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Background: Vinpocetine (VPN) is a synthetic derivative of the Vinca minor alkaloids. The

drug is characterized by a short half-life, limited water solubility and high hepatic first-pass

effect. The objective was to develop different lipid-based nanocarriers (NCs) loaded into a

thermosensitive in situ gelling (ISG) system to improve VPN bioavailability and brain

targeting via intranasal (IN) delivery.

Methods: Different lipid-based NCs were developed and characterized for vesicle size, zeta

potential, VPN entrapment efficiency (EE) and morphological characterization using transmis-

sion electron microscope (TEM). The prepared NCs were loaded into ISG formulations and

characterized for their mucoadhesive properties. Ex-vivo permeation and histological study of

the nasal mucosa were conducted. Pharmacokinetic and brain tissue distribution were

investigated and compared to a marketed VPN product following administration of a single

dose to rats.

Results: VPN-D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) micelles

nano-formulation showed the smallest particle size, highest EE among the studied NCs.

TEM images revealed an almost spherical shape for all the prepared NCs. Among the

NCs studied, VPN-loaded TPGS micelles demonstrated the highest percent cumulative

VPN ex vivo permeation. All the prepared ISG formulations revealed the presence of

mucoadhesive properties and showed no signs of inflammation or necrosis upon histolo-

gical examination. Rats administered IN VPN-loaded TPGS-micelles ISG showed super-

ior VPN concentration in the brain tissue and significant high relative bioavailability

when compared to that received raw VPN-loaded ISG and marketed drug oral

tablets. VPN-D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) micelles

nano-formulation showed the smallest particle size, highest EE among the studied NCs.

TEM images revealed an almost spherical shape for all the prepared NCs. Among the

NCs studied, VPN-loaded TPGS micelles demonstrated the highest percent cumulative

VPN ex vivo permeation. All the prepared ISG formulations revealed the presence of

mucoadhesive properties and showed no signs of inflammation or necrosis upon

histological examination. Rats administered IN VPN-loaded TPGS-micelles ISG

showed superior VPN concentration in the brain tissue and significant high relative

bioavailability when compared to that received raw VPN-loaded ISG and marketed

drug oral tablets.

Conclusion: VPN-loaded TPGS-micelles ISG formulation is a successful brain drug deliv-

ery system with enhanced bioavailability for drugs with poor bioavailability and those that

are frequently administered.
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Introduction
Intranasal (IN) drug administration is characterized by

enhanced bioavailability, especially for drugs that easily cross

themucousmembranes, due to the enriched vascular supply in

the nasal cavity. This route avoids the drug destruction either

by gastrointestinal enzymes or by hepatic first-pass effect.

Moreover, the rate of absorption and plasma concentration of

IN administered drugs are comparable to intravenous admin-

istration and are usually better than subcutaneous or intramus-

cular routes.1,2 It is a noninvasive, simple, convenient and safe

route for all patients.3 In addition, IN administration may

achieve an effective therapeutic brain drug concentration,

through nose–brain pathway, that allows direct delivery to

the cerebrospinal fluid.4,5 Therefore, IN route can diminish

drug distribution to nontargeted sites and decreases systemic

adverse effects.2,6,7 Despite these advantages, the IN delivery

suffers from some restrictions such as poor drug permeability

from nasal mucosa, mucociliary clearance, low drug retention

time and nasomucosal toxicity.8,9 To overcome these restric-

tions, various colloidal drug nanocarriers (NCs) especially the

lipid-based ones have been utilized to improve the drug perme-

ability and absorption.7,10,11 The rapid nasal mucociliary clear-

ance, that results in low absorption and poor bioavailability,

could be overcome by the development of mucoadhesive in

situ nasal gelling drug delivery systems that prolong the reten-

tion time and control the drug delivery via this route.12 Such

formulations are supposed to help the IN drug delivery but, the

clinical success of IN therapy is limited owing to the irritation

of the nasal mucosa or owing to the frequent and high dose of

the formulation. Hence, our research focused on the develop-

ment of a suitable lipid-based NCs to overcome these barriers.

