidative
stress and ROS [50, 51]. It has been proved that increased
HO-1 expression could remove ROS and maintenance of
the internal cellular environment. For example, Seiwert
et al. reported that HO-1 protects human colonocytes
against ROS formation, oxidative DNA damage, and cyto-
toxicity induced by heme iron [52]. Interestingly, we also
observed that LUT treatment significantly increased HO-1
expression after SAH, suggesting that HO-1 might be
involved in the inhibitory effects of LUT on NLRP3 inflam-
masome activation. To further address this hypothesis, we
employed a novel and selective Nrf2 inhibitor ML385 in
our study [53]. As expected, we observed that ML385 pre-
treatment significantly abated LUT-induced Nrf2 signaling-
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Figure 8: Effects of LUT treatment on PI staining and TUNEL staining in vitro. (a) Representative photomicrographs of PI
immunofluorescence staining. (b) Quantification of PI staining in primary cortical neurons (n = 6 per group). (c) Representative
photomicrographs of TUNEL immunofluorescence staining. (d) Quantification of TUNEL staining in primary cortical neurons (n = 6 per
group). (a, c) Magnification ×200, scale bar 50μm. Bars represent the mean ± SD. ∗P < 0:05.
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mediated HO-1 expression, ROS suppression, and NLRP3
inflammasome inhibition. Additionally, ML385 treatment
abrogated the neuroprotective effects of LUT against SAH-
induced oxidative damage, neuroinflammation, neuronal
apoptosis, and pyroptosis. These findings supported the
notion that LUT inhibited NLRP3 inflammasome activation
might involve Nrf2 signaling pathway. Based on these out-
comes, we further evaluated the effects of LUT in an
in vitro SAH model. In agreement with the results in vivo,
LUT inhibited neuroinflammation, oxidative damage, and
neuronal apoptosis and pyroptosis in vitro, which were
associated with NLRP3 inflammasome inhibition and Nrf2
activation and were reversed by ML385. Taken together,
our data indicated that the cerebroprotective effects of
LUT might be attributed to its ability to induce Nrf2 activa-
tion and thereby inhibiting the NLRP3 inflammasome
signaling.

However, there are several limitations in our study.
Firstly, in the dose-response experiments, we cannot con-
clude that 60mg/kg LUT is the optimum dose to provide
maximal effect. Although there were no statistical differences
between 30mg/kg and 60mg/kg LUT in ameliorating neuro-
logical deficits and neuronal degeneration, we can still see
that 60mg/kg LUT had a better act on neurological out-
comes and neuronal survival after SAH. A larger sample size
might decipher these discrepancies. Additionally, the toxic-
ity studies should be further conducted to verify the optimal
dose of LUT in SAH. Secondly, how LUT regulates Nrf2
activation remains unclear. Some possible mechanisms
might be involved in this action, such as sirtuin 1 (SIRT1),
adenosine monophosphate-activated protein kinase
(AMPK), and PI3K [14–16, 54]. Yang et al. reported that
dietary LUT could attenuate HgCl2-induced liver dysfunc-
tion by regulating SIRT1/Nrf2/TNF-α signaling pathway.
Another two previous studies have indicated that LUT could
significantly increase levels of PI3K and phosphorylated
AMPK to activate Nrf2 pathway in different research areas
[14, 55]. However, whether these molecular targets are
attributable to the activation of Nrf2 signaling by LUT after
SAH is needed to be clarified. Lastly, it should be noted that
in addition to HO-1, Nrf2 can transcriptionally induce a
variety of antioxidative genes including NAD(P) H dehydro-
genase quinone 1 (NQO-1). It has been demonstrated that
NQO-1 plays a critical role in monitoring cellular redox
state and protects against oxidative stress induced by a vari-
ety of metabolic situations [56, 57]. Whether NQO-1 is
involved in the beneficial effects of LUT against SAH
remains obscure. Given that the present research is a pilot
study, further experiments are still needed to validate the
exact role of LUT following SAH.

5. Conclusion

In conclusion, we provide the first evidence that LUT exerts
cerebroprotective effects against SAH by inhibiting NLRP3
inflammasome activation, which may be largely dependent
on upregulation of the Nrf2 signaling pathway. LUT may
serve as a promising candidate for SAH treatment.
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