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Abstract: Vessel traffic volume and vessel traffic service (VTS) operator workloads are increasing
with the expansion of global maritime trade, contributing to marine accidents by causing difficulties
in providing timely services. Therefore, it is essential to have sufficient VTS operators considering
the vessel traffic volume and near-miss cases. However, no quantitative method for determining
the optimal number of workstations, which is necessary for calculating the VTS operator staffing
level, has yet been proposed. This paper proposes a new, microscopic approach for calculating the
number of workstations from vessel trajectories and voice recording communication data between
VTS operators and navigators. The vessel trajectory data are preprocessed to interpolate different
intervals. The proposed method consists of three modules: Information services, navigational
assistance services, and traffic organization service. The developed model was applied to the Yeosu
VTS in Korea. Another workstation should be added to the current workstation based on the
proposed method. The results showed that even without annual statistical data, a reasonable VTS
operator staffing level could be calculated. The proposed approach helps prevent vessel accidents by
providing timely services even if the vessel traffic is congested if VTS operators are deployed to a
sufficient number of workstations.

Keywords: staffing level; workload; vessel traffic service; operator; automatic identification system

1. Introduction

With the rapid growth of global trade and maritime transportation, vessel traffic
services (VTS) have come to play a critical role in guaranteeing maritime safety, facilitating
traffic flow, and safeguarding the environment. VTS is an integrated shore-side service
provided by competent authorities that includes a variety of navigational assistance for
vessels and extensive traffic control in a designated maritime area. The VTS operators
collect information about the geographical area they monitor using a variety of sensors. A
VTS operator normally uses automatic identification systems (AIS), radar, closed-circuit
television (CCTV), very-high-frequency (VHF) marine radio, and pilot scheduled data to
monitor the movements of vessels in a VTS area.

VTS operators work in shifts and have irregular hours. The VTS operators work in a
24-h shift, which causes fatigue. Moreover, the number of vessels in the VTS area varies
daily. Therefore, VTS operators should adapt quickly to new situations daily. In addition,
they must maintain intense concentration and deal with critical situations and emergencies.
As a result, VTS operators will undoubtedly experience fatigue. Additionally, it is well
established that fatigue on the part of VTS operators can pose a catastrophic risk to human
life and damage the environment and property [1]. A staffing level that is only capable of
handling the expected workload will undoubtedly be overloaded when an unexpected
event, emergency, or incident occurs.

There is a lack of staffing among VTS operators because of the large number of
vessels [2]. The number of VTS operators on duty at any given time is determined by the
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safe and efficient operation of the VTS area and is reflected in human resource planning,
including staff rotation and rest period arrangements within any given shift or watch.
Moreover, VTS operators operate in a state where a considerable burden is inherent in
their work to ensure that vessels can navigate safely. VTS centers are even expanding their
monitoring areas of responsibility while maintaining current staffing levels, resulting in
an increase in the workload of operators [3]. Hyperstress may prevent personnel from
effectively interpreting data, making sound judgments, and taking appropriate actions.
Numerous maritime accidents occur in the VTS area [4]. According to the Korea Maritime
Safety Tribunal statistics, a total of 216 vessel collision accidents occurred in ports over the
past five years (2016–2020), and a total of 879 ship collision accidents occurred in territorial
waters [5]. In addition, 15 VTS centers are operated nationwide in Korean ports, and 19.7%
of all collision accidents occur in the VTS area. In some cases, VTS operators have failed to
meet their responsibilities [6,7]. In particular, the sunken ferry Sewol accident was a VTS
operator missing early detection. The VTS operators ignored the service regulation that
two operators should be at work simultaneously; one has to monitor the coastal sea and
the other to monitor the open sea [8,9]. Meanwhile, it was found that variables such as
short and irregular meals and work overload due to lack of VTS operator staffing were
correlated with job stress [10]. In other words, the staff level at the VTS center is critical.

The International Association of Marine Aids to Navigation and Lighthouse Authori-
ties (IALA) oversees maintaining marine aids to navigation worldwide including VTS by
issuing recommendations and guidelines to the member states. The IALA has developed
a recommendation for determining the appropriate staffing level for a VTS (i.e., IALA
guideline 1045) [11]. The purpose of the guideline is to assist authorities in determining
the appropriate staffing level for a VTS center. It covers several variables that affect the
workload of the VTS center. However, the guideline does not suggest calculating the correct
number of workstations even though VTS staffing should be proportional to the number of
workstations.