Biomolecules as lipids, proteins and carbohydrates

have been utilized to fabricate different types of nanopar-

ticulate drug delivery systems that are suitable for delivery

of many active pharmaceutical ingredients and appropriate

for clinical applications.13 Among these systems, lipid-

based NCs are considered effective drug delivery systems

due to their unique formulation components. The classic

example of the lipid-based NCs is liposomes that mainly

consist of phospholipid bilayers which are the main com-

ponents of the biological cell membranes.14 Currently,

many liposomal formulations are in clinical use or await-

ing clinical trial results.15 In addition to liposomes, trans-

fersomes (TFs) and ethosomes are also phospholipid-based

NCs that have been reported to be successful alternatives

for liposomes.16–18 Recently, solid lipid nanoparticles

(SLNs) and nanostructure lipid carriers (NLCs) have

been investigated. They are ease to scale up, but both

formulations depend on the presence of other lipid com-

ponents in addition to the phospholipids. Many reports

have described the successful development of drug-loaded

SLNs and NLCs and their potential application in drug-

delivery process.19–21

Polymeric micelles are nanostructured assemblies that

consist of block copolymers of amphiphilic macromole-

cules. They represent an effective delivery system for

poorly soluble drugs.22 The amphiphilic macromolecules

are spontaneously assembled into submicroscopic nanos-

tructures that enclose water-insoluble drugs. D-α-toco-
pheryl polyethylene glycol 1000 succinate (TPGS) is

formed by conjugation of the hydrophobic vitamin E suc-

cinate with the hydrophilic polyethylene glycol.23 TPGS is

a pharmaceutical additive, approved by the United State

Food and Drug Administration and is used in different

drug formulations to solubilize poorly soluble drugs,

enhances cellular drug uptake and prolongs the drug

blood circulation time.24 TPGS is a surfactant (nonionic

type) that can be used in the preparation of other nanos-

tructured formulations that utilize surfactants.25 Moreover,

TPGS has been reported to enhance the transport of drug

across biological membrane barriers such as brain

endothelium and to modify biological response by inhibit-

ing P-glycoprotein (P-gp) that is responsible for decreas-

ing efflux of the drugs from the cells.26

Vinpocetine (VPN) is a synthetic alkaloid obtained from

the Periwinkle plant. It is used effectively to improve brain

blood flow.27 VPN inhibits phosphodiesterase type-1

enzyme that selectively improves brain blood supply. VPN

enhances cerebral circulation and brain oxygen utilization

and facilitates blood flow redistribution to ischemic areas.

VPN has a limited aqueous solubility (2.4 μg/mL) with pKa

=7.31 (weak base), short half-life (1–2 hrs) and poor bioa-

vailability (75% metabolized in liver).28,29 So, it would be a

benefit for patients utilizing VPN to develop a formulation

that improves the drug bioavailability. To the best of our

knowledge, no previous studies have investigated the phar-

macokinetics and brain concentration of VPN from

Pluronic-based in situ gel (ISG) preparation loaded with

drug lipid-based NCs following IN administration.

In this study, different VPN-loaded lipid-based NCs

were formulated and loaded into the ISG system suitable

for IN delivery to enhance the drug bioavailability and

brain tissue distribution.
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Materials and methods
Materials
VPN was procured from Wuhan Trustchem Fine

Chemical Co., Ltd. (Wuhan, China). Glyceryl monostea-

rate (GMS) was gifted from Nikkol Chemicals Co., Ltd

(Tokyo, Japan). Hydrogenated phosphatidylcholine (PC)

(95% hydrogenated phosphatidylcholine, 0.5% hydroge-

nated lyso-phophatidylcholine) was obtained as a kind

gift from American Lecithin company (Oxford, CT,

USA). Stearic acid was procured from Fischer

Scientific (Loughborough, UK). Dicetyl phosphate

(DCP), cholesterol, ethanol and methanol were pur-

chased from Fisher Scientific (Pittsburgh, PA, USA).

Poloxamer 407 was obtained from Xi’an Lyphar

Biotech Co., Ltd (Xi’an, China). Tween 80, Span 80,

polyethylene glycol (PEG) 4000, chloroform and D-α-
tocopherol polyethylene glycol 1000 succinate (TPGS)

were procured from Sigma-Aldrich (St. Louis, MI,

USA). Carbopol 940 was obtained from Acros

Organics (Morris Plains, NJ, USA).

Preparation of different VPN-loaded lipid-

based NCs
Different optimized VPN-loaded lipid-based NCs, namely,

SLNs, TFs, PEGylated liposomes (Peg-Lips) and TPGS-

micelles were prepared as described in our previously

published work.17,18,30–33 Table 1 illustrates the composi-

tion of the prepared lipid-based NCs.

