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Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent

inflammatory component mediated by brain microglia. Reducing microglial inflammation

could potentially halt or at least slow the neurodegenerative process. A major challenge

in the development of treatments targeting brain inflammation is the sheer complexity

of the molecular mechanisms that determine whether microglia become inflammatory

or take on a more neuroprotective phenotype. The process is highly multifactorial,

raising the possibility that a multi-target/multi-drug strategy could be more effective

than conventional monotherapy. This study takes a computational approach in finding

combinations of approved drugs that are potentially more effective than single drugs

in reducing microglial inflammation in AD. This novel approach exploits the distinct

advantages of two different computer programming languages, one imperative and the

other declarative. Existing programs written in both languages implement the same

model of microglial behavior, and the input/output relationships of both programs agree

with each other and with data on microglia over an extensive test battery. Here the

imperative program is used efficiently to screen the model for the most efficacious

combinations of 10 drugs, while the declarative program is used to analyze in detail the

mechanisms of action of the most efficacious combinations. Of the 1024 possible drug

combinations, the simulated screen identifies only 7 that are able to move simulated

microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype.

Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as

superior both in strength and reliability. The model offers many experimentally testable

and therapeutically relevant predictions concerning effective drug combinations and their

mechanisms of action.
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Introduction

Alzheimer Disease (AD) remains the leading neurological killer (www.alz.org). Currently there
are no effective means to treat AD or even to slow its progression. As a neurodegenerative
disease the pathological outcome of AD is death of neurons. For decades, research on AD
has centered on the “amyloid hypothesis,” according to which an over-accumulation of the
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peptide amyloid-β (Aβ) causes neuron death (Hardy and Selkoe,
2002). New evidence continues to support a role for Aβ as
a factor in AD (Hardy et al., 2014) but it also increasingly
indicates that Aβ is not the only factor (Reitz, 2012; Skaper, 2012;
Armstrong, 2014). Clinical, epidemiological, and laboratory
evidence strongly implicates inflammation as a key component of
AD pathogenesis (Griffin and Mrak, 2002; Von Bernhardi, 2007;
Miklossy, 2008; Piazza and Lynch, 2009; Mandrekar-Colucci and
Landreth, 2010; Johnston et al., 2011). That research suggests
that Aβ, especially in the aged brain, can trigger a neurotoxic,
inflammatory response and that pharmacological reduction of
that response could be an effective way to treat AD.

A type of glial cell known as microglia mediates the
inflammatory response in the brain (Ransohoff and Perry, 2009;
Kettenmann et al., 2011). Microglia can express a number of
different phenotypes in response to a wide range of stimuli
including Aβ. Their physiology is extraordinarily complex. A
recent computational model sought to characterize the responses
to Aβ of microglia from young and old brains (Anastasio, 2014).
That model provided new insights into microglial behavior and
offered potential explanations for the observations that exposure
to Aβ increases the production by young microglia of both pro-
and anti-inflammatory mediators, and that old microglia tend to
remain in a neurotoxic phenotype once they convert to it. The
microglia model also identified certain cell-signaling pathways
that could be instrumental in moving microglia away from a
neurotoxic phenotype, but it did not explore the potential for
drugs to influence those pathways.

The purpose of this paper is to use the microglia model to
identify drugs, and specifically to identify drug combinations,
that have the potential to reduce microglial inflammation in aged
brains exposed to Aβ. As for the original microglia model, the
in silico drug study presented here will exploit the synergistic
strengths of two computer programming modalities, one
imperative and the other declarative. Imperative programming,
by far the more common modality, is designed for efficient
computation while declarative programming is designed for
computational analysis. The difference stems from the distinct
nature of a statement in either modality. Basically, a statement
in an imperative program is a command (e.g., add 3 and 3) but a
statement in a declarative program is a declaration of a fact (e.g., 3
plus 3 can be replaced by 6). In an imperative program statements
execute in the order in which they are listed, but in a declarative
program a statement may execute or not. Consequently, in an
imperative program statements are constrained to execute in only
one order, while in a declarative program statements can execute
in all possible orders.

The main benefit of a declarative programming environment
is that it keeps track of the results of all of its different
sequences of statement executions. This feature is what makes
declarative programming inefficient compared with imperative
programming, but it is also what makes the declarative modality
so useful for analysis. Because a declarative program keeps track
of its progress along all statement sequences it can be queried
to obtain critical information, such as whether a specific result
can ever occur, or whether a specific result can only occur if a
different specific result occurs first, and so on. The main tools

for analysis in declarative programming are known as state-space
search and temporal-logic model-checking (Huth and Ryan,
2004). These tools are invaluable for the analysis of complex
processes, and they are being applied increasingly to complex
biological processes (e.g., Fisher and Henzinger, 2007).

Here an imperative program implementing the microglia
model will be used efficiently to screen for efficacy all 1024
combinations of 10 drugs. All of the 10 have been approved for
use by the US Food and Drug Administration (FDA), and all are
small-molecule drugs that could be taken orally and absorbed
gastrointestinally and could cross the blood-brain barrier. Each
of the drugs targets a different element (or pair of elements) of the
model. All of them were identified using the DrugBank database
(www.drugbank.ca). As such they are all well-known and widely
used. The efficacy of each drug combination will be quantified
by the extent to which it moves simulated microglia from a
neurotoxic to a neuroprotective phenotype. Then a declarative
program implementing the same microglia model will be used
to analyze the mechanisms of action of the most efficacious drug
combinations. As befits the complex nature of microglia, analysis
of the model will reveal that complex sets of interactions mediate
the effects of the efficacious drug combinations. The analysis will
demonstrate how a computational model can be used to identify
potential multi-drug strategies for the manipulation of complex
biological processes, and will identify specific combinations of
approved, small-molecule drugs that could reduce inflammation
in the AD brain.

Methods

The goal of the study presented here was to computationally
identify drug combinations with the potential to reduce
microglial inflammation in AD. This study utilized a model of
microglial behavior that was described in detail in a previous
article (Anastasio, 2014). To this model were added 10 drugs. A
schematic of the original model, along with the added drugs, is
shown in Figure 1. Abbreviations of the names of the molecular
species that are important for this study are listed in Table 1

(abbreviations not listed in Table 1 can be found in Anastasio,
2014). The immediate effects of each drug were set according to
their main direct (proximal) effects as described in the literature,
but the follow-on (distal) effects of the drugs are considered as
modeling results and are described as such in Results. The first
Subsection of Methods briefly summarizes the behavior of the
microglia model, while the following two Subsections describe
the imperative and declarative methods that were used to carry
out the computational drug screens and analyses.

Microglia Model Behavior
The microglia model (Anastasio, 2014) represents the
interactions between about 100 of the factors that are known
from the literature to mediate the responses of microglia to Aβ

and to other relevant stimuli. These factors are mainly molecular
species (ligands, receptors, signaling molecules, transcription
factors, etc.) but also include some cellular processes (e.g.,
phagocytosis). The microglia model is essentially a theory (albeit
complex) about how microglia respond to different signals
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FIGURE 1 | Diagram illustrating model structure. The model analyzed

here is based on a model of microglial behavior described previously

(Anastasio, 2014), to which has been added 10 drugs and their direct

effects. Nodes representing drugs are rectangular, those representing

receptors are octagonal, and all other nodes are elliptical. Arrows and tees

represent activating and suppressing connections, respectively. Solid and

dashed curves represent direct and indirect connections, respectively. For

abbreviations see Table 1 or Anastasio (2014).

present in their environment, which is the brain parenchyma.
These signals are transduced, as in other cell types, via receptors,
which activate cell-signaling pathways, which effect changes in
microglial functions such as upregulation or downregulation
of cytokines and other mediators, activation or inactivation
of phagocytosis, and so on. A key feature of microglia, as of
other immune cells, is that they respond to signals that they
themselves produce. These autocrine interactions constitute
positive and negative feedback loops through the operation of
which microglia can change their phenotype.

Microglia can assume many different phenotypes (Ransohoff
and Perry, 2009; Kettenmann et al., 2011). Formodeling purposes
it is convenient to define different phenotypes in terms of
their production of cytokines and other mediators (growth
factors, toxins, enzymes, etc.) and their expression of behaviors
(mainly phagocytosis). The microglia model was focused on
three phenotypes that are relevant to AD pathogenesis and have
been studied mainly in normal mice and in transgenic mice that
overproduce Aβ (for details and references see Anastasio, 2014).
These three phenotypes can be referred to as mixed, neurotoxic,
and neuroprotective.

