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A taxia-telangiectasia mutated (ATM) kinase, the mutation
of which causes the autosomal recessive disease ataxia-

telangiectasia, plays an essential role in the maintenance of
genome stability (reviewed in ref. 1). ATM (a serine/threonine
protein kinase) senses DNA double-strand breaks and phos-
phorylates several key proteins to initiate the DNA damage
response, leading to cell cycle arrest, DNA repair, or
apoptosis.2 In fact, ATM is one of the master regulators of
the cellular response to radiation-induced DNA damage and a
key determinant of radiosensitivity. DNA damage leads to
activation of ATM kinase activity and phosphorylation of a
number of downstream targets such as p53, CHK2, and KAP-
1.3,4 This activation triggers cell cycle checkpoints, arrest, and
delays in the G1, S, and G2 phases of the cell cycle and
enables DNA repair of double-stranded breaks both by
homologous recombination and by non-homologous end
joining. Hence, fibroblasts and tumor cells are radiosensitized
to x-ray radiation therapy in culture by pharmacological ATM
inhibition, or by ATM mutation and deletion.5 ATM deficiency
has been shown to sensitize cells to inhibition of poly (ADP-
ribose) polymerase (PARP), an enzyme involved in DNA repair
and apoptosis. Conversely, abnormally active ATM also
impairs DNA repair by homologous recombination and
thereby sensitizes cells to PARP inhibition. Thus, timely
activation and inactivation of ATM are both necessary for
efficient repair, and any ATM perturbation could inhibit the
ability of cells to resist DNA damage.6 Clinically, it has been
shown that cells isolated from patients with ataxia telangiec-
tasia lacking functional ATM are sensitive to ionizing radia-

tion.7 The chemotherapy drug doxorubicin also activates ATM
through the production of superoxide radicals and induces
apoptosis via p53.8 However, the role of ATM in myocardial
infarction (MI) has not been studied as extensively as cancer
although ATM-dependent signaling has been suggested to
play a role in the development of atherosclerotic vascular
disease.9

Heart failure usually leads to increased chamber diameter
which results in increased loading capacity of the heart
represented by increased left ventricular end-systolic volume
(LVESV) and left ventricular end-diastolic volume (LVEDV).
Increased LVESV is suggested as one of the major determi-
nants of survival, post-MI.10 Low-level but progressive loss of
myocytes in the chronically overloaded heart is believed
to contribute to cardiac remodeling and contractile failure
(reviewed in ref. 11). Apoptosis in the heart following MI can
be triggered by activation of G-protein coupled receptors
(GPCRs), cytokines, and increased generation of ROS. Several
kinases including ASK1 (apoptosis signal-regulating kinase 1),
p38MAPK, JNK (c-Jun N-terminal kinase), CaMKII as well as
protein kinase C-dependent transcriptional upregulation of the
pro-apoptotic protein NIX (also known as BNIP3L) target
mitochondria.12 CaMKII is potentially the convergence of pro-
apoptotic signaling because it is activated by both Ca2+ and
regulated production of NADPH oxidase (NOX)-derived ROS,
downstream of angiotensin II-induced stimulation of GPCRs.13

Apoptotic cell death is counteracted by pro-survival pathways,
such as activation of Akt and proto-oncogene serine-threonine
protein kinase (PIM1) and inactivation of glycogen synthase
kinase 3ß (GSK3b).14

Programmed necrosis is a different type of cell death that
has also been suggested to be important in heart disease.15

Necrosis is accompanied by early loss of plasma membrane
and organelle integrity and striking inflammation. Inflamma-
tion can contribute to extracellular matrix remodeling and
development of contractile failure. An important feature of
the programmed necrosis is opening of the mitochondrial
permeability transition pore (MPTP) in response to mitochon-
drial Ca2+ and perhaps oxidative stress. Opening of MPTP
causes collapse of mitochondrial membrane potential and ATP
production and triggers necrosis. It has also been shown
there is crosstalk between the apoptotic and necrotic
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pathways, facilitated by Bcl-2 family proteins and the MPTP.
Bax and Bak are known to play a primary role in activating
apoptosis in response to myocardial ischemia and reperfu-
sion, and Bax/Bak double knockout mice exhibit reduced
infarcts compared with wild type mice (reviewed in ref. 16).
However, Bax/Bak/cyclophilin D triple knockout mice do not
show further reduction in infarct size compared with the Bax/
Bak double knockout mice. In addition, cells and mitochondria
lacking Bax and Bak are resistant to mPTP opening and
necrosis, suggesting that Bax and Bak play distinct roles in
regulating both apoptosis and necrosis.