Preparation of VPN-loaded SLNs

Melt-emulsion ultrasonication and low-temperature solidifi-

cation were the techniques utilized to develop VPN-loaded

SLNs.34,35 Briefly, the specified amount of GMS was heated

at 80°C and 0.25%w/v of VPN (based on the total volume of

the formulation) was solubilized in the lipid phase. An aqu-

eous surfactant (Tween 80, span 80 or both) solution (80°C)

was prepared, added to the melted lipid phase and the mix-

ture was stirred at 1200 rpm for 15 mins at 80°C until a milky

color emulsion was formed. The prepared primary emulsion

was then ultrasonicated for 10mins using a Sonics VCX 750,

Sonics & Materials INC. (Newtown, CT, USA) until a uni-

form nano-dispersion was formed. The colloidal dispersion

was promptly cooled by immersing the container into ice-

cold water while stirring on a magnetic stirrer for 15 mins

until a homogenous dispersion was obtained.31

Preparation of VPN-loaded TFs

Preparation of VPN-loaded TFs was achieved using lipid

film hydration technique,36 with some modifications. The

specified amount of VPN (250 mg), PC and nonionic

surfactant, described in Table 1, were dissolved in metha-

nol using an ultrasonic bath. The obtained dispersion was

subjected to rotary evaporation under reduced pressure at

45°C until the complete formation of a thin film on the

flask wall. This film was maintained overnight in a

vacuum oven to confirm complete removal of organic

solvent. Finally, the film was then hydrated with 100 mL

PBS (pH =7.5) for about 2 hrs at 19.8°C.18

Table 1 Composition and characterization of VPN-loaded lipid-based NCs

Nanocarrier type Composition PS (nm) PDI ZP (mV) EE (%)

Ingredients Level

SLNs GMS (%) 5 386±27 0.481 −3.16±1.45 89.01

Surfactant (%) 1

Surfactant HLB 11.1

TFs VPN: PC (molar ratio) 1:4.8 590±47 0.444 1.89±1.01 97.34

PC: Surfactant (%) 95:5

Surfactant HLB 4.3

Peg-Lips Hydrogenated PC (%) 1.5 205±73 0.494 −52.27±0.80 59.05

Cholesterol (%) 0.25

DCP (%) 0.3

PEG 4000 (%) 0.25

TPGS-micelles TPGS (%) 2 13±2 0.484 −2.79±0.35 100

Notes: All NCs contain the same concentration of VPN (0.25%). Span and Tween were used as non-ionic surfactant.

Abbreviations: SLNs, solid lipid nanoparticles; PEG, polyethylene glycol; GMS, glyceryl monostearate; VPN, vinpocetine; TPGS, D-α-tocopherol polyethylene glycol 1000

succinate; PS, particle size; ZP, zeta potential; EE, entrapment efficiency; DCP, dicetyl phosphate; PC, phosphatidylcholine.
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Preparation of VPN-loaded Peg-Lips

Thin-film hydration technique was utilized to develop VPN-

loaded Peg-Lips as previously described30 with slight mod-

ifications. The calculated amounts of VPN (250 mg), hydro-

genated PC, cholesterol, DCP and PEG 4000 were dissolved

in 40 mL of methanol in chloroform mixture (40% v/v).

Organic solvents were removed under vacuum using Buchi

Rotavapor R-200; BÜCHI Labortechnik AG (Flawil,

Switzerland) at 60°C until a thin film was formed. Traces

of the organic solvents were removed after the film was kept

overnight in a vacuum oven at 30°C. Multilamellar Peg-Lips

were assembled by hydrating the dried lipid film at 60°Cwith

100 mL of isotonic buffer for about 10 mins. Finally, VPN-

loaded Peg-Lips vesicles were subjected to vesicle size

reduction using a probe sonicator (Qsonica, LLC.,

Newtown, CT, USA) for 30 s.30

Preparation of VPN-loaded TPGS-micelles

VPN-loaded TPGS-micelles were prepared by dissolving

VPN (0.25% w/v) and TPGS (2% w/v) in a 50 mL of

ethanol over a magnetic stirrer for about 5 mins. Distilled

water (100 mL) was added to the prepared dispersion.

Ethanol was completely removed using Buchi Rotavapor

R-200; BÜCHI Labortechnik AG (Flawil, Switzerland).

The obtained micellar dispersion was kept in a refrigerator

at 4°C until further characterization.33

NCs characterization
Particle size and zeta potential determination

Malvern Zetasizer Nano ZSP, Malvern Panalytical Ltd

(Malvern, United Kingdom), that utilizes the dynamic

light scattering with non-invasive backscatter (NIBS)

optics technique, was used to determine the particle size

and zeta potential of the prepared lipid-based NCs.