The mixed phenotype occurs in “young” microglia (frommice
less than 1 year old), in which secreted or membrane-bound
signals from healthy neurons, such CX3CL1 (i.e., fractalkine), are
present. When young microglia are exposed to Aβ, or to other
inflammatory stimuli such as LPS, they increase their production
of pro-inflammatory cytokines and toxins (as exemplified by IL1β
and ROS, respectively), but also increase their production of
anti-inflammatory cytokines (as exemplified by IL4) and become
phagocytic. The microglia model explained this by invoking

the idea of an “autocrine bridge,” over which transcriptional
drive could effectively “cross” from the pro- to the anti-
inflammatory “side.” This occurred in the following way. Aβ

(or LPS) activates the TLR complex, which initiates a signaling
cascade that activates NFκB, which in turn upregulates a set of
pro-inflammatory cytokines including IFNγ. IFNγ then activates
the IFNR in an autocrine fashion, which activates JAK2/STAT1,
which in turn upregulates a set of anti-inflammatory cytokines
and other mediators including TGFβ. TGFβ then activates Smad,
which in turn contributes to the activation of phagocytosis.
This mixed, pro-and-anti-inflammatory phenotype is on the
whole beneficial because phagocytic microglia clear Aβ, but
its beneficial aspects do not occur unless the pro-to-anti-
inflammatory bridge is crossed. The pro-to-anti-inflammatory
bridge can be crossed by IFNγ or IL6, or potentially by other
cytokines that signal via JAK2/STAT1, but removal of STAT1
severely dysregulates this mechanism.

The neurotoxic phenotype occurs in “old” microglia (from
mice greater than 1 year old), in which signals from healthy
neurons are absent. When old microglia are exposed to
Aβ together with other inflammatory stimuli such as LPS,
they increase their production of pro-inflammatory cytokines
but decrease their production of anti-inflammatory cytokines
and become non-phagocytic (Piazza and Lynch, 2009). The
microglia model explained this by hypothesizing that a mutually
antagonizing interaction between NFκB and PPARγ, which
occurs in macrophages, also occurs in microglia. With this
mutually antagonizing mechanism in place, the loss of healthy
neuronal signals in old microglia combined with exposure to
both Aβ and LPS pushed NFκB up higher than in the mixed
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TABLE 1 | Abbreviations.

Names Abbreviations Elements

Acetylcholine ACh ACh

Adaptor protein 1 AP1 AP1

Alzheimer Disease AD n/a

Amyloid-β Aβ Ab

Auranofin n/a aura

α-7 Nicotinic acetylcholine

receptor

α7nAChR a7nAChR

Bortezomib n/a bort

c-Jun N terminal kinase JNK JNK

Cluster of differentiation # CD# CD#

Cytochrome C oxygenase 2 COX2 COX2

Cytoskeleton n/a cyto

Dasatinib n/a dasa

E prosthanoid receptor 2 EP2 EP2

Extracellular signal-related kinase ERK ERK

Fractalkine CX3CL1 CX3CL1

Glimepiride n/a glim

G protein q Gq Gq

Ibuprofen n/a ibup

IL1 receptor-associated kinase IRAK IRAK

Inhibitor of κ B kinase IKK IKK

Insulin-like growth factor 1 IGF1 IGF1

Insulin-like growth factor 2

receptor

IGF2R IGF2R

Insulin receptor and insulin-like

growth factor 1 receptor

IRIGF1R IRIGF1R

Interferon γ IFNγ IFNg

Interleukin 1-β IL1β IL1b

Interleukin # IL# IL#

Janus kinase # JAK# JAK#

Lipopolysaccharide LPS LPS

Liver tyrosine kinase Lyn Lyn

Myeloid differentiation primary

response protein

MyD88 MyD88

Naloxone n/a nalo

Nicotine n/a nico

Nicotinamide adenine

dinucleotide phosphate

(reduced)

NADPH NADPH

Nitric oxide NO NO

Non-steroidal anti-inflammatory

drug

NSAID n/a

Nuclear factor κ B NFκB NFkB

Peroxisome proliferator-activated

receptor γ

PPARγ PPARg

Phagocytosis n/a phago

Prostaglandin E 2 PGE2 PGE2

Protein 38 mitogen-activated

protein kinase

p38MAPK p38MAPK

Protein kinase C PKC PKC

Reactive oxygen species ROS ROS

Receptor-interacting protein 1 RIP1 RIP1

(Continued)

TABLE 1 | Continued

Names Abbreviations Elements

Rosiglitazone n/a rosi

Ruxolitinib n/a ruxo

Signal transducer and activator

of transcription #

STAT# STAT#

Sma protein from Drosophila Smad Smad

Spleen tyrosine kinase Syk Syk

Thalidomide n/a thal

Toll-like receptor # TLR# TLR#

Toll/interleukin 1 receptor

(TIR)-domain-containing

adaptor-inducing interferon β

TRIF TRIF

TNF receptor-associated factor 6 TRAF6 TRAF6

Transforming growth factor β TGFβ TGFb

Transforming growth

factor-associated kinase 1

TAK1 TAK1

Triggering receptor expressed on

myeloid cells 2 ligand

TREM2L TREM2L

Tumor necrosis factor α TNFα TNFa

Vav guanine nucleotide

exchange factor

Vav Vav

The name of each molecular species is listed along with its abbreviation and the name of

the model element that represents it. Since the programming languages do not allow

Greek characters they are replaced with lower-case Roman letters in model element

names. To further distinguish model element names from actual molecule names they

are rendered in monotype font. The # symbol in abbreviations or model element names

stands for an arbitrary integer number. Abbreviations or model element names are not

applicable (n/a) to items that are, respectively, not abbreviated in the text or do not appear

in the model.

phenotype, and that in turn pushed PPARγ down to the point
where it caused downregulation of anti-inflammatory mediators.
The downregulated factors included TGFβ, which was not
then high enough to promote phagocytosis. The neurotoxic
phenotype is damaging to neurons because of high levels
of pro-inflammatory cytokines and ROS, low levels of anti-
inflammatory cytokines and other factors that support neuronal
maintenance, and lack of Aβ clearance through microglial
phagocytosis.

A key aspect of the mixed phenotype is that many but
not all anti-inflammatory mediators are upregulated. Notable
among those not upregulated is IGF1 (Butovsky et al., 2005).
In the model this occurs because STAT1 upregulates most anti-
inflammatory mediators but downregulates IGF1. A central
feature of the model is autocrine interaction, through which
each pro-inflammatory cytokine can upregulate itself and other
pro-inflammatory cytokines. Because the cytokines upregulated
by pro-inflammatory cytokines include IFNγ (and IL6), a
pro-inflammatory cytokine can even upregulate certain anti-
inflammatory factors. In contrast, an anti-inflammatory factor
cannot, in the model, upregulate pro-inflammatory cytokines.
While an anti-inflammatory factor can upregulate itself and most
other anti-inflammatory factors, it cannot upregulate IGF1 when
STAT1 has been activated. Otherwise, an anti-inflammatory
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factor such as IL4 (or IL13) can temporarily upregulate IGF1
via STAT6 but, in the model, IGF1 must then activate its own
signaling pathway via Gq in order tomaintain a high level. Failure
to do so leaves IGF1 vulnerable to STAT1.

Unlike the other anti-inflammatory mediators, IGF1 can
downregulate pro-inflammatory cytokines. It accomplishes this
essentially by reversing the transcriptional pattern that underlies
the neurotoxic phenotype in the model. Specifically, IGF1 can
drive up PPARγ, which then drives down NFκB, and this
causes downregulation of pro-inflammatory cytokines along
with upregulation of anti-inflammatory mediators. However, this
beneficial influence of IGF1 is tenuous because IGF1 cannot
depend on other anti-inflammatory mediators but must activate
its own signaling pathway in order to maintain a high level.
According to the model, the neurotoxic phenotype is persistent
because microglia have only one mechanism available to escape
it, but that mechanism requires sustained IGF1 expression, and
that cannot occur through synergism with other pathways but
depends on a single pathway that is initiated by IGF1 itself
signaling though IGFR and Gq. In the model, movement away
from the neurotoxic phenotype depends entirely on activation
this pathway.

It is possible experimentally to reduce a pro-inflammatory
microglial response, to restore Aβ phagocytosis, and to increase
IGF1 expression using initially high levels of anti-inflammatory
cytokines such as IL4, IL10, and IL13 (Butovsky et al., 2005;
Koenigsknecht-Talboo and Landreth, 2005). In the model this
phenotype can be produced though initial increase in IGF1
itself. It can also be produced through initial increase in IL4, or
other anti-inflammatory cytokines that signal via JAK1/STAT6,
but only if IGF1 subsequently maintains its own high level by
activating Gq. In the model this phenotype is characterized by
low levels of pro-inflammatory cytokines, high levels of anti-
inflammatory cytokines (including IGF1), and phagocytosis of
Aβ. This phenotype can be reached even from the neurotoxic
phenotype provided that IGF1 activates its pathway through
Gq. This microglial phenotype is considered neuroprotective
because it would not damage neurons with high levels of pro-
inflammatory cytokines or ROS, and it would clear Aβ and
other debris through phagocytosis while it supports neural
repair through secretion of growth factors and other proteins
such as enzymes mediating cytoskeletal remodeling (see also
Discussion).