This paper presents a new vessel traffic flow-based optimal VTS operator staffing level
model using AIS sensor data and VHF radio voice data. There are three modules, namely
information services (INS), navigational assistance services (NAS), and traffic organization
services (TOS), in the model. Each module is used to calculate the time needed for INS,
NAS, and TOS. In addition, each module consists of several sub-items. The time needed
for each module was calculated by adding the time required for each sub-item. In addition,
the number of occurrences of each sub-item was calculated using the AIS sensor data. It
introduces a preprocessing method for AIS sensor data to handle different asynchronous
intervals and missing messages. The time needed for sub-items was derived through a
questionnaire survey of VTS operators and VHF radio voice analysis. The required number
of VTS workstations per hour can be calculated by adding the time required for the three
modules. Finally, we provide recommendations to authorities to determine the optimal
staff level to improve the service provided by the VTS center.

The remainder of this paper is organized as follows. Section 2 presents previous
studies related to VTS operators. Section 3 describes how to preprocess the AIS sensor data
and the optimal staffing level method of VTS operators. Section 4 presents the experimental
results of the proposed method for a VTS center. Section 5 discusses the results in the
context of the aims of the study. Finally, Section 6 concludes the study.

2. Related Works

Various studies have analyzed the workload and stress of VTS operators. It is reported
that stress can be beneficial for emergencies, but excessive stress can have several negative
effects. Therefore, the Maritime Port Authority rotates the positions of VTS operators
in the Dover VTS and Singapore VTS, which are the busiest VTS, every 45 min [3]. In a
previous study, Kum et al. [12] analyzed the relationship between the mental workload
and variables, such as age, marital status, sea experience, VTS experience, and educational
level, by conducting a questionnaire survey. However, they did not consider important
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factors, such as the number of vessels and course in the VTS area, limiting this study.
In contrast, Xu et al. [13] proposed an adaptive rotating shift planning solution, which
considers dynamic workload variables such as the number of vessels and speed, to prevent
VTS operators from becoming tired. However, this method did not present a model for
optimal staffing of VTS operators and did not focus on the number of VTS workstations
required, concentrating only on the work shifts of VTS operators through a fixed number
of VTS operators.

Moreover, fatigue has been reported to trigger various types of human errors [14].
Some studies have focused on the human errors of VTS operators. Kotkowska et al. [15]
identified the errors committed by VTS operators by examining human nature-related
factors, such as a lack of experience or qualifications, ineffective communication, fatigue,
and routine. Various researchers have concluded that VTS operators are prone to errors
as an inherent characteristic of human nature. Therefore, appropriate measures, such as
adding VTS personnel, should be conducted to ensure that the required performance is
maintained.

In recent years, numerous studies have been conducted to assist the decision-making
abilities of VTS operators in reducing their workload and human errors. For example,
Kim et al. [16] proposed a context-aware information provision model by applying deep
learning and developed a decision support tool to predict vessel destinations. Moreover,
Mazaheri et al. [17] developed a decision support tool to detect grounding candidate vessels
in a VTS area. Meanwhile, Schuett [3] developed a system to reduce the workload of VTS
operators by sending automated information such as weather data and vessel conflicts. In
addition, methods for risk-based collision avoidance for VTS have been developed [18,19].
These computerized systems and decision tools can reduce the workload and stress for VTS
operators. However, it is essential to deploy suitable staffing for an appropriate number of
workstations even though a decision tool for VTS operators is already available.

A few studies have focused on performance and training programs for VTS op-
erators [20,21]. It is clear that sound operating procedures, reliable decision tools, and
operating personnel are necessary considerations. Xie [1] presented the appropriate staffing
model of VTS operators considering the number of workstations based on the IALA guide
1045. The approach is a macroscopic model that calculates the number of workstations
using annual incoming and outgoing vessel statistics. However, the number of near-miss
occurrences, such as crossing and overtaking, cannot be extracted using this model. In
addition, the reliability of this approach is low because annual statistics are values for one
year accumulated manually rather than by an automated system.

Meanwhile, macroscopic and microscopic models estimate the capacity of the sector
for air traffic controllers (ATC). The macroscopic model considers the geometry of the
air traffic service sector and the direction of the air traffic flow [22]. On the other hand,
microscopic models consider each aircraft trajectory with detailed information about the
gate occupancy and taxiway routing. The microscopic model is more precise although they
can be computationally intensive [23]. The vessel flow is determined by the microscopic
vessel behavior, which is determined by the different factors of each position, speed, and
course of the vessel [24]. Vessel near-misses, which are considered a burden for VTS
operators, occur daily in the VTS area [25,26]. The microscopic approach reflecting a
vessel’s near-miss risk analysis to calculate staffing is more realistic than the macroscopic
approach. In this study, in contrast to the macroscopic scheme [1], our proposed scheme is
a microscopic approach to determine the optimal number of VTS operators.