Measurement for each sample was done in triplicate.

Entrapment efficiency (EE) determination

For VPN-loaded SLNs, TFs and Peg-Lips, the percent EE

was determined using an indirect centrifugation method.

To isolate the free unentrapped VPN from the prepared

NCs, aliquots from each formulation were centrifuged at

20,000 rpm for 1 hr at 4°C. The supernatant was collected

and passed through a 0.2-µm filter. VPN concentration

was determined using a reported HPLC method,37 except

for slight modifications. Briefly, the mobile phase con-

sisted of methanol and 0.05 ammonium acetate buffer

mixture of pH 5.5 (80: 20 v/v). The mobile phase was

flowing at a rate of 1 mL/min through a Ponapak C18

analytical column, 4.6×250 I.D. mm, particle size 125A

(Waters Associates, Dublin, Ireland). The injection volume

was adjusted at 20 µL and the detection wavelength was

set at 273 nm. The % VPN entrapped in each NCs for-

mulation was calculated using Equation 1.

EE %ð Þ ¼
Initial amount of VPN used� Amount of
unentrapped VPN in the supernatant

The initial amount of VPN used
X100

(1)

For VPN-loaded TPGS-micelles, the prepared micellar

dispersion was centrifuged at 20,000 rpm for 5 mins at

4°C to separate unloaded VPN.38 The supernatant,

which contained VPN-loaded TPGS-micelles, was col-

lected, diluted with anhydrous ethanol and the drug

concentration was determined using the HPLC method

described above. EE% was calculated using

Equation 2.

EE %ð Þ in micelles ¼
The weight of VPN
in the micellar dispersion

The weight of feeding VPN
X100

(2)

Examination using transmission electron

microscope (TEM)

Few drops of each NCs formulation were mounted on a

carbon-coated grid and left for approximately 2 mins

before examination using TEM model JEM-1230 (JOEL,

Tokyo, Japan).

Incorporation of VPN-loaded NCs into

thermosensitive ISG
ISG formulations loaded with NCs containing VPN

equivalent to 0.25% w/v were developed using a combina-

tion of poloxamer 407 (22% w/v) and carbopol 940 (0.5 %

w/v) by cold method. Selection of poloxamer and carbopol

levels was based on the polymeric concentrations that

achieve good ISG formulation characterization, which are

in good agreement with our previously published work.31

Briefly, the calculated amount of poloxamer and carbopol

was successively added to aqueous cold dispersion of

VPN-loaded NCs at 4°C on a magnetic stirrer. The

obtained dispersions were kept in the refrigerator (6°C)

overnight. ISG formulation loaded with raw VPN (0.25%

w/v) was also prepared, using the same method described

above.
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Characterization of VPN-loaded ISG

formulations
Gelation temperature determination

The sol–gel temperature (Tsol-gel) for the prepared ISG

formulations was evaluated by the tube inversion method

previously published.39,40 Briefly, 1 mL of each formula-

tion was placed in a glass vial and stored overnight in the

fridge. Each ISG formulation was heated, with 1°C incre-

ments per step, in a thermostatic control heating water

bath. The Tsol-gel was recorded in the temperature range

20–30°C. The Tsol-gel was considered as the temperature at

which the ISG solution stopped flowing after complete

inversion of the tube.

Determination of the pH

The pH of the prepared ISG formulations was determined

using a calibrated pH meter using pH/mV/°C meter pH 11

series Oakton®, manufactured by Euteoh Instruments

(Thermo Fisher Scientific, Singapore). Determinations

were carried out in triplicate.

Evaluation of the mucoadhesive strength

The mucin particle method was utilized to study the

mucoadhesiveness of the ISG formulations.31,41 Briefly,

bovine mucin suspension was prepared by dispersing a

known weight (10 mg) of the mucin powder in 100 mL

phosphate buffer solution of pH 7.4. Then, a specified

weight (150 mg) of the ISG formulation was added to 10

mL of the prepared mucin suspension with continuous

shaking. After incubation for 48 hrs, zeta potential of

each mixture was estimated using a Malvern Zetasizer

Nano ZSP (Malvern Panalytical Ltd), and the obtained

value was compared to that of the raw bovine mucin

suspension. The mucoadhesiveness, interaction of the stu-

died formulation components with mucin, was determined

by identifying the change in zeta potential value.31,41

Ex vivo permeation studies

The permeation of VPN, from the prepared ISG formula-

tions loaded with either VPN-NCs or raw VPN, through

excised bovine nasal mucosa was carried out using Franz

diffusion cells, Microette Plus (Hanson Research, CA,

USA). Fresh nasal mucosa was carefully excised from

the nasal cavity of a bovine snout that was obtained from

a local slaughterhouse. The prepared nasal mucosal sam-

ples were placed in the diffusion apparatus. The donor

compartment was filled with 250 μL of the ISG formula-

tion. Cells of the receptor compartments were filled with 7

mL phosphate buffer of pH 6.8. The temperature was kept

at 34ºC and stirring speed was adjusted at 400 rpm.