In the model, the phenotype reached from the neurotoxic
phenotype due to activation of IGF1/IGFR/Gq has ROS reduced
from the high to the baseline level. For the purposes of the
computational drug-combination screen presented here, the fully
neuroprotective phenotype will have low ROS in addition to low
pro-inflammatory cytokines, high anti-inflammatory mediators
including IGF1, and a high level of Aβ phagocytosis. The goal
of the computational screen is to identify which combinations
of 10 approved drugs have the greatest potential to move
microglia from the neurotoxic to the fully neruoprotective
phenotype, and then to analyze the mechanisms of action of
the most efficacious combinations. This is accomplished using
data-driven computational models implemented in two different
programming environments.

Data-driven Modeling Framework
The original model, on which this computational drug-
combination screen is based, is a model of the signaling system
by which microglia adjust their phenotype according to changes
in the brain’s microenvironment. The microglia system model is
entirely data driven in that all of the interactions represented in
it are based directly on the results of experiments as reported
in the primary literature. These results were obtained using
molecular and cellular biology techniques (gel electrophoresis,
immunohistochemistry, phagocytosis assay, etc.) that provide
relative measures of expression and/or activity and are useful
for making statistical comparisons, but do not provide accurate
measures of quantities such as concentrations or reaction rates.
For the purposes of modeling it is therefore appropriate to
quantize available data into a set of discrete integer levels. In
establishing the framework for the microglia system model, the
data were used to determine both the structure of the system
and its overall input/output behavior (also called the model truth
table; see below).

Model structure was determined from studies of microglia
signaling pathways. For example, using a combination of
immunological receptor-blocking, gel electrophoreses,
immunohistochemistry, and in vitro binding assay, fibrillar
Aβ was shown to activate a microglial receptor complex that
includes TLR2, TLR4, and CD14, leading to phosphorylation of
the tyrosine kinases Lyn and Syk, which in turn phosphorylate
Vav (Combs et al., 1999; Reed-Geaghan et al., 2009). The
structure of the original microglia model was built up using these
and many similar results. To the original model were added
proximal drug effects. For example, using a combination of
immunoprecipitation and gel electrophoreses, the drug dasatinib
was shown to block phosphorylation of Lyn (Nam et al., 2007).

The overall input/output behavior of the microglia system was
determined from studies of the responses of microglia to the
stimuli Aβ or LPS, or to high levels of various mediators (e.g.,
IFNγ). For example, using superoxide and in vitro phagocytosis
assays, microglia from young mice were shown to respond to
fibrillar Aβ by increasing both ROS production and phagocytosis
(Wilkinson et al., 2006). These and many other similar findings
were used to compose a system “truth table,” which showed the
effects of manipulating the levels of certain elements, designated
as input elements, on the levels of certain other elements
designated as output or endpoint elements. The input elements
included Aβ and LPS while the output or endpoint elements
included IL1β, IL4, IGF1, ROS, and phagocytosis. For the truth
table, inputs such as Aβ and LPS were treated as binary (absent
or present, 0 or 1), while naturally occurring molecules (e.g.,
IL1β or IL4) were assigned the integer levels of 5, 3, or 7 for
baseline, low, or high, respectively, where low and high indicate
observed, statistically significant increases or decreases from
baseline, respectively. The truth table represented the findings
with which the computational model had to agree.

Model structure dictated which model elements could
influence with other elements and the polarity of that
influence (activation or suppression), but these constraints left
open many options for computationally describing how each
element responded to its inputs from the other elements. The
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parsimonious approach taken in model creation started by
setting the absolute strengths of all connections to 1 (+1 for
activating connections, −1 for suppressing connections). Then
the functions that determine the expression/activation level (level
function) for each element were set so that overall model behavior
agreed with the truth table. This trail-and-error process involved
complex interactions more so that simpler interactions. Thus,
elements that receive input from 1 other element take the same
level as their single input element. Elements that receive input
from 2 or 3 other elements either take the maximal input or
take sums and/or differences between the inputs (differences,
like all other levels in the model, are bound from below at
0). Only about 15% of the elements in the original microglia
model received more than three inputs. Their level functions
were constructed in terms of specific input patterns. The more
complicated level functions could depend on the values of inputs
relative to each other or to preset threshold values, and could also
involve saturation values that bound the level from above. An
effort was made to keep the level functions as simple as possible
while forging agreement between the model and the data-derived
truth table (for further details see Anastasio, 2014).

The names of the model elements correspond to the usual
abbreviations for the molecules they represent (with a few
corresponding to cellular processes). Model element levels are
constrained to take integer values in the range [0, 10]. To
distinguish model elements from actual molecules (or cellular
processes) their names are written in monotype font (see
Table 1). The name of the original model of the behavior
of microglia in the AD brain is ADMICRO. The name of
this model augmented to include the effects of 10 drugs is
ADMICRODRUGS. These computational models are instantiated
as computer programs. Like ADMICRO, there are two versions of
ADMICRODRUGS, one written in an imperative language and the
other written in a declarative language.

Imperative Programming and Simulation
The imperative programming language used in this
computational study is MATLAB™. MATLAB is designed
for highly efficient computations, especially those that can be
organized as matrix computations (the name “MATLAB” is short
for “matrix laboratory”). MATLAB was used here to instantiate
the ADMICRODRUGS model, to run repeated simulations of it,
to perform the computational drug-combination screen, and to
sort the results of the screen in order to remove redundancies.

In the MATLAB version all model elements are represented
as integer variables, and all level functions assign integers in
the range [0, 10] to their associated variable. For example,
IL1b equals 7 when its level function has assigned it that
level. To facilitate comparisons, the structure of the MATLAB
program was made more similar to the Maude program (see next
Subsection) by making all of its level functions conditional and
placing them all within a while loop. The condition for any level
function is satisfied if its execution would change the value of
its associated variable, in which case the variable is updated and
an update flag is set. The while loop continues as long as the
update flag is set. What this means is that whenever a variable is
updated, all level functions must be checked again to determine

whether any of their variables could now also change value. The
while loop terminates when no further updates can be made. The
MATLAB version did terminate for all of the input configurations
represented in the truth table.

An ancillaryMATLAB program automatically ran simulations
of the MATLAB version of ADMICRODRUGS starting from each
input configuration, collected the terminal state endpoint values,
and computed the error between model and observed endpoints
over the entire truth table. This ancillary program was used
efficiently to evaluate trial-and-error changes in level functions
during model creation (see previous Subsection). A terminal
state of critical importance for this study is the neurotoxic state
(i.e., phenotype; see Subsection Microglia Model Behavior). This
state is reached in old microglia from the input configuration
that includes both Ab and LPS (i.e., the neurotoxic input
configuration). That input configuration is the one from which
the drug-combination screen began. Another ancillary MATLAB
program first constructed the matrix of all possible combinations
of the 10 drugs screened in this study, ran a simulation for each
combination starting from the neurotoxic input configuration
to find the terminal state endpoint values for that combination,
computed the percent efficacy of each combination, and then
removed redundancies. The percent efficacy is a measure of
the closeness of an endpoint pattern to the neuroprotective
pattern, expressed as a percentage (see Results). A redundancy
is a specific combination of drugs that is not more effective
than a combination of the same drugs minus one or more of
them. Determination of drug-combination efficacies and removal
of redundancies was facilitated using matrix manipulations
implemented in MATLAB.

Declarative Programming and Analysis
The declarative programming language used here is Maude
(Clavel et al., 2007). Maude is designed to represent (i.e., model)
and analyze complicated systems. A Maude model of a system is
considered to be amodule (the name “Maude” is derived from the
word “module”). A module has an underlying algebra, which is
composed of sorts (i.e., things) and operators (i.e., things done to
things). The declarations in a Maude program are then based on
this underlying algebra. Maude was also used here to instantiate
the ADMICRODRUGS model and to analyze the model using
state-space search and temporal-logic model checking.

In theMaude version of themodel all elements are represented
as operators that assign an integer (i.e., a sort) in the range [0,
10] to the level of that element. For example, IL1b(7) is an
operator that assigns the integer 7 to the level of IL1b. Each
declaration in the Maude program specifies the level function
for an element in terms of the operators representing its inputs.
In Maude there are two types of declarations: equations and
rules. Applicable equations must execute but applicable rules
may execute or not. This allows Maude to execute applicable
rules in all possible orders thereby constructing the tree of all
possible system states reachable given the rules (each branch
is a different trajectory). Maude can search the tree for states
of interest (i.e., state-space search) or can determine temporal
relationships between states (i.e., temporal-logic analysis). In
ADMICRODRUGS, as in ADMICRO, the level functions that
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mediate the autocrine interactions (i.e., those that determine the
levels of the receptors for the cytokines and other mediators that
the microglia themselves produce) are expressed as rules, while
all other interactions are expressed as equations. Thus, Maude
determines all of the system states reachable through autocrine
interactions in the model.