3. Proposed Optimal VTS Operators Staffing Method
3.1. VTS Responsibilities

The primary responsibilities of VTS include the assistance for safe navigation in VTS
areas and pollution mitigation. These responsibilities are accomplished by providing three
distinct types of services: INS, NAS, and TOS [27]. VTS operators need facilities to monitor
the operational situation related to all maritime activities in a VTS area. In addition, VTS
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operators continuously observe using multiple screens while remaining seated in the
same position. Subsequently, they deliver timely, relevant, and accurate information to
communicate with vessels using VHF radio. Therefore, the time needed for the task of VTS
operators Ttask is expressed as

Ttask = TINS + TNAS + TTOS (1)

where TINS, TNAS, and TTOS, is the time needed for information services, navigational
assistance services, and traffic organization services, respectively.

Figure 1 shows the proposed VTS optimal staffing-level calculation procedure, which
included modules for computing the time needed for the INS, NAS, and TOS to calculate
the time needed for each service. The number of occurrences for each module was extracted
using the AIS data. In addition, the time needed for each module was calculated by adding
the time needed for the sub-items composing each module, which was obtained through
the questionnaire survey of VTS operators and voice analysis of VHF. Subsequently, the
required number of workstations was calculated. The total required number of operators
for a VTS center was obtained by multiplying the number of workstations needed and the
number of VTS operators per workstation.

Figure 1. Optimal VTS staffing model process flow.

The number of VTS operators Nop per workstation, which is the actual number of
hours per year divided by duty hours per year, was calculated based on the IALA guide-
lines [11]. The actual hours per year are calculated as hours per day (i.e., 24) multiplied
by the actual number of days per year (i.e., 365.25). On the other hand, the duty hours
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per year are calculated as hours available per year minus the hours lost per year, which
includes hours of leave, sickness, and training per year.

3.2. Preprocessing of AIS Sensor Data

AIS messages received at the VTS are sometimes missing, and their data intervals
are different. Therefore, all data should be synchronized and interpolated at specific time
intervals to analyze vessel near-miss. First, duplicated AIS messages sent by the same
vessel were eliminated, and the position of the vessel at the reference time was determined
using an interpolation method. Figure 2 shows the real data, including longitude, latitude,
speed, and course, at irregular time intervals and interpolated data, including longitude,
latitude, speed, and course, at a specific time interval. In the figure, the reference interval
is the sampling period, tk is the kth reference time, and tMi is the time of the ith real
message Mi. Furthermore, the real position [lontMi

, lattMi
] is replaced with the position

[lontk+1 , lattk+1 ] at time tk+1 if an AIS message Mi occurs in the interval between the kth
and (k + 1)th reference times (i.e., tk < tMi < tk+1).

Figure 2. Real positions and the interpolated position.

The interpolated positions [lontk+1 , lattk+1 ] at the (k + 1)th reference time are computed
based on the vessel speed v and course θ from the current position [lontMi

, lattMi
], as shown

in Equation (2) [28].
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)
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(

lattk+1

)
]

(2)

where ∆t is the time between the ith real message tMi and the (k + 1)th reference time tk+1,
and R is the radius of the earth.

3.3. Time Needed for INS

The task of VTS operators is to monitor hundreds of vessels simultaneously using
several screens, which is possible due to the VTS system configuration. For example, VTS
operators observe a VTS area by watching a screen, moving from the left to the lower
right corner of the screen. Subsequently, after monitoring one screen, VTS operators turn
right and continue the process with the following screens [29]. During the monitoring
task, the VTS operators collect traffic data using integrated radar and AIS data. Knowing
what to look for when monitoring is crucial. Therefore, monitoring is a prerequisite
for INS [30,31]. The appropriate monitoring frequency varies across VTS centers and is
determined by various criteria. For example, the higher-risk section necessitates more
frequent monitoring [32].

TINS considers the navigating time of a vessel in a VTS area, monitoring frequency,
monitoring time, and monitoring weighting factor based on the vessel type and length,
as shown in Equation (3). This is a different importance factor by a section in a VTS
area. For example, a precautionary section is where vessels must navigate cautiously.
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Moreover, VTS operators pay more attention to precautionary sections in which route
intersections or traffic congestion sections are compared to other sections [33,34]. Therefore,
the monitoring frequency and time were considered differently based on the section in
a VTS area. Additionally, VTS operators pay more attention to high-risk vessels such as
liquefied petroleum gas (LPG) tankers, liquefied natural gas (LNG) tankers, and very large
crude carriers (VLCCs) compared to small vessels [35–37]. Therefore, the weighting factor
is based on the vessel type and length for the time needed for monitoring.