Aliquots were automatically collected from the receptor

media for 12 hrs at specified time intervals and replaced

with fresh media. The concentration of VPN was deter-

mined using HPLC method described above. The experi-

ment was performed in triplicate.

The permeation profiles of VPN were constructed by

plotting the cumulative VPN amount permeated (Q) per

unit area as a function of time. The steady-state flux (JSS)

was calculated for both the initial and the delayed permeation

phases from the corresponding slopes. The permeability coef-

ficients (Pc) were calculated by dividing the delayed flux by

the initial drug load (Co). The diffusivity (D) was also

obtained by plotting the cumulative amount of VPN perme-

ated versus the square root of time and applying Equation 3.

D ¼ Slope
2C0

� �2

� π (3)

Histological examination of nasal mucosa
To explore any change or modification in the intra-nasal

tissues that arises due to IN application of the VPN-loaded

TPGS-micelle ISG formulation, microscopic examination of

the treated nasal epithelium was accomplished. The studied

ISG formulation was applied on freshly separated excised

bovine nasal mucosa for 12 hrs in the Franz diffusion cells as

previously stated in the ex vivo permeation study. Following

treatment, nasal mucosal samples were removed and stored

in formalin (10%), dehydrated and finally embedded in par-

affin wax. Samples were cut into 4-micron sections, stained

with hematoxylin and eosin and Gomori’s Trichrome and

examined using Nikon Eclipse 80i digital imaging light

microscopy (Kanagawa, Japan). For comparative study, the

control sample was also investigated. Each tissue sample was

assessed for any sign of irritation, inflammation, and the

appearance of epithelial and goblet cells.42

Pharmacokinetic and brain tissue

distribution after IN administration
The pharmacokinetics and brain tissue distribution of VPN

following IN administration of ISG formulations contain-

ing either VPN-loaded TPGS-micelles or raw VPN was

evaluated. The study was conducted in comparison with a

marketed oral VPN tablet, Vinporal® 5 mg (Amriya

Pharmaceutical Industries Company, Alexandria, Egypt),
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to determine the relative bioavailability. The concentration

of VPN in the brain was calculated using Equation 4.

VPN
concentration ng=gð Þ ¼

VPN concentartion in 1 ml
homogenate� Total volume
of homogenate
Average weight of rat brain

(4)

Animal population

Male Sprague-Dawley rats, with an average weight of 260

g, were kept in a pathogen-free space in the Department of

Pharmacology and Toxicology, Faculty of Pharmacy, King

Abdulaziz University (KAU), Jeddah, KSA. The animal

experimental protocol was revised and approved by the

Animal Ethics and Animal Care Committee, Faculty of

Pharmacy, KAU (Approval No. 1031439). The study ful-

filled with the Declaration of Helsinki, the Guiding

Principle in Care and Use of Animals (DHEW production

NIH 80±23) and the “Standards of Laboratory Animal

Care” (NIH distribution #85±23, reconsidered in 1985).

Rats were divided into three groups (15 per group). Group

I administered IN ISG formulation loaded with VPN-

TPGS micelles; group II given IN ISG formulation con-

taining raw VPN; group III administered oral marketed

VPN tablet that was crushed and suspended in 0.25%

sodium carboxymethyl cellulose solution. Each rat was

administered a VPN dose of 10 mg/kg.

Sample collection

Animals were anesthetized and blood samples of 0.5 mL

(n=6) were taken at different time points of 0.5, 1, 1.5, 2,

4, 6, 8, 12 and 24 hrs. For brain tissue samples, animals

were euthanized by cervical dislocation, brain tissues

(n=3) were harvested after 6, 12 and 24 hrs and stored at

−80ºC. Brain tissues were homogenized in PBS. Plasma

and brain tissue homogenate samples were treated and

analyzed as described in the following section.