In the Maude version, as in the MATLAB version, all level
functions are conditional, but unlike the MATLAB version the
conditions are checked in arbitrary order in the Maude version
(this is due to the essential difference between imperative and
declarative programs). Like the MATLAB version the Maude
version terminates for all input configurations but, unlike the
MATLAB version, the Maude version reaches more than one
terminal endpoint state for some input configurations. In all
cases, for all input configurations and for all drug combinations
tested, one Maude terminal endpoint state matched the single
MATLAB terminal endpoint state. This signified that the two
versions could implement the same computation and ensured
that the results were not corrupted by programming error. In
addition to providing a crosscheck, the Maude version was also
used to analyze the mechanisms by with the efficacious drug
combinations reduced neurotoxicity in the model.

Results

The results focus on the effects in the model of administration
of 10 drugs alone and in all possible combinations. These drugs
are, in alphabetical order, auranofin, bortezomib, dasatinib,
glimepiride, ibuprofen, naloxone, nicotine, rosiglitazone,
ruxolitinib, and thalidomide. All of these drugs are small-
molecule and FDA approved (see also www.drugbank.ca). As
small-molecules they can potentially cross the blood-brain
barrier and exert their effects on microglia. Eight of the ten
drugs normally are administered orally. The two exceptions are
bortezomib and naloxone. Bortezomib is currently administered
intravenously but oral forms of bortezomib are currently in
clinical trial (Lawasut et al., 2012). Naloxone can be administered
by various routes including orally, although the bioavailability of
orally administered naloxone is low (Smith et al., 2012).

Thalidomide is a known teratogen but it has been re-
approved by the FDA for limited use (Matthews and McCoy,
2003). Thalidomide reduces the level of MyD88 both by
downregulating MyD88 mRNA expression and by increasing
degradation of MyD88 by the proteasome (Noman et al., 2009).
Bortezomib inhibits the proteasome as a main effect, but it
also induces proteasome-independent degradation of TRAF6
(Fang et al., 2012). Thus, bortezomib and thalidomide both
reduce inflammation by reducing signaling over inflammatory
pathways. When used in conjunction, as they sometimes are
clinically (Wang et al., 2014), bortezomib would lessen but
not eliminate the anti-inflammatory effects of thalidomide by
inhibiting the proteasome.

Naltrexone and naloxone, which block opioid receptors, and
an isomer of naloxone that does not block opioid receptors, all act
as antagonists of TLR4 (Hutchinson et al., 2008). The benefit of
using the non-opioid isomer of naloxone is that it can block TLR4
and reduce inflammation but not block the analgesic effects of

opioids.While the opioid and the non-opioid naloxones both can
inhibit TLR4 signaling, the non-opioid naloxone does not also
inhibit TLR2 signaling (Lewis et al., 2012). Because of its reduced
side effects the model incorporates the non-opioid, rather than
the opioid, isomer of naloxone. Both TLR2 and TLR4 signal via
Lyn and Syk. Dasatinib blocks activation (i.e., phosphorylation)
of sarcoma kinases including Lyn (Nam et al., 2007); dasatinib
does not block Syk because it is not a sarcoma kinase (McDonald
et al., 1997; Combs et al., 1999).

Nicotine inhibits Aβ-induced microglial ROS production by
preventing the activation of NADPH (Moon et al., 2008). This
ROS suppression by nicotine was prevented by blockers of the
α7nAChR. Ibuprofen, a well-knownNSAID and COX2 inhibitor,
can reduce inflammation, microglial activation, and AD deposits
in AD-transgenicmice but its efficacy is age dependent (Lim et al.,
2000; Yan et al., 2003; Sung et al., 2004). Rosiglitazone is a dose-
dependent agonist of PPARγ that has known anti-inflammatory
properties (Loane et al., 2009). Auranofin inhibits IKK (Jeon
et al., 2000, 2003), while ruxolitinib inhibits both JAK1 and
JAK2 (Verstovsek, 2013). Glimepiride is an insulin secretagogue,
which causes insulin release from the pancreas (Campbell, 1998).
Glimepiride is known to have anti-inflammatory properties
(Ingham et al., 2014). All of these drugs directly target specific
model elements.

The drugs are evaluated in terms of their effects on model
behavior when it is started from the old initial condition.
In this case, ACh, CD22, CD200, CX3CL1, and TREM2L,
which represent secreted and/or membrane-bound substances
produced by young, healthy neurons, are all absent (level 0), and
the inflammatory stimuli Ab and LPS are both present (level 1).
The effects are quantified in terms of the changes they make
in the levels of a set of five key elements designed as endpoint
elements. The endpoint elements are IL1b, ROS, phago,
IL4, and IGF1, which represent, respectively, pro-inflammatory
cytokines, toxins, phagocytosis, anti-inflammatory cytokines,
and an anti-inflammatory factor of singular importance in the
model (see also Anastasio, 2014). In all model terminal states
the endpoint elements take one of three levels, which are 5, 3,
and 7, corresponding to base, low, and high. In the absence
of any intervention, the old initial state, with Ab and LPS both
present, leads to the neurotoxic terminal state (i.e., phenotype) in
which pro-inflammatory cytokines are high, ROS is high, anti-
inflammatory factors are low, and phago is low. This can be
expressed succinctly using Maude operators: in the old case with
Ab(1) and LPS(1) the terminal state has IL1b(7), ROS(7),
phago(3), IL4(3), and IGF1(3).

The neurotoxic endpoint pattern and many other reference
endpoint patterns are listed in Table 2. The two most
important are the neurotoxic pattern (Table 2, Row 6) and the
neuroprotective pattern (Table 2, Row 7), because the efficacy
of any drug combination was judged by its ability to move the
microglia from the neurotoxic to the neuroprotective phenotype.
Expressed as vectors, the neurotoxic and neuroprotective
endpoint levels are [7 7 3 3 3] and [3 3 7 7 7], respectively.
Then the efficacy of any single drug or drug combination was
quantified by howmuch it moved the endpoint vector (as moving
a needle on a dial) from the neurotoxic to the neuroprotective

Frontiers in Pharmacology | www.frontiersin.org 7 June 2015 | Volume 6 | Article 116

www.drugbank.ca
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Anastasio Computational identification of multi-drug combinations

TABLE 2 | Model endpoints from specific start conditions with no drugs or with single drugs.

Row Condition IL1b ROS phago IL4 IGF1

1 Young microglia, AB(0), LPS(0), and no drugs (baseline) 5 5 5 5 5

2 Young microglia, AB(1), LPS(0), and no drugs (mixed) 7 7 7 7 3

3 Young microglia, AB(0), LPS(1), and no drugs (mixed) 7 7 7 7 3

4 Young microglia, AB(0), LPS(0), TNFaini(8), and no drugs 7 5 7 7 3

5 Old microglia, AB(0), LPS(0), and no drugs 7 5 3 7 3

6 Old microglia, AB(1), LPS(1), and no drugs (neurotoxic) 7 7 3 3 3

7 Old microglia, AB(1), LPS(1), but effects reversed (neuroprotective) 3 3 7 7 7

8 Young microglia, AB(0), LPS(1), and thal(1) 5 7 5 5 5

9 Young microglia, AB(0), LPS(1), and bort(1) 5 7 5 5 5

10 Young microglia, AB(1), LPS(0), and nico(1) 5 5 5 5 5

11 Young microglia, AB(0), LPS(1), and nico(1) 5 5 5 5 5

12 Young microglia, AB(1), LPS(0), and ibup(1) 5 7 7 7 5

13 Young microglia, AB(0), LPS(1), and rosi(1) 5 7 7 7 5

14 old microglia, AB(0), LPS(0), and rosi(1) 5 5 7 7 5

15 Young microglia, AB(0), LPS(1), and aura(1) 5 7 5 5 5

16 Young microglia, AB(0), LPS(0), TNFaini(8), and ruxo(1) 7 5 5 5 5

17 Young microglia, AB(0), LPS(1), and glim(1) 5 5 7 7 5

The first seven rows list a set of reference phenotypes with no drugs (including mixed, neurotoxic, and neuroprotective). The following 10 rows list specific phenotypic modifications due

to certain drugs administered singly. The abbreviation TNFaini stands for the initial level of TNFa.

vector, and this amount was expressed as a percentage (0%meant
no movement or fully neurotoxic, while 100% meant maximal
movement or fully neuroprotective). The efficacies of all single
drugs and of all non-redundant drug combinations are listed in
Table 3.

The Effects of Each Drug Administered Alone in
the Model
In ADMICRODRUGS, each drug affects one or more targets,
which are the elements of the originalADMICRO. Each drug alters
the level of its direct target(s) in a manner that persists into the
terminal state of the model. The follow-on effect of each drug
also alters the levels of other elements, such as signaling-pathway
and transcription-factor elements. Some single drugs may also
alter the levels of the endpoint elements IL1b, ROS, phago,
IL4, and IGF1. Note that the effects of the drugs on their direct
targets are explicitly set according to experimental findings (see
previous Subsection for references), but all follow-on effects can
be considered as modeling results.