TINS =
S

∑
s=1

M

∑
m=1

ns
m ts wm

f s (3)

where ns
m is the navigating time of the mth vessel at the sth section in a VTS area, consisting

of a precautionary section, a fairway, an anchorage, a narrow channel, and open sea, f s

and ts are the monitoring frequency and time at the sth section, respectively, and wm is the
monitoring weighting factor based on the vessel type and length for the mth vessel.

3.4. Time Needed for NAS

NAS actively supports the onboard navigational decision-making process to assist
vessels traversing in a VTS area. It consists of communication related to vessel movements,
such as entering and leaving the VTS area, anchoring or berthing, heaving up anchor or
unberthing, and pilot on board [38]. If a vessel moves in the VTS area, the VTS operator
needs the primary time of communicating with vessels by VHF and has to note it in the
VTS logbook. Additionally, depending on the vessel’s movement, time may be required to
check the route and destination of the vessel, pilot scheduling, etc. [16,39]. Therefore, TNAS
is added by the time required for each sub-item, as shown in Equation (4).

TNAS =
E

∑
e=1

te +
L

∑
l=1

tl +
A

∑
a=1

ta +
H

∑
h=1

th +
P

∑
p=1

tp (4)

where te, tl , ta, th, and tp are the times needed to communicate with the eth entering vessel
in the VTS area, the lth leaving vessel, the ath anchoring or berthing vessel, the hth heaving
up anchor vessel or unberthing, and the pth vessel with a pilot on board, respectively.
Moreover, E, L, A, H, and P are the number of entering vessels, leaving vessels, anchoring
or berthing vessels, heaving up anchor or unberthing vessels, and vessels with a pilot on
board, respectively.

3.5. Time Needed for TOS

TOS is designed to prevent dangerous maritime traffic situations and ensure safe and
efficient vessel traffic movements in a VTS area. Therefore, vessel movements must be
planned or prioritized by VTS operators to avoid near-miss cases. In addition, TOS is
performed by instructing or exercising the authority to direct movement.

The VTS operators analyze the near-miss based on the closest point of approach (CPA)
of the vessel, which is an estimated location where the distance between vessels A and
B is the shortest. Generally, the VTS operators determine the most appropriate collision
avoidance action based on the distance at the closest point of approach (DCPA), which is the
distance between vessels in close proximity, and the time to the closest point of approach
(TCPA), which is the amount of time remaining until the two vessels reach their closest
points. Therefore, the DCPA and TCPA are used as values to discriminate near-misses. If
they are lower than the threshold, the VTS operator should provide a TOS regarding a
near-miss situation. In this study, the threshold value of DCPA and TCPA was set to 0.5 nm
and 5 min, respectively, according to the literature [40]. The DCPA and TCPA, which are
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expressed in Equations (5) and (6) [41], are calculated using interpolated data, including
the longitude, latitude, speed, and course, of each vessel at the synchronous time.

DCPA =

√
[∆y + (vB sin θB − vA sin θA)× TCPA]2+

[∆x + (vB cos θB − vA cos θA)× TCPA]2
(5)

TCPA = − [∆y (vB sin θB − vA sin θA) + ∆x (vB cos θB − vA cos θA)]

(vB sin θB − vA sin θA)
2 – (vB cos θB − vA cos θA)

2 (6)

where ∆x and ∆y are the differences in the longitude and latitude between the positions of
vessels A and B, respectively, vA and vB are the speeds of vessels A and B, respectively, and
θA and θB are the courses of vessels A and B, respectively.

There are three types of near-miss cases based on the relative bearing of vessels based
on the International Regulations for Preventing Collisions at Sea 1972 (COLREGs) [42]. In
addition, VTS operators must instruct specific avoidance maneuvers in three encounter
cases, including head-on, crossing, and overtaking, based on rules 13, 14, and 15 of COL-
REGs. Therefore, TTOS, which is expressed in Equation (7), is calculated by adding the time
required to address each encounter situation in a VTS area.

TTOS =
H

∑
h=1

th +
C

∑
c=1

tc +
O

∑
o=1

to (7)

where th, tc, and to are the times needed to address head-on, crossing, and overtaking
encounter cases, respectively. In addition, H, C, and O are the number of head-on, crossing,
and overtaking cases, respectively.