Chromatographic quantification of VPN

The concentrations of VPN in the plasma and brain tissue

samples were analyzed by liquid chromatography-tandem

mass spectrometry method. HPLC Agilent 1200 system

equipped with Agilent 6420, triple quad mass spectrometer

and controlled by Mass Hunter software was used. The

separation was performed on a Nacherey Nagel, Nucleodur

C18 column, 5 µm, 4.6×250 mm (Duren, Germany). The

mobile phase comprised of 0.1% formic acid and acetonitrile

(29:71, v/v) and the flow rate was adjusted at 0.5 mL/min.

VPN and the internal standard (IS) Valsartanwere detected in

a single-ion monitoring (SIM) scan mode with positive ion

detection. The ions used for the SIM detection were m/z

351.1 for VPN and m/z 436.1 for Valsartan.

Linearity and recoveries

Linearity of the assay method within a VPN concentration

range of 200–800 pg/µL was verified with a regression coef-

ficient (R2=0.9991). All the obtained results were within the

acceptable criteria as previously stated in the recommended

guidelines. The mean recovery of VPN was 102.2% at

200 pg/µL (LLOQ) and 97.5% at 800 pg/µL (ULOQ).

Sample extraction procedure

To a 200 μL of the plasma samples or brain tissue homo-

genate, 50 μL of Valsartan (IS) and 1 mL of acetonitrile

were added. The resulting solution was thoroughly vortex-

mixed for 10 s. After centrifugation at 5000 rpm for

5 mins, 5 μL of the supernatant was injected into the

HPLC system for analysis. The concentration of VPN in

the unknown samples was calculated from the regres-

sion equation obtained from the constructed calibration

curve.

Pharmacokinetic treatment

The pharmacokinetic parameters of VPN in the collected

plasma data were assessed using non-compartmental phar-

macokinetic treatment utilizing KineticaTM software (version

4, Thermo Scientific, MA, USA). The maximum plasma

VPN concentration (Cmax), time to reach maximum VPN

plasma concentration (tmax), area under the plasma VPN

concentration time curve from zero to the last measurable

VPN concentration (AUC0–t), area under the plasma VPN

concentration time curve from zero to infinity (AUC0–α),

mean residence time (MRT), the elimination rate constant,

elimination half-life and total body clearance were measured.

The data were expressed as the mean ± SD.

Statistical analysis of the data

The data obtained was analyzed using GraphPad Prism 6

(GraphPad Software, San Diego, CA) software. Two-way

ANOVA followed by Tukey’s multiple comparisons test

was used to assess the significance of the difference

between the investigated groups.

Results and discussion
Evaluation of the prepared VPN-loaded

lipid-based NCs
Table 1 shows the results of the particle size for the

prepared NCs formulations. VPN-loaded TFs revealed
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the largest size (590±47 nm), while VPN-loaded TPGS-

micelles displayed the smallest size (13±2 nm).

Furthermore, the polydispersity index of the prepared

VPN-loaded lipid-based NCs was between 0.444 and

0.494, which indicates acceptable size distribution. TEM

images (Figure 1) showed a spherical particle morphology

for all the prepared colloidal dispersion. The obtained

images confirmed the uniformity in size distribution that

were comparable with the data obtained by the Zetasizer

Nano ZSP. Due to its content of the charge-inducing agent

(DCP), the colloidal dispersion of VPN-loaded Peg-Lips

showed the highest stability with a zeta potential value of

−52.27±0.80 mV. This Peg-Lips displayed the lowest per-

centage of VPN entrapped (59.05%), whereas the remain-

ing NCs formulations exhibited high VPN EE that ranged

from 89.01% to 100%. TPGS-micelles demonstrated the

highest EE of about 100% which could be attributed to the

nature of the drug loaded. Yang et al reported high drug

encapsulation efficiency for TPGS-based fabricated

NCs.43 Zhu et al also stated 85–95% EE for docetaxel

vitamin E TPGS NPs.44 Similarly, Muthu et al mentioned

an encapsulation efficiency up to 84.30±0.80% for doce-

taxel-loaded vitamin E TPGS micelles.45 The prepared

TFs and SLNs formulations showed high drug entrapment

of 97.01% and 89.34%, respectively. The Peg-Lips dis-

played the lowest drug EE of 59.05% which is in a good

accordance with the previously reported EE results of the

same formulation.30

Evaluation of the prepared VPN-loaded

ISG formulations
Poloxamer 407 (22% w/v) and carbopol 940 (0.5% w/v)