Thalidomide reduces the level of MyD88. It does that in
part by increasing degradation of MyD88 by the proteasome,
so it would be less effective in conjunction with bortezomib,
the main effect of which is to inhibit the proteasome. In
ADMICRODRUGS, thal is set to reduce the level of MyD88 by
2 if bort is absent but only by 1 if bort is present. By reducing
the level of MyD88 in the model, thal impairs the MyD88-
initiated signaling that results in activation of transcription factor
NFkB, but only in young microglia. For example, thal by
itself is effective in young microglia challenged by LPS. In
the young case with Ab(0) but LPS(1) and without any
intervention, the terminal state has MyD88(1), with pathway
elements IRAK(7), TRAF6(7), TRIF(1), RIP1(1), and

TAK1(7), and transcription factors NFkB(7) and PPARg(5).
The endpoint states are IL1b(7), ROS(7), phago(7),
IL4(7), and IGF1(3) (Table 2, Row 3). With NFkB(7) and
PPARg(5), the pro- and anti-inflammatory mediators (except
for IGF1) are expressed at the high level, and ROS is
high but phago is also high. If this initial state includes
thal(1), then the terminal state has MyD88(0), IRAK(4),
TRAF6(5), TRIF(1), RIP1(1), TAK1(5), NFkB(5), and
PPARg(5), and the endpoint states are IL1b(5), ROS(7),
phago(5), IL4(5), and IGF1(5) (Table 2, Row 8). With
NFkB(5) and PPARg(5), the pro-inflammatory cytokines,
including IFNg, are held at base, and this prevents the
microglial system from crossing the IFNg autocrine bridge
that causes upregulation of anti-inflammatory mediators (except
for IGF1; note that IFNg autocrine-bridge crossing causes
IGF1 downregulation in the model). Consequently phago
is also held at base, although ROS still rises to high.
Thus, in the young case with LPS(1), initial thal(1), by
suppressing MyD88, prevents LPS from activating NFkB, which
prevents upregulation of pro-inflammatory cytokines, and this is
consistent with observation (Noman et al., 2009).

Although thal is effective by itself in young microglia
challenged by LPS, its effectiveness is quite different in old
microglia challenged by Ab and LPS, which leads to the
neurotoxic state in the model. Among the non-endpoint
elements, the unaltered neurotoxic state has MyD88(2),
IRAK(8), TRAF6(8), TRIF(2), RIP1(2), TAK1(9),
NFkB(9), and PPARg(3), and the endpoint states are
IL1b(7), ROS(7), phago(3), IL4(3), and IGF1(3)
(Table 2, Row 6). If the initial state includes thal(1), then
the terminal state has MyD88(0), IRAK(6), TRAF6(7),
TRIF(2), RIP1(2), TAK1(9), NFkB(9), and PPARg(3),
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TABLE 3 | Model endpoints starting from the old initial condition with Ab(1) and LPS(1) and with drugs either singly or in specific combinations.

Row aura bort dasa glim ibup nalo nico rosi ruxo thal IL1b ROS phago IL4 IGF1 % effect

1 1 7 7 7 7 3 26

2 1 7 7 3 3 3 0

3 1 7 7 3 3 3 0

4 1 7 5 3 3 3 5

5 1 7 7 3 3 3 0

6 1 7 7 3 7 3 17

7 1 7 5 3 3 3 5

8 1 7 7 3 3 3 0

9 1 7 7 3 3 5 5

10 1 7 7 3 3 3 0

11 1 1 7 7 5 5 5 10

12 1 1 7 7 5 5 5 10

13 1 1 5 7 3 5 5 17

14 1 1 1 5 5 7 7 5 51

15 1 1 5 5 7 7 5 51

16 1 1 1 5 3 7 7 5 72

17 1 1 1 5 3 7 7 5 72

18 1 1 1 5 3 7 7 5 72

19 1 1 3 5 7 7 7 78

20 1 1 1 3 3 7 7 7 100

The neurotoxic endpoint pattern, which proceeds from the old initial condition with Ab(1) and LPS(1) and with no intervention, is shown in Table 2, Row 6.

and the endpoint states are IL1b(7), ROS(7), phago(3),
IL4(3), and IGF1(3) (Table 3, Row 10). In the model, thal
reduces MyD88 to 0, and this slightly reduces the levels of IRAK
to 6 and TRAF6 to 7. However, TRIF provides a pathway
through RIP1 to TAK1 that parallels MyD88, and TRIF and
RIP1 are unaltered by thal. Combined with RIP1 at 2, TRAF6
at 7 is still enough to drive NFkB to 9 and that pushes PPARg
down to 3. With NFkB(9) and PPARg(3), the pro- and anti-
inflammatory mediators all assume their unaltered neurotoxic
levels. Adding to its ineffectiveness by itself, thal(1) does not
reduce ROS or enhance phago either. Thus, thal by itself is
ineffective in old microglia in altering any of the endpoints from
their neurotoxic levels.

Because high-dose bortezomib is cytotoxic, ADMICRODRUGS
simulates a relatively low dose. In the model, bort is set to
hold the level of TRAF6 to base (rather than push TRAF6 to
low) under all circumstances in which TRAF6 would exceed
base, thereby reducing TRAF6 activation. The effects of bort
by itself are similar to those of thal. By itself, bort does not
alter any of the neurotoxic levels of the endpoint elements in
old microglia challenged by Ab and LPS in the model (Table 3,
Row 2). In contrast, in young microglia challenged by LPS alone,
bort holds all pro- and anti-inflammatory mediators (including
IGF1) to base and also holds phago at base although ROS
still rises to high (Table 2, Row 9). Thus, bort reduces the
response of young microglia to LPS alone, but is ineffective by
itself in combating the neurotoxic state induced in old microglia
by Ab and LPS in the model.

To simulate the effects of nicotine, nico is set to activate
a7nAChR to level 2, and this causes indirect inhibition of

NADPH, JNK, and p38MAPK. In the absence of any intervention,
young microglia with initial Ab(1) or initial LPS(1)
reach a terminal state that has a7nAChR(1), NADPH(2),
ROS(7), JNK(7), p38MAPK(7), AP1(7), NFkB(7), and
TNFa(7). If either initial state has nico(1) then the terminal
state has a7nAChR(2), NADPH(1), ROS(5), JNK(5),
p38MAPK(5), AP1(5), NFkB(5), and TNFa(5). Here nico
raises a7nAChR to 2, which pushes NADPH down to level 1,
and that pushes ROS down to the base level of 5. It also
holds JNK and p38MAPK to 5. This keeps AP1 at 5, at which
level it cannot increase NFkB. This keeps all pro-inflammatory
cytokines including TNFa and IFNg at the base level (of 5), and
that prevents the autocrine-bridge crossing that would otherwise
elevate anti-inflammatory factors (except IGF1) and in turn
elevate phago (Table 2, Rows 1–3, 10 and 11). In that nico
reduces activation of NADPH, JNK, and p38MAPK and blocks
production of ROS and TNFa in young microglia challenged
by Ab or LPS, the model is consistent with observation
(Shytle et al., 2004; De Simone et al., 2005; Moon et al.,
2008).The neurotoxic state has a7nAChR(0), NADPH(2),
ROS(7), JNK(10), p38MAPK(10), AP1(10), NFkB(9),
and TNFa(7). If the initial state includes nico(1), then
the terminal state, as in the previous case, has a7nAChR(2),
which pushes NADPH down to level 1, which pushes ROS
down to level 5. Also, the initial nico(1) again holds
JNK, p38MAPK, and AP1 to the base level of 5, but that
does not result in reduction of pro-inflammatory cytokines or
augmentation of anti-inflammatory factors or phago because
the level of NFkB is still at the over level of 9. Thus, nico
reduces ROS from high to base but does not otherwise
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alter the neurotoxic phenotype by itself in the model (Table 3,
Row 7).

To simulate the non-opioid isomer of naloxone, nalo is set
to block activation of TLR4 by Ab or LPS, but not to block
activation of TLR2 by Ab. (Note that LPS specifically activates
TLR4; Necela et al., 2008; Park et al., 2009.) Among the non-
endpoint elements, the unaltered neurotoxic state has TLR2(1),
TLR4(2), MyD88(2), IRAK(8), TRAF6(8), NFkB(9),
and PPARg(3). If the initial state includes nalo(1), then
the terminal state has TLR2(1), TLR4(0), MyD88(1),
IRAK(7), TRAF6(7), NFkB(7), and PPARg(5). TLR2 is
not sensitive to LPS but still responds to Ab, which drives TLR2
to level 1 and then TLR2 drives MyD88 to level 1. This level
of MyD88 is enough to drive IRAK, TRAF6, and NFkB to the
high level of 7, which is enough to keep the pro-inflammatory
cytokines high, but not enough to drive PPARg low, so the
IFNg autocrine bridge can be crossed. This drives up most
of the anti-inflammatory mediators except IGF1. The result
is IL1b(7), IL4(7), and IGF1(3) (Table 3, Row 6). The
initial nalo(1) does not alter ROS, which stays high, nor
does it alter phago, which stays low. Thus, nalo by itself
increases some anti-inflammatory factors but not IGF1, nor
does it decrease ROS, or decrease pro-inflammatory cytokines,
or increase phago in the neurotoxic phenotype of the model.