3.6. Optimal Number of Workstations

In this study, the unit time of TTask was set to one hour. Therefore, TTask over unit time
is the required number of workstations n. WS. The required hourly number of workstations
n. WSh was calculated as the maximum value to compare the maximum hourly number of
workstations m. WSh with the current hourly number of operating workstations c. WSh.
For example, suppose that m. WSh is less than the c. WSh, then c. WSh is regarded as the
minimum number of workstations for the VTS operation. Subsequently, it was divided
by 24 to calculate the required number of workstations per day using Equation (8) after
summing it up by an hour.

n. WS =
∑24

h=1 max
(

m. WSh, c. WSh
)

24
(8)

4. Case Study
4.1. Study Area and Data Preparation

We used the AIS sensor dataset collected for 13 days in June 2014, which was the
month with the highest traffic in the year, in the Yeosu VTS area, a harbor in the southern
part of the Korean peninsula, to assess the proposed optimal VTS operator staffing level
model. Various vessels such as cargo vessels, oil tankers, and containers enter and leave
Yeosu VTS, and they cause the highest vessel traffic in Korea. In addition, there are 353
piers and anchorages in the harbor. Moreover, their routes are relatively longer than that
of other ports and include various dangerous sections, such as crossing and overtaking.
Furthermore, offshore anchorages are used as stopovers for the supply and demand of
bunkers. Therefore, the target area is operated as a traffic-safety-specific area.

The Yeosu VTS center is divided into three sectors to ensure intense monitoring.
Therefore, there were three workstations in the Yeosu VTS. Figure 3 shows the Yeosu
VTS area. Sector 1 covers the traffic separation schemes (TSS), precautionary regions,
anchorages, and the open sea. Sector 2 covers the area of the traffic intersections and
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general cargo terminal including container, cement, steel, and car. Sector 3 covers the
area of the dangerous cargo terminals, namely, crude oil, product oil, LPG, and chemical
terminals.

Figure 3. Yeosu VTS area; sector 1 (blue line), sector 2 (red line), and sector 3 (green line).

Moreover, the vessels should comply with the VTS instruction regarding the anchor
position when attempting anchoring in the VTS area and the speed limit regulations. Any
vessel navigating in the port should maintain the optimal speed to ensure that anchored
or moored vessels are not damaged. The officer of the watch (OOW) of vessels should
report advance notice of entry before entering the VTS area. At that time, information,
including cargo and current position, is exchanged. All vessels should report their entry,
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arrival, shifting, 10 min before departure, and departure. Any vessel moving or anchoring
in the VTS area should listen to the VTS operation VHF channel 12 or 67 and the emergency
channel 16. Vessels that are not subjected to VTS should listen to the VHF channel while
navigating in the VTS area to avoid obstructing the course of other vessels.

4.2. Required Number of VTS Operators

VTSO operators work shift-wise. The day shift runs from 09:00 to 18:00 h with six
operators, followed by the night shift from 18:00 to 09:00 h with seven operators, including
one team leader in each shift. During work, the VTS operator performs 1.5 h of monitoring
at one workstation. After that, the VTS operators rotate to another workstation 15 m earlier
to familiarize themselves with the traffic situation.

Table 1 shows the characteristics of participants via Google Forms. The questionnaire
participants were aged between 30 and 50 years. In total, questionnaires from 20 licensed
VTS operators, with an average age of 38 years, average merchant vessel officer experi-
ence of 3 years, and average VTS experience of 8 years, were collected. The monitoring
frequency, time, and weighting factors were obtained from a questionnaire survey. There
are four precautionary sections in the Yeosu VTS area that are frequently monitored by
VTS operators to prevent vessel collisions. Based on the questionnaire survey, monitoring
was performed every 3 min at precautionary sections and once every 10 min in TSS. The
vessel complies with the TSS navigating one way. Therefore, the risk of collision in the TSS
section between two ships is relatively lower than that in other sections.

Table 1. Questionnaire participants characteristics.

Characteristics Number %

Gender
Male 18 90

Female 2 10

Age
31–40 years 12 60
41–50 years 1 5
>51 years 7 35

Merchant vessel
officer experience

<3 years 6 30
3–5 years 12 60

6–10 years 2 10

VTS experience

<2 years 6 30
2–5 years 2 10

6–10 years 5 25
>10 years 7 35

Table 2 shows the monitoring weighting factor based on the vessel type and overall
length (LOA). The types of ships were classified into five categories: Cargo vessels, tankers,
passenger vessels, towing vessels, and small vessels. The cargo vessels include general
cargo vessels, bulk carriers, and container vessels, while tankers consist of LNG tankers,
LPG tankers, oil tankers, and chemical tankers. It is apparent that the monitoring weighting
factor of tankers is more significant than that of cargo vessels, indicating that VTS operators
pay more attention to these specific vessels than smaller vessels. The questionnaires on
weight factors based on the vessel type and LOA have two parts. Part A was classified
into five vessel types: Cargo vessels, tankers, passenger vessels, towing vessels, and small
vessels. Part B was classified into four LOA: Less than 75 m, 75–150 m, 151–225 m, and
more than 225 m. The questionnaires with a nine-point Likert scale were used as weight
factors for influence level by vessel type and LOA at monitoring: 1—not at all influential,
9—extremely influential. Scorings on Likert-based items were converted based on the
cargo vessels and LOA 75–150 category. The converted vessel type weight factor and the
converted LOA weight factor were multiplied.
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Table 2. Monitoring weighting factor based on the vessel type and length.