MI also triggers an intense inflammatory response, which
is essential for cardiac repair as well as post-infarction
remodeling and heart failure.17 Neutrophils recruited to the
infarcted area remove dead cells and matrix debris by
phagocytosis, while preparing the area for scar formation.
Attraction of inflammatory cells could be stimulated by
programmed myocyte necrosis within the heart, which may
release damage-associated molecular patterns (DAMPs) from
the cytosol and provoke inflammatory response by activation
of the innate immune system.18,19 The stressed myocytes
signal to fibroblasts and other cells within the matrix through
release of factors such as connective tissue growth factor
(CTGF) and transforming growth factor b (TGFb).20 Members
of the TGF-ß family are critically involved in suppression of
inflammation and activation of a pro-fibrotic program.17

As stated before, there is little information on the role of
ATM in relation to post-MI remodeling, inflammation and
apoptosis in the heart. Previous work from Singh and
colleagues showed that ATM deficiency attenuates LV
dysfunction and dilatation 7 days post-MI.21 In addition, they
provided evidence that ATM deficiency resulted in increased
cardiac fibrosis and expression of a-smooth muscle actin (a-
SMA, a marker formyofibroblasts) in the infarct region 7 days
post-MI.21 In the paper by Daniel et al,22 the authors have
further studied the effects of ATM deficiency on the inflam-
matory response, and activation of survival signaling mole-
cules including Akt and GSK-3ß in the heart following acute
MI. Using ATM heterozygous knockout (hKO) and correspond-
ing wild-type mice subjected to MI by occlusion of coronary
artery, these authors studied cardiac function, infarct size
neutrophil infiltration, macrophages, apoptosis, fibrosis and
survival signaling. The results showed that MI increased
neutrophil infiltration in the infarct regions of LV in both
genotypes on day 1 and 3 post-MI when compared with their
respective sham groups. Interestingly, the number of neu-
trophils was significantly lower in the infarct and non-infarct
LV regions of hKO-MI when compared with WT-MI 1 day post-
MI. Similarly the number of macrophages was significantly
lower in the infarct LV region of hKO-MI versus WT-MI 1 day
post-MI. The number of macrophages was not significantly
different between the 2 genotypes 3 days post-MI although
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Figure. Schematic showing how ATM deficiency may influence heart function early post-MI. ATM deficiency decreases activation of anti-
apoptotic signaling kinase, p-Akt, and increases activation of pro-apoptotic signaling, p-GSK-3b, resulting in increased apoptosis. The
increased apoptosis may have inhibitory effect on inflammatory response. Although not investigated in this study, necrosis can potentially
influence the inflammatory response as well. ATM deficiency also increases myofibroblast activation thereby increasing fibrosis. This early
increase in fibrosis and/or decreased inflammatory response may help maintain cardiac function early post-MI. ATM indicates ataxia-
telangiectasia mutated; GSK-3 b, glycogen synthase kinase 3ß; MI, myocardial infarction.
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they were still higher in number in the infarct LV regions of
both genotypes when compared with their respective sham
groups. Levels of active TGF-b1 were reduced in the infarct
area during ATM deficiency 3 days post-MI. ATM deficiency
was associated with increased apoptosis, fibrosis and
expression of a-SMA in the heart post-MI (Figure). Moreover,
the activation of pro-survival kinase, Akt, was lower while
activation of pro-apoptotic kinase, GSK-3b, was higher in ATM
deficient hearts 1 day post-MI. The ejection fraction or
fractional shortening were not different between the 2
genotypes 3 days post-MI, although LVESV and LVEDV were
significantly lower in ATM-deficient hearts at both time points.
The better LV function 1 day post-MI during ATM deficiency
did not correlate with infarct size which remained unchanged
between the 2 genotypes 1 and 3 days post-MI. Overall,
despite mixed results, these studies suggest that ATM has the
potential to modulate the remodeling processes in the heart
post-MI during early phase. However, impact of long-term
ATM deficiency in remodeling and healing of the infarcts still
remains uncertain at this time.

The authors are to be commended for investigating
the potential novel role of ATM deficiency in attenuation of
inflammation in post-MI remodeling. During the last few years,
pharmaceutical industries and research laboratories have
developed a series of small molecules, capable of inhibiting
ATM kinase with increasing specificity in cancer cells. One
such inhibitor, KU60019 has been shown to be a potent
chemo sensitizer in combination with doxorubicin in breast
cancer cells.23 In order to expand the scope of these
investigations with the hope of finding their potential use in
patients with MI, the novel ATM kinase inhibitors need to be
carefully evaluated for their possible remodeling and anti-
inflammatory effects in post-MI heart failure.
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