To simulate the effects of dasatinib, dasa is set to block
activation of Lyn by TLR2 or TLR4, but to have no effect on
Syk. In the absence of any intervention, the neurotoxic state of
old microglial in the model has Lyn(2), Syk(2), NADPH(2),
and ROS(7). If the initial state includes dasa(1) then the
terminal state has Lyn(0), Syk(2), NADPH(2), and ROS(7).
Both Lyn and Syk drive Vav. In the model, Syk at level 2 is
enough to bring Vav and then NADPH to level 2 and that is
enough to drive ROS to high even though Lyn is blocked by
dasa. Thus, dasa by itself does not reduce ROS nor does it alter
the levels of any of the other endpoint elements in the neurotoxic
state of the model (Table 3, Row 3).

The effects of ibuprofen are represented in ADMICRODRUGS
according to its well-known main mechanism: ibup is set to
prevent the increase in PGE2 due to COX2. The follow-on
effects of ibup depend on age and inflammatory stimulants
in a complex way. In the young case without intervention
and with Ab(1) but LPS(0), the terminal endpoint states
are IL1b(7), ROS(7), phago(7), IL4(7), and IGF1(3),
and the terminal levels of some of the non-endpoint elements
are PGE2(7), EP2(7), PKC(0), PPARg(5), and NFkB(7).
When this young initial state includes ibup(1) these
terminal states are IL1b(5), ROS(7), phago(7), IL4(7),
IGF1(5), PGE2(0), EP2(0), PKC(5), PPARg(8), and
NFkB(4) (Table 2, Rows 2 and 12). By inhibiting COX2, ibup
blocks PGE2 and subsequent EP2 production, and the resulting
disinhibition of PKC increases PPARg, which decreases NFkB.
The result is a decrease in pro-inflammatory cytokines to the
base level, retention of high levels of most anti-inflammatory
cytokines andwith an increase inIGF1 tobase, and no decrease
in ROS but also no decrease in phago. However, in the old case
with both Ab(1) and LPS(1), which leads to the neurotoxic
terminal state, NFkB is 9, PPARg is 3, and ibup has no effect

on model endpoints (Table 3, Row 5). If the neurotoxic state of
the model does indeed reflect the microglial state in the aged
and AD brain, as conjectured here (see Discussion), then these
model attributes are consistent with experimental findings. They
show that NSAIDs including ibuprofen are effective in reducing
inflammation and (through phagocytosis) Aβ plaque formation
in AD-transgenic mice, but only if chronic NSAID treatment is
begunwhile the animals are still young (Lim et al., 2000; Yan et al.,
2003; Sung et al., 2004).

To simulate rosiglitazone, rosi is set to strongly (but not
fully) activate PPARg. If the young initial state has LPS(1) but
Ab(0) and there is no intervention, then the terminal endpoint
are IL1b(7), ROS(7), phago(7), IL4(7), and IGF1(3),
and the terminal level of PPARg is 5 and of NO is 7. If the
initial state includes rosi(1), which raises PPARg to 8, then
NO falls to 5 and the terminal state has IL1b(5), ROS(7),
phago(7), IL4(7), and IGF1(5) (Table 2, Rows 3 and 13).
Thus, rosi brings the pro-inflammatory cytokines down to
base and IGF1 up to base, while phago and the other anti-
inflammatory factors retain the high level. Although ROS is not
reduced, NO is reduced. In the old case without inflammatory
stimuli (i.e., LPS and Ab are both 0), the untreated terminal state
has IL1b(7), ROS(5), phago(3), IL4(7), and IGF1(3)
(Table 2, Row 5). Additionally PPARg is 5 and NO is 7. Including
rosi in this case, which again raises PPARg to 8, again brings
the pro-inflammatory cytokines down to base and IGF1 up
to base, and the other anti-inflammatory factors retain the
high level. Additionally phago is increased to 7 while NO is
decreased to 5 (Table 2, Row 14). In that rosi reduces IL1b
and NO in the young case with LPS(1) and in the old case
without any inflammatory stimulus, the model is consistent with
experimental findings (Loane et al., 2009). Because the synergistic
combination of Ab and LPS in the old case raises NFkB to 9,
which pushes PPARg down to 3 despite rosi, rosi has no
effect by itself on the neurotoxic state of the model (Table 3,
Row 8).

To simulate auranofin, aura is set to hold IKK to 4 if TAK1
is less than over but to 5 if TAK1 reaches the over level. In
both cases aura has some efficacy. Again, if the young initial
state has LPS(1) but Ab(0) and with no intervention, then
the terminal endpoints are IL1b(7), ROS(7), phago(7),
IL4(7), and IGF1(3), and among non-endpoints IKK and
NFkB are both 7. If the initial state includes aura(1) then IKK
andNFkB are both held at 4 and the terminal state hasIL1b(5),
ROS(7), phago(5), IL4(5), and IGF1(5) (Table 2, Rows
3 and 15). Thus, aura blocks the response of young microglia
to LPS in the model, except that it does not reduce ROS. In
that aura reduces the LPS-induced increases in IKK and NFkB
in the model it is consistent with experimental findings (Jeon
et al., 2000, 2003). Because aura acts directly on IKK, which
activates NFkB, aura does have an effect by itself in reducing
the severity of the neurotoxic state. Again, if the old initial state
has Ab(1) and LPS(1) and there is no intervention then the
neurotoxic terminal state occurs. It has endpoints IL1b(7),
ROS(7), phago(3), IL4(3), and IGF1(3), and the non-
endpoints IKK and NFkB are both 9. If that initial state has
aura(1) then IKK and NFkB are held at 5 and the endpoints
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are IL1b(7), ROS(7), phago(7), IL4(7), and IGF1(3)
(Table 3, Row 1). Thus aura by itself brings the model from
the neurotoxic phenotype, which results in old microglia with
Ab(1) and LPS(1), to the mixed phenotype that results in
young microglia with Ab(1) or LPS(1) but not both (Table 2,
Rows 2 and 3).

To simulate ruxolitinib, ruxo is set to hold both JAK1 and
JAK2 to the base level. In the young case with enhanced
initial TNFa (TNFaini(8)) but with Ab and LPS both 0 and
no other intervention, the model terminal state has endpoints
IL1b(7), ROS(5), phago(7), IL4(7), and IGF1(3). It
also has IL6(7) and TNFa(7), and JAK1, JAK2, and STAT1
are all 7. If this initial state also includes ruxo(1) then JAK1,
JAK2, and STAT1 are reduced to 5, and the terminal state
has endpoints IL1b(7), ROS(5), phago(5), IL4(5), and
IGF1(5), and also IL6(7) and TNFa(7) (Table 2, Rows
4 and 16). This is consistent with findings that ruxolitinib
inhibits TNFα-induced JAK1/2 and STAT1 activation but does
not significantly reduce TNFα-induced production of IL1β, IL6,
and TNFα itself (Yarilina et al., 2012; Verstovsek, 2013). Although
ruxo does not reduce pro-inflammatory cytokines in this case
it shifts all anti-inflammatory factors to the base level, and
this represents a reduction for all the anti-inflammatory factors
except IGF1, which is actually augmented from low to base
by ruxo. This last effect alone is recapitulated in the neurotoxic
state, in which ruxo by itself does not alter the levels of any
endpoint elements except for IGF1, which takes the base rather
than the low level (Table 3, Row 9).

To simulate glimepiride, glim is set to raise the activation
of IRIGF1R to level 7 and of IGF2R to level 6, to reflect
findings that IGF2R is less sensitive to insulin than is the
hybrid insulin-IGF1 receptor IRIGF1R (Fernandez and Torres-
Aleman, 2012). Again, if the young initial state has LPS(1)
but Ab(0) and there is no intervention, then the terminal
endpoint states are IL1b(7), ROS(7), phago(7), IL4(7),
and IGF1(3), and additionally TNFa(7). If this initial state
includes glim(1) then the terminal endpoints are IL1b(5),
ROS(5), phago(7), IL4(7), and IGF1(5), and also
TNFa(5) (Table 2, Rows 3 and 17). Thus glim decreases the
levels of the pro-inflammatory endpoints and ROS from high to
base but does not decrease the high level attained by phago
and the anti-inflammatory factors except for IGF1, which is
actually increased from low to base. In that glim opposes the
LPS-induced increases in pro-inflammatory cytokines including
IL1b and TNFa, the model is consistent with experimental
observations in microglia (Ingham et al., 2014). Because glim
fully activates IRIGF1R it also reduces ROS from high to base
in the neurotoxic phenotype but, because glim does not fully
activate IGF2R, it does not alter any other neurotoxic endpoint
states by itself in the model (Table 3, Row 4).