Type LOA Monitoring Weighting Factor

Cargo vessels

<75 m 0.8
75–150 m 1.0

151–225 m 1.3
>225 m 1.6

Tankers

<75 m 1.0
75–150 m 1.4

151–225 m 1.8
>225 m 2.2

Passenger vessels

<75 m 0.9
75–150 m 1.1

151–225 m 1.5
>225 m 1.8

Towing vessels

<75 m 1.0
75–150 m 1.3

151–225 m 1.7
>225 m 2.1

Small vessels <75 m 0.2

The time needed for a sub-item of NAS was obtained by a questionnaire survey on
VTS operators, as shown in Table 3. The VTS operators perform tasks consisting of six
details if a vessel enters a VTS area. First, the VTS operators communicate with the vessels.
Subsequently, they would check the anchorage or wharf, pilot scheduling, and safety
information of nearby vessels. Then, the VTS operators would tag a vessel name and
symbol on the screen and would be written on a VTS logbook. The communication time
includes the readback time. In other cases, the VTS operator enters the harbor management
system if a vessel berths, unberths, anchors, or heaves up the anchor. The single-selection
question in the seven options was designed to measure the time needed for a detailed task:
0–5 s, 6–10 s, 11–20 s, 21–30 s, 31–40 s, 41–50 s, and 51–60 s. The total average time is a sum
of the averages for each sub-item task, which are many respondents’ selections. The total
average time needed for a sub-item task is applied in this modeling study. For example, if
a vessel enters the VTS area, the operator takes 80.5 s for the tasks of NAS.

Table 3. Detailed task of a VTS operator and total time needed for sub-item tasks of NAS.

Sub-Item Task Detailed Task of a VTS Operator Time Needed for a
Detailed Task

Total Average Time Needed
for a Sub-Item Task

te *

Communication with vessels by VHF 21–30 s

80.5 s

Checking anchorage or wharf information 11–20 s
Checking pilot scheduling 6–10 s

Checking of safety situation of nearby vessels 11–20 s
Tagging vessel name and symbol 6–10s

Filling in VTS logbook 6–10 s

tl * Communication with vessels by VHF 11–20 s
23.5 sFilling in VTS logbook 6–10 s

ta *
Communication with vessels by VHF 11–20 s

39.0 sEntering information into the harbor
management system 11–20 s

Filling in logbook 6–10 s

th *

Communication with vessels by VHF 21–30 s

80.0 s
Entering information into the harbor

management system 11–20 s

Checking wharf information 11–20 s
Checking of safety situation of nearby vessels 11–20 s

Filling in logbook 6–10 s
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Table 3. Cont.

Sub-Item Task Detailed Task of a VTS Operator Time Needed for a
Detailed Task

Total Average Time Needed
for a Sub-Item Task

tp *
Communication with vessels by VHF 11–20 s

39.0 sFilling in logbook 6–10 s
Adjustment order of pilot boarding and

disembarkation 11–20 s

* te: Times needed to communicate with the eth entering vessel in the VTS area; tl : The lth leaving vessel; ta: The ath anchoring or berthing
vessel; th: The hth heaving up anchor vessel or unberthing; tp: The pth vessel with a pilot on board.

Figure 4 shows a scatter plot of near-miss locations between merchant vessels in the
Yeosu VTS area. Figure 5 shows the near-miss locations between merchant vessels and
non-merchant vessels (i.e., pilot boats, fishing boats, and small boats). The average time
needed for TOS was calculated by collecting three days of VHF voice recording data for the
same period as the AIS data. Analyzing all 13 days of VHF voice data takes an enormous
amount of time, therefore it was judged that there is no need to analyze the entire dataset,
so only three days were analyzed. The average time needed for TOS is approximately
30 s from 1320 collected voice files. In the previous study, analyzing VHF voices for three
days in the Busan VTS area resulted in an average communication time of TOS of 25 s for
781 cases [43]. This difference of almost 5 s is negligible, so 30 s was considered in our
model.

Figure 4. Scatter plot for the near-miss location between merchant vessels in Yeosu VTS area; head-on (red square), crossing
(blue triangle), overtaking situation (yellow circle), and merchant vessels trajectories (cyan dotted line).