combination was found to be the optimum concentration

for the polymeric solution to form ISG formulations

loaded with different NCs. Addition of hydrophilic poly-

mer such as carbopol 940 to poloxamer 407 enforces the

mechanical strength and overcomes the possibility of the

gel erosion.46

The sol–gel transition temperature of the colloidal dis-

persions ranged from 25.33±1.53°C for TFs-ISG to 30.00

±1.00°C for TPGS-micelles-ISG. It has been previously

Figure 1 Transmission electron microscope images of the prepared lipid-based nanocarriers.
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reported that an ISG system with a sol–gel transition

temperature higher than but close to 25°C is anticipated

to be highly viscous at room temperature, the favorable

sol–gel transition temperature should be close to but not

exceed 30°C.47 In addition, the reported temperature in the

human nose ranged from 30.2±1.7°C to 34.4±1.1°C,48–50

and the sol–gel transition temperature of the prepared

formulations ensures the suitability of their application

on the nasal mucosa. Our results revealed that the pH of

the formulations ranged from 5.54±0.02 to 7.06±0.02. This

pH range indicated that no irritancy is expected from the

formulations following application on the nasal mucosa.

All the prepared ISG formulations revealed the presence of

mucoadhesive properties as indicated by the change in zeta

potential value for all the studied ISG formulation when

compared with raw bovine mucin suspension (data not

shown). The prepared mucin suspension showed a nega-

tive zeta potential value of −9.88 mv. This value is attrib-

uted to ionization of the mucin carboxyl groups as

previously stated.31 A marked decrease in the mucin zeta

potential value was noticed upon mixing with the prepared

ISG formulations. This finding is an indication of the

formulation mucoadhesive properties brought about by

the interaction between mucin and the polymeric ISG

formulation.

Ex vivo permeation studies
Table 2 shows the permeation parameters of VPN from

different NCs-loaded ISG formulations compared with

raw VPN-loaded ISG across the bovine nasal mucosa.

The permeation studies showed that higher permeability

coefficient, diffusion coefficient and maximum amount

of drug permeated (Dmax) were noticed from VPN-

loaded Peg-Lips-ISG followed by VPN-loaded TPGS-

micelles-ISG which is an indication of the ability of

these NCs to penetrate the nasal mucosa to a greater

extent when compared with the other NCs-loaded ISG

formulations and the raw VPN-loaded ISG. Also, the

Peg-Lips-ISG and TPGS-micelles-ISG formulation

recorded the highest steady-state permeation fluxes

(Jss) of 0.7913 and 0.7258 µg/cm2.h, respectively.

While their permeability coefficients (Kc) reaching

0.0012 and 0.0011 cm/h, respectively, indicating a gen-

eral better permeation results than other NC formula-

tions (Figure 2). The highest amount of drug diffused

(639.029 µg) with the lowest percentage of VPN per-

meated over 12 hrs (58.38%) reflect the superiority of

TPGS-micelles-ISG in the diffusivity and in sustaining

the permeation over the other NCs formulations. The

lipophilic nature and the small particle size of micelles

could explain this nasal permeation enhancement.

Another reason for this finding encompasses the fact

that the formation of occlusive monolayer film on a

large surface area of the mucous membrane diminishes

the loss of moisture due to evaporation, which can

enhance the drug permeation.51 Additionally, the surfac-

tant activity of TPGS can fluidize or loosen the inter-

cellular lipid layer of the nasal mucosa and so enhances

the drug permeation.52,53 Also, the enhanced permeabil-

ity of TPGS-micelles might be attributed to the P-gp

inhibitory effects which has been approved by the

FDA.43,54,55

Assessment of nasal mucosa irritancy

upon application of TPGS-micelles-ISG

formulation
Figure 3 demonstrates the histological photomicrographs

of the nasal mucosa after 12 hrs of treatment with

Table 2 Gelation temperature and ex vivo permeation parameters of VPN from different NCs-loaded ISG compared with raw VPN-

loaded ISG across bovine nasal mucosa

Formula Gelation tem-

perature (°C)

Cumulative VPN

permeated (%)

Dmax

(µg)

Steady-state flux

(Jss) (µg/cm
2.h)

Permeability coeffi-

cient (PC) (cm/h)

Diffusion

coefficient

(D)

TPGS-micelles-ISG 29.00±1.73 58.38±5.19 639.029 0.7258 0.001116626 0.001581934

Peg-Lips-ISG 25.33±1.53 49.57±7.42 511.941 0.7913 0.001217435 0.001814617

SLNs-ISG 26.67±1.15 78.76±4.19 379.501 0.5585 0.000859353 0.000911253

TFs-ISG 30.00±1.00 98.31±2.82 322.203 0.3771 0.000580095 0.000407787

Raw VPN-ISG 23.67±0.58 34.54±7.80 224.536 0.2039 0.000313735 0.000123760

Note: 0.5% Carbopol 940 and 22% poloxamer 407 were used in each ISG formulation.