Temporal-logic Analysis of Antagonistic Drug
Combinations
Half of the drugs applied by themselves reduced the severity
of the neurotoxic phenotype, with efficacies ranging from 5 to
26% (Table 3, Rows 1–10). The two most effective single drugs
were aura (26% efficacy) and nalo (17% efficacy). There were

three pairs of drugs that were actually less effective than one
member of the pair alone. The drug ruxo reduced the efficacies
of aura and of nalo (Table 3, Rows 11 and 12). Through its
inhibition of both JAK1 and JAK2, ruxo disrupts the autocrine
interactions by which pro-inflammatory cytokines can drive up
most anti-inflammatory mediators but drive down IGF1. The
result is that ruxo prevents aura or nalo from driving up IL4
and some other anti-inflammatory mediators, and in the case of
aura it also prevents the increase in phago that is due in part
to the increase in TGFb. However, ruxo prevents the neurotoxic
decrease of IGF1 that aura or nalo alone do not prevent but
that ruxo does prevent by itself (Table 3, Row 9).

On its own, aura moves the neurotoxic phenotype in a
neuroprotective direction by raising anti-inflammatory cytokines
like IL4 to high and also raising phago to high. With
aura alone, temporal logic shows that NFkB never rises above
base but AP1 is always above high, and that leads to high
expression of pro-inflammatory cytokines like IL1b and IFNg.
Also STAT1 eventually reaches high, which implies that IL4
and TGFb are high but IGF1 is low. In this way aura allows
crossing of the autocrine bridge by which pro-inflammatory
cytokines like IFNg raise the levels of anti-inflammatory factors
like IL4 and TGFb but lower the level of IGF1. The analysis also
shows that with aura alone, ERK can still reach a level above
high and this allows TGFb to drive phago to high in this
case. With aura and ruxo together, STAT1 does not eventually
reach high because ruxo suppresses JAK2, so the rise in most
anti-inflammatory mediators along with the fall in IGF1 does
not occur, but NFkB still never rises above base, so all the anti-
inflammatory mediators (including IGF1) and phago stay at
base.

The situation with nalo is similar. With nalo alone, NFkB
does rise above base but never rises above high, so NFkB
drives up the pro-inflammatory cytokines but NFkB never
reaches the over level necessary to override the autocrine
bridge. Therefore, as with aura, the autocrine bridge is crossed
and STAT1 eventually reaches high with nalo also, and
drives up most anti-inflammatory cytokines including IL4 and
TGFb while it drives down IGF1. However, nalo does not
allow ERK to rise above high, which it would need to do in
this case to allow TGFb to drive up phago. With nalo and
ruxo together, STAT1 does not eventually reach high because
ruxo suppresses JAK2, so the rise in the anti-inflammatory
mediators such as IL4 and TGFb, and the fall in IGF1,
does not occur. Still, NFkB never rises above high, so the
anti-inflammatory mediators as well as phago stay at base.
Thus, ruxo thwarts both aura and nalo by suppressing
JAK2 (the suppression by ruxo of JAK1 is less relevant
here).

The third antagonistic drug pair is aura and nalo. Their
interference can be explained by their respective effects on ERK
and NFkB. In the signaling pathway leading from Ab and
LPS stimulation, nalo works further upstream than aura
by blocking TLR4. In consequence, nalo suppresses ERK but
aura does not. In combination, nalo reduces the percent
efficacy of aura alone to the level of nalo alone, but the
endpoint pattern of the aura and nalo combination is different
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from the pattern due to nalo alone (Table 3, Rows 1, 6, and
13). With aura and nalo together, NFkB is suppressed further
than with either drug alone and never even reaches the base
level. Having NFkB below base implies that pro-inflammatory
cytokines like IL1b and IFNg are at kept at base, which
prevents autocrine-bridge crossing and so further implies that
anti-inflammatory factors like IL4, TGFb, and IGF1 are kept
at base. With aura and nalo together, unlike aura alone but
as with nalo alone, the rise in ERK is suppressed and that causes
phago to fall to low in this case. In all of the cases examined
in this Subsection, which are aura alone, nalo alone, each
separately combined with ruxo, or aura and nalo together
without ruxo, ROS is not suppressed but reaches the high level.
Although nalo antagonizes aura, and aura undoes some
of the benefit of nalo, the aura and nalo combination is
synergistic when glim is added to the mix (see next Subsection).

Temporal Logic Analysis of Synergistic Drug
Combinations
There were 376 combinations with percent efficacies of 50% or
greater, but the overwhelming majority of these were redundant
in the sense that one or more drugs in the combination did
not increase the overall efficacy of the combination. Removing
all redundancies reduced the number of combinations with
efficacies of 50% or greater to only seven (Table 3, Rows 14 to
20). Of all ten drugs, glim was the only drug present in all
seven of the synergistically efficacious combinations. Temporal-
logic analysis shows that glim by itself keeps ROS to the base
level. While glim also helped keep ROS at or below base in all
seven synergistic combinations, its contribution to efficacy was
not limited to ROS reduction.

The drug glim greatly improves the efficacy (to 51%) of the
aura and nalo combination in one of the two stable states
associated with this combination (Table 3, Row 14). In addition
to reducing ROS, glim allows PPARg to rise to the over level
along the trajectory leading to the more efficacious state. This
raises the level of anti-inflammatory factors such as IL4 and
TGFb to high, and this rise is self-sustaining in the stable state in
whichSTAT6 attains thehigh level. The effects ofnalo onERK
allow TGFb to drive up phago. Due to the combination of aura
and glim, NFkB is kept below base so the pro-inflammatory
cytokines cannot rise above base and cannot drive IGF1 below
base.

There are three stable states associated with the combination
of glim and rosi. The most efficacious of these has the same
percent efficacy (of 51%) and endpoint pattern as the aura,
glim, and nalo combination (Table 3, Rows 14 and 15), and
the efficacious states of aura/glim/nalo and of glim/rosi
are similar but occur via different mechanisms. Along its
most efficacious trajectory, the combination glim/rosi works
mainly by driving PPARg above high, which pushes NFkB
below base. With these key transcriptions factors at those levels,
the pro-inflammatory cytokines are held at base and cannot
drive down IGF1, which also stays at base, but the other
anti-inflammatory factors are driven high. The glim/rosi
combination does not affect the TLR2/TLR4 signaling pathway
so ERK is allowed to rise and, in this case, that allows TGFb

to drive phago to the high level. Adding nico to the
glim/rosi combination increases its efficacy to 72% (Table 3,
Rows 15 and 16). The main contribution of nico to the
glim/nico/rosi combination is to further reduce ROS by
always keeping the level of NADPH less than 2.

Two other combinations have the same efficacy (of 72%) and
the same terminal endpoint pattern as the glim/nico/rosi
combination. These are the aura/glim/nico and the
nalo/glim/nico combinations (Table 3, Rows 17 and 18).
Two stable states are associated with aura/glim/nico. For
both of them, due to aura and glim, NFkB never rises
above base. In consequence, pro-inflammatory factors such
as IL1b, and the anti-inflammatory IGF1, eventually settle
at base. Due to the combined influences of glim and
nico, ROS is held at low in both stable states. Along the
more efficacious trajectory, an increase in PPARg above high
drives STAT6 to the high level, and that leads to sustained
high expression of anti-inflammatory factors such as IL4 and
TGFb. Because TLR2/TLR4 signaling is not disrupted by the
aura/glim/nico combination, ERK eventually rises above
high, and that allows TGFb to drive phago to the high level
in this case.

There are also two stable states associated with the
nalo/glim/nico combination, and the mechanism by which
the more efficacious state occurs is similar to that of the
aura/glim/nico combination with two small differences.
First, because nalo blocks TLR4 signaling, ERK is held below
high, but that also allows TGFb to drive phago to high
in this case. Second, PPARg eventually reaches base in both
combinations, but that in conjunction with STAT1 at base
is enough to keep IGF1 at base for the nalo/glim/nico
combination. Otherwise, the mechanisms for keeping the pro-
inflammatory cytokines at base, the anti-inflammatory factors
(except IGF1) at high, and ROS at low are similar between
these two combinations (Table 3, Rows 17 and 18).

The most efficacious combinations are glim/ibup and
glim/ibup/nico (Table 3, Rows 19 and 20), and their
mechanisms are the simplest. Both combinations are associated
with only one stable state, as are each of glim, ibup, and nico
separately. With glim by itself, PPARg rises to the over level
but it does not stay there, while with ibup by itself PPARg
eventually falls to low. However, with glim and ibup in
combination, PPARg rises to over and stays there due to the
rise in Gq by glim and the fall in EP2 by ibup. By raising Gq
to high this combination ensures sustained high expression of
IGF1, which drives up the level ofPPARg. WhenPPARg reaches
the over level it drives NFkB low, and this configuration
of these key transcription factors brings forth the expression
pattern characteristic of the neuroprotective state in which all
pro-inflammatory cytokines are low and all anti-inflammatory
mediators, including IGF1, are high. With glim/ibup, ERK
can still rise above high and that allows TGFb to drive phago
to high in this case, and glim reduces ROS to base. All that
separates this endpoint pattern from the fully neuroprotective
pattern is that ROS is reduced all the way to low in the latter.