Figure 6 shows the required hourly number of workstations n.WSh. Each n.WSh value
is the sum of TINS, TNAS, and TTOS. TTask over unit time means the required number of
workstations n.WSh. For example, the required number of workstations is 1.7 hourly at
00:00–01:00 h on 2 June in Figure 6. The value is the sum of TINS 1.2 h, TNAS 0.3 h, and
TTOS 0.2 h. At that time, the VTS operators monitored 78 vessels in the VTS area, provided
NAS to 7 vessels, and provided TOS to 22 vessels. The visualization was plotted with a
heatmap of the values. It is apparent from the figure that there is much vessel traffic at
05–09 h and relatively little vessel traffic at night. In particular, during rush hours, the
required hourly number of workstations n.WSh increases by two to three times compared
to the current hourly number of operating workstations c. WSh.
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Figure 5. Scatter plot for the near-miss location between merchant vessels and non-merchant vessels in Yeosu VTS area;
head-on (red square), crossing (blue triangle), overtaking situation (yellow circle), merchant vessels trajectories (cyan
dotted line), and non-merchant vessel trajectories (magenta dotted line).

Figure 6. Required hourly number of workstations for Yeosu VTS.

Table 4 shows the required hourly workstations n. WSh. The maximum hourly number
of workstations m. WSh is the maximum value by an hour over 13 days. For example,
m. WS1 (4.5) is the maximum of thirteen values at 00:00–01: 00 h from 2 June to 14 June. The
current hourly number of operating workstations c. WSh is 3.0 at Yeosu VTS. In addition,
the current hourly number is set to the required hourly number of workstations if the
maximum hourly number of workstations m. WSh is less than the current hourly number
of operating workstations c. WSh. After that, it is divided by 24 to calculate the required
number of workstations per day after summing n. WSh by hour. In reality, vessel traffic
changes dynamically every hour. In addition, it is not easy to predict the vessel traffic in
advance and flexibly arrange the VTS operators because the workstation’s position shift
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time, meals, and rest are fixed. Therefore, it was calculated based on the average required
workstations per day. As a result, another workstation should be added to the current
workstation at the Yeosu VTS center.

Table 4. Required hourly number of workstations (n. WSh) for Yeosu VTS.

Hours m. WSh c. WSh n. WSh

00–01 4.5 3.0 4.5
01–02 3.1 3.0 3.1
02–03 2.8 3.0 3.0
03–04 2.6 3.0 3.0
04–05 3.6 3.0 3.6
05–06 5.0 3.0 5.0
06–07 5.5 3.0 5.5
07–08 7.0 3.0 7.0
08–09 5.0 3.0 5.0
09–10 4.2 3.0 4.2
10–11 3.3 3.0 3.3
11–12 5.1 3.0 5.1
12–13 4.9 3.0 4.9
13–14 4.8 3.0 4.8
14–15 3.8 3.0 3.8
15–16 3.6 3.0 3.6
16–17 3.7 3.0 3.7
17–18 3.9 3.0 3.9
18–19 3.8 3.0 3.8
19–20 3.3 3.0 3.3
20–21 1.8 3.0 3.0
21–22 2.0 3.0 3.0
22–23 1.9 3.0 3.0
23–24 2.6 3.0 3.0

n. WS 4.0

Table 5 shows the stage of calculation for the number of VTS operators per workstation.
The number of Yeosu VTS operators per workstation was calculated based on the IALA
guidelines [11], concluding that six operators were required per workstation. The number
of days for leave of Yeosu VTS operators per year is thirteen, for sickness is three days, and
for training or business trips is six days. The standard hours per week are 40. The hours
lost, including in breaks and meals, is 2 h per working day.

Table 5. Calculation for the number of VTS operators per workstation.

Stage Calculation

Stage 1: Actual hours per year 8766 h = Hours per day (24 h) × Actual days per
year (365.25 d)

Stage 2: Hours after deductions
1911.1 h = Hours before deductions per year (40 h ×

365.25 d/7 d)—Hours for leave, sickness, and
training per year {8 h × (13 d + 3 d + 6 d)}

Stage 3: Hours lost per year 477.7 h = Working days per year (1911.1 h/8 h) ×
Hours lost (break, meal) per working day (2 h)

Stage 4: Total duty hours per year 1433.3 h = Hours after deductions (1911.1 h)—Hours
lost (break, meal) per year (477.7 h)

Stage 5: Number of VTS operators per
workstation

6.1 = Actual hours per year (8766 h)/Total duty
hours per year (1433.3 h)
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5. Discussion

If the current hourly number of operating workstations c. WSh is less than the required
number of workstations n. WS derived from the proposed method, additional workstations
are required. Thus, the current VTS operators are overloaded at specific rush hours. This
leads to a problem that the current VTS operator may not prevent marine accidents due to
failure to provide timely safety information. In addition, in the event of a marine accident
during traffic congestion, the time to recognize the situation for the VTS operator may be
long enough to delay the initial response [8,9].