Abbreviations: VPN, vinpocetine; NCs, nanocarriers; ISG, in situ gelling; SLNs, solid lipid nanoparticles; TPGS, D-α-tocopherol polyethylene glycol 1000 succinate; TFs,

tranfersomes.
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VPN-loaded TPGS-micelle ISG (Figure 3A) and the

normal (untreated) nasal mucosa (Figure 3B). No signs

of irritancy or inflammation have been observed on the

treated nasal tissue. Also, the normal appearance of both

ciliated respiratory epithelium and goblet cells have

been noticed. Therefore, the poloxamer-based ISG for-

mulation is considered safe to use with respect to nasal

administration which is in good accordance with a pre-

vious study.31

Brain tissue distribution and

pharmacokinetics
To evaluate the in vivo effectiveness of the developed

VPN-loaded TPGS-micelles ISG formulation after IN

administration to male Sprague Dawley rats, the brain

distribution and the pharmacokinetics were studied and

compared to raw VPN-loaded ISG formulation and a

marketed oral VPN tablet. The concentration of VPN
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in the rat’s brain tissue at different time points is

shown in Figure 4. The nasal administration of VPN-

loaded TPGS-micelles ISG formulation exhibited

approximately 10-fold higher in brain tissue than the

corresponding raw VPN-loaded ISG formulation and

the marketed oral VPN tablets after 6 hrs. The plasma

concentration versus time profiles after IN administra-

tion of VPN-loaded TPGS-micelles ISG and the raw

VPN-loaded ISG as well as the oral administration of

VPN tablet is shown in Figure 5. The pharmacokinetic

parameters for each group are summarized in Table 3.

In the brain tissue, rats administered VPN-loaded

TPGS-micelles-ISG showed a much higher VPN con-

centration profile in comparison to that received oral

tablet which displayed irrelevant difference with rats

administered raw VPN-loaded ISG (Figure 4). It was

reported that the human nasal respiratory and olfactory

mucosa contain an efflux transporter known as P-gp

which plays an important role in preventing actively

the drugs influx from the nasal membrane.56,57

Therefore, the incorporation of P-gp inhibitor as

TPGS in the micelles could influence the penetration

of the blood–brain barrier and enhance the brain uptake

with higher concentrations after IN administration.58

This finding indicates that development of VPN in the

form of TPGS-micelles ISG played a major role in the

enhancement of the drug nasal absorption and results in

enhanced drug brain circulation using the TPGS

micelles.

Finally, the developed thermosensitive ISG loaded

with TPGS micelles exhibited enhancement in the phar-

macokinetic parameters with significant high relative

bioavailability. VPN-loaded TPGS-micelles ISG showed

a significant increase in VPN Cmax by 2.2- and 2.6-fold

when compared with the oral VPN tablet and the raw

VPN-loaded ISG, respectively. All formulations reached
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Figure 3 Histological images of the bovine nasal mucosa: (A) after 12-hr

treatment with VPN-loaded TPGS-micelle ISG; (B) the normal (untreated)

nasal mucosa.

Abbreviations: VPN, vinpocetine; ISG, in situ gelling; TPGS, D-α-tocopherol
polyethylene glycol 1000 succinate.
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the maximum plasma concentration after 2 hrs with no

significant difference in the elimination half-life (P-

value >0.05). The relative bioavailability of VPN from

TPGS-micelles ISG was 159.183% compared with the

oral marketed tablet. Whereas, the bioavailability of

VPN was reduced to 84.116% after IN administration

of the raw VPN-loaded ISG when compared with the

marketed tablet. This finding confirms the superiority of

TPGS-micelles in the brain delivery of VPN via admin-

istration of thermosensitive IN ISG although a long-term

study is required.

Conclusion
Successful development of VPN-loaded TPGS-micelles

ISG formulation could be considered a key solution for

VPN short half-life and poor bioavailability. Moreover, the

prepared formulation enhanced the drug brain delivery and

was superior to the marketed drug oral product. So, this

formulation could represent a good alternative for the

currently available marketed drug products.
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