The glim/ibup combination just described has 78%
efficacy (Table 3, Row 19). Adding nico to the mix raises
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its efficacy to 100% (Table 3, Row 20). The combination
glim/ibup/nico exhibits all the same mechanisms as the
glim/ibup combination but it also keep ROS at low due to
the activation by nico of the a7nAChR. Thus, in the model,
microglia can be brought from the neurotoxic state to the fully
neuroprotective state by a combination of glim, ibup, and
nico.

Discussion

The key finding of this study is the identification of seven specific
combinations of FDA-approved, small-molecule drugs that could
potentially reduce microglial inflammation in the aged and AD
brain (Table 3, Rows 14–20). Many lines of evidence indicate that
the basal state of microglia becomes more inflammatory with age
(for review see Wong, 2013). This chronic neuroinflammation
is associated with higher levels of pro-inflammatory cytokines,
and possibly also with higher levels of certain anti-inflammatory
cytokines. The microglia model takes on this phenotype in the
old case in the absence of Ab and LPS (Table 2, Row 5) due
to the lack of ACh, CD22, CD200, CX3CL1, and TREM2L.
These neuronal factors are associated with young, healthy
neurons and they suppress microglial inflammation in themodel.
This is consistent with experimental findings (for references
see Anastasio, 2014) with the possible exception of CX3CL1,
findings for which are ambiguous. Some studies indicate that
CX3CL1, also known as fractalkine, can partially suppress the
pro-inflammatory response of microglia (Cardona et al., 2006),
while other studies indicate that it can suppress phagocytosis
of Aβ and partially enhance the pro-inflammatory response of
microglia in transgenic ADmice (Lee et al., 2010). A recent study
in transgenic AD rats reported increased CX3CL1 along with
increased IL1β, TNFα, and COX2 even in young animals (Hanzel
et al., 2014). The authors of that study proposed that release
of CX3CL1 or other factors by Aβ-damaged neurons could
exacerbate or even possibly trigger the inflammatory response in
the AD brain.

While it seems obvious that age-related and Aβ-related
damage to neurons would contribute to a neurodegenerative
process, age is not the sole cause of AD and neither is Aβ since Aβ

accumulation in brain is frequently observed in aged individuals
who show little or no dementia (Lee et al., 2004; Castellani et al.,
2009). It is likely that factors in addition to age and Aβ can push
the brain into a neurodegenerative state. In this study, that factor
is LPS, which is meant to represent the kind of debris the builds
up from a lifetime of fighting bacterial infections. Such debris can
persist as an inflammatory stimulus and invade the aged and AD
brain (Miklossy, 2008; Bibi et al., 2014).

Experimental evidence indicates that young and old microglia
exposed to Aβ alone (i.e., without LPS) take on similar
phenotypes except for phagocytosis. Specifically, both young
and old microglia exposed to Aβ have increased production
of ROS and of pro- and anti-inflammatory mediators (except
for decreased production of IGF1), but young microglia have
increased phagocytosis while old microglia have decreased
phagocytosis (for references see Anastasio, 2014). When old
microglia are exposed to Aβ and LPS together in vitro they

also have increased production of ROS and of pro-inflammatory
cytokines and decreased phagocytosis, but with Aβ and LPS
together old microglia have decreased production of anti-
inflammatory mediators (including IGF1) (Piazza and Lynch,
2009). Deprived of whatever protection the anti-inflammatory
mediators may offer (see below), this phenotype is considered
neurotoxic. It has not been described in vivo but is here
conjectured to occur in aged and AD brains, due to the possible
infiltration of inflammatory stimuli besides Aβ (such as LPS)
that can also activate the TLR complex. The computational
drug-combination screen presented here took this neurotoxic
phenotype, as initiated by a combination of Aβ and LPS in old
microglia, as a starting point, but only some of the findings are
dependent on LPS.

The neurotoxic phenotype simulated here is triggered in the
old case by Ab and LPS together, signaling through TLR4, but
is produced and maintained by a transcription-factor pattern
in which NFkB is expressed at its highest level while PPARg
is expressed at its lowest level. All seven of the synergistically
efficacious drug combinations work by reversing that pattern,
in part or in whole. The seven efficacious combinations involve
six of the ten drugs: aura, glim, ibup, nalo, nico, and
rosi. Of those, only nalo works by blocking activation of
TLR4 by LPS (and Ab). All of the others (except nico) work
on elements that more directly determine the levels of NFkB
and PPARg (see Results). If, as conjectured here, a neurotoxic
phenotype occurs in the aged and AD brain because of co-
stimulation by Aβ and other TLR4 ligands (such as LPS), then
the model suggests that drug combinations that include a TLR4
blocker, such as the non-opioid form of naloxone, would help to
reduce that neurotoxicity (opioid forms that block both TLR2
and TLR4 might help even more). If, on the other hand, AD
does not involve co-stimulation between Aβ and other TLR
ligands, then the neurotoxic phenotype described here can be
considered as a worst-case scenario of microglial activation.
In that case the model suggests that certain combinations of
auranofin, glimepiride, ibuprofen, and rosiglitazone would help
to reduce microglial inflammation in AD. It further suggests
that nicotine can contribute by reducing ROS in some of those
combinations.

The two most efficacious combinations were glim/ibup
and glim/ibup/nico. The combined effects of glim and
ibup were enough to completely reverse the neurotoxic
transcriptional pattern involving NFkB and PPARg, resulting in
low expression of pro-inflammatory cytokines,high expression
of anti-inflammatory mediators including IGF1, and high
phago. Reduction of ROS from base to low by the addition of
nico completed the conversion from the fully neurotoxic to the
fully neuroprotective phenotype. Among the anti-inflammatory
factors expressed at a high level in the neuroprotective
phenotype is TGFb (see Results). Various mechanisms of
neuroprotection by TGFβ through direct action on neurons
have been described (for review see Caraci et al., 2012). It
is possible that certain anti-inflammatory mediators including
IL4 and IGF1 may also be neuroprotective via mechanisms
that go beyond suppression of the neurotoxic microglial
state.
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Two further aspects of the highly efficacious glim/ibup
and glim/ibup/nico combinations stand out. First, only
combinations including both glim and ibup were able
completely to reverse the neurotoxic NFkB-PPARg pattern.
Second, only combinations including both glim and ibupwere
associated with only one stable state. These two aspects are
related.

The neuroprotective transcriptional pattern (NFkB low but
PPARg high) can be maintained only when IGF1 is able
to sustain its own high expression though activation of the
Gq pathway. This mechanism is tenuous because it cannot be
maintained through synergism with other anti-inflammatory
mediators but can only be sustained by IGF1 itself (see
Subsection Microglia Model Behavior). The efficacious drug
combinations that did not include both glim and ibup could
not completely reverse the neurotoxic NFkB-PPARg pattern,
nor could they even guarantee, for all orders of updates of the
autocrine receptors (i.e., all state trajectories), that the partial
reversal they could produce would be maintained. Thus, the
glim/ibup and the glim/ibup/nico combinations emerge
from the analysis as the most efficacious as well as the most
reliable. The model suggests that the combination of glimepiride
and ibuprofen could effectively and reliably reduce microglial
inflammation in AD, and could also reduce ROS with the
addition of nicotine.

The impetus for the computational drug-combination
screen described here is similar to that which drives other
computational and experimental approaches in the emerging
area of polypharmacology (Keith et al., 2005; Hopkins, 2008;

Lehar et al., 2009; Xie et al., 2012). What sets this computational
study apart is its use of both imperative and declarative
programming modalities to simulate and analyze a pathological
system. This dual approach allows both identification of
potentially effective drug combinations and detailed analysis
of their putative mechanisms of action. As such, the model
generates predictions of both therapeutic and basic-science
relevance.

The most direct way to test the specific predictions generated
here would be to use old microglia exposed to both Aβ and
LPS in vitro (for in vitro experiments, insulin itself would
be used in place of glimepiride). Validation in vitro that the
efficacious drug combinations identified here actually do reduce
microglial inflammation would provide strong justification for
in vivo tests, which could lead to clinical trials. However,
failure to validate model predictions would also be useful,
and in that case the ability to use declarative analysis tools
is critical. While descriptions of the mechanisms of action
of the various drug combinations may seem tedious they
are nevertheless essential, because if the predictions are not
validated, then experiments involving the receptors, signaling
molecules, transcription factors, and other elements can show
us specifically where the model goes wrong and how to
correct it. Yoking computational and experimental efforts would
spur development of a model of ever increasing explanatory
power, and one that would produce increasingly valuable
predictions concerning multi-drug therapies aimed at the highly

complex and severely damaging inflammatory component of
neurodegenerative diseases including AD.
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