According to Figure 6, we can distinguish between rush hour and non-rush hour.
Approximately, the rush hour zone is 05–09 h. However, the rush hour zone may vary
from day to day, depending on vessel traffic. For example, it required 4.5 workstations
at 00–01 h 6 June, but only 0.8 workstations at 06–07 h on the same day. It is not easy to
dynamically arrange the VTS operators according to the traffic situation since mealtimes,
break times, and workstation shift times are set for each operator. If the operators are
dynamically deployed to the workstation, the operators will be exposed to more stress
due to irregular times. Moreover, dynamically deploying only one VTS operator with less
experience during non-rush hours may result in insufficient initial response to marine
accidents. Therefore, developing a model for appropriately and dynamically deploying
VTS operators considering the rush hour and individual capabilities is left for future
research.

To compare the validity of the proposed method, we calculated the number of work-
stations of Yeosu VTS based on the Xie model [1]. The comparative model derived the
number of workstations based on 2014 annual statistics. Table 6 shows the time needed for
each item based on the annual statistics. The number of entering and leaving vessels was
29,582 and 29,656 in 2014, respectively. Moreover, 4050 vessels passed through the VTS
area. The distance from the south VTS reporting line to the berth is approximately 38 nm,
and the distance from the west to the east VTS reporting line is 9 nm. The parameters were
applied with target identification for 20 s, sail planning for 30 s, and broadcasting safety
information for 60 s based on the Xie model [1]. The required number of workstations
n. WS based on the statistic-based macroscopic model was 3.0, which is lower than the
results of the proposed microscopic model.

Table 6. Comparative experiment of the number of workstations of Yeosu VTS based on the Xie model [1].

Item Calculation Hour

Time needed for target identification and label {(29,582 + 29,656 + 4050) × 20 s}/(365 × 3600 s) 1.0 h
Time needed for replying shipping report {(29,582 + 29,656 + 4050) × 20 s}/(365 × 3600 s) 1.0 h

Time needed for tracking monitoring {(29,582 + 29,656) × 0.1 × 38 nm}/(365 × 10 kt)
(4050) × 0.1 × 9 nm}/12 kt 62.5 h

Time needed for broadcasting safety information (137,713 × 60 s)/(365 × 3600 s) 6.3 h
Time needed for sail planning (20,234 × 30 s)/(365 × 3600 s) 0.5 h

Other business work time (15,370 × 60 s)/(365 × 3600 s) 0.7 h
Total 71.9 h

n. WS 3.0

The questionnaire-based survey for 20 Yeosu VTS operators was conducted to verify
the proposed method. More than 95% of VTS operators responded that the current hourly
number of operating workstations is short, and more workstations are needed. They
responded that it was well reflected in the proposed method considering TOS because the
VTS operators address dangerous vessel near-miss cases every hour. Seventy percent of
the respondents said the annual statistics were unreliable. It was found that this is because
it may be omitted from statistical data calculated by hand. This case study confirmed that
an appropriate number of VTS workstations could be derived based on AIS data, even
without annual statistical data.
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6. Conclusions

VTS can potentially reduce maritime accidents. In addition, having sufficient operating
personnel is its most critical component. The VTS objective cannot be achieved if services
are not provided on time, which causes workload and stress due to the insufficient number
of VTS operators.

In this study, we developed a new, microscopic method for calculating the number of
optimal VTS operators from AIS data, a questionnaire survey, and a VHF voice analysis.
Particularly, this study helps to quantitatively measure the number of workstations required
at a VTS center.

The proposed microscopic method proposed an advantage. It does not depend on a
statistic-based macroscopic model for calculating the number of VTS operators. Instead,
it uses observable AIS sensor data and VHF voice data, which are easily collected at the
VTS center. The macroscopic model-based calculations of the number of VTS operators
require annual statistical vessel traffic, which cannot be calculated using an automated
programming module but are obtained manually, resulting in low reliability. It is expected
that VTS operator fatigue and workload can be reduced, helping prevent vessel accidents
by providing timely services even though the vessel traffic is congested if they are deployed
to a sufficient number of workstations.

There remain opportunities for further studies to improve upon the proposed method.
In the future, it is necessary to improve the parameters derived from the questionnaire
using the VTS operators’ eye-tracking method. Furthermore, by deploying a dynamically
flexible number of operators that reflect the vessel traffic rush hour, the problem of setting
the sector area to be monitored by each workstation should be solved. A sector-based near-
miss density map is also needed to help set reasonable monitoring times for each sector.
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