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Introduction
Many cell surface proteins are attached to the membrane by 

a glycophosphatidylinositol (GPI) anchor, which consists of 

a conserved central structure (Low, 1989) with variable carbo-

hydrate and lipid peripheral components (Homans et al., 1988). 

GPI anchors can determine protein functional specifi city, just as 

switching a transmembrane (TM) domain for a GPI anchor can 

result in novel function caused by association with new sig-

naling elements located in a shared membrane microdomain 

(Shenoy-Scaria et al., 1992, 1993).

Membrane rafts, originally defi ned by their insolubility 

in cold, nonionic detergents such as Triton X-100 (Simons and 

Ikonen, 1997), are small, heterogeneous aggregations of choles-

terol and sphingolipids on the cell surface (Pralle et al., 2000; 

Pike, 2004) that concentrate GPI-anchored proteins, but also 

contain other proteins. Although the existence of membrane 

rafts in vivo has been questioned (Munro, 2003), recent studies 

using a variety of methods have provided evidence for raftlike 

membrane microdomains (Friedrichson and Kurzchalia, 1998; 

Varma and Mayor, 1998; Pralle et al., 2000; Dietrich et al., 2002; 

Gaus et al., 2003; Sharma et al., 2004). Such microdomains may 

act as signaling scaffolds, determining the identity of a subset 

of signaling elements, as proteomic analyses have found a 

high concentration of such proteins in purifi ed rafts (von Haller 

et al., 2001; Foster et al., 2003), with GPI-anchored proteins 

involved in activating this signaling (Robinson, 1997; Solomon 

et al., 1998). The existence of heterogeneous raft populations 

has been inferred from studies showing that different GPI-

anchored proteins exist in separate rafts (Madore et al., 1999; 

Wang et al., 2002; Li et al., 2003). External rafts with different 

proteins may each have a defi ned set of associated  cytoplasmic 

proteins, whereby aggregation of GPI-anchored proteins by 

external domain self-binding or by multivalent ligand binding 

could cluster specifi c rafts, resulting in downstream signaling 

(Harris and Siu, 2002).

Carcinoembryonic antigen (CEA), and the closely related 

CEACAM6, are GPI-anchored, cell surface glycoproteins that 

block cellular differentiation (Eidelman et al., 1993) and inhibit 

the apoptotic process of anoikis (Ordonez et al., 2000; Duxbury 

et al., 2004b), effects that appear to be caused by the activation of 

specifi c integrins (Duxbury et al., 2004a; Ordonez et al., 2006). 

CEA is up-regulated in many human malignancies (Hinoda et al., 

1991; Ilantzis et al., 1997), implying a similar role in human 

 cancer, whereas the TM-anchored CEACAM1 (CC1) may act as 

a tumor suppressor (Kunath et al., 1995; Luo et al., 1997).
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Most CEA family members mediate intercellular adhe-

sion by antiparallel self-binding (Zhou et al., 1993), which, 

 together with parallel binding on the same cell surface (Taheri 

et al., 2003), may result in clustering of rafts containing CEA 

(Benchimol et al., 1989). Deletion of the last two thirds of 

the CEA N-terminal domain (∆NCEA) abrogates its adhesive 

 ability, which leads to a loss of differentiation-blocking activity 

(Eidelman et al., 1993). The method of membrane anchorage 

determines CEA family member activity, as genetically fusing 

the GPI anchor of CEA to CC1’s external domain creates a 

 differentiation-blocking molecule, whereas a chimera  consisting 

of the external domain of CEA attached to the TM domain 

of CC1 does not block differentiation (Screaton et al., 2000). 

The fact that GPI-anchored neural cell adhesion molecule 

(NCAM) does not block differentiation, but can be converted to 

a differentiation-blocking molecule, denoted NCB (previously 

“NC blunt”), by swapping its GPI anchor for that of CEA, sug-

gests that the CEA GPI anchor harbors the specifi city for the 

differentiation-blocking function and that the external domains 

merely function to cluster the molecules, and thus, the associ-

ated rafts (Screaton et al., 2000).

Based on the aforementioned model, it should be possible 

to inhibit the biological functions of CEA (and, by implication, 

that of any GPI-anchored molecule whose function is regulated 

by a similar mechanism) by interfering with clustering. This has 

been achieved for CEA by mutating regions in its N-terminal 

external domain responsible for self-binding or by the addi-

tion of peptides or monovalent mAbs that target these regions 

(Taheri et al., 2003). We test a second strategy which exploits 

the specifi city of the CEA GPI anchor; if “shank- defective” 

or “shankless” CEA GPI anchors that were incapable of self-

 association and clustering were introduced, they could occupy 

the same rafts as CEA, and thus, possibly interfere with its 

 clustering. We show that nonfunctional ∆NCEA inhabits the same 

membrane microdomains as NCB, as both have the same GPI 

anchor, but not those of NCAM, and is capa ble of completely 

inhibiting NCB’s CEA-like differentiation-blocking activity.

Results
Design and construction of experiments
To test the hypothesis that the functional specifi city of GPI 

anchors could be exploited to specifi cally inhibit the activity 

of GPI-anchored proteins, cells expressing a functional GPI-

anchored protein were supertransfected with a shank-defective 

molecule with the same GPI anchor, and assessed for effects on 

function. The former functioning molecule was NCB, which has 

NCAM self-binding external domains linked to the CEA GPI 

 anchor (Screaton et al., 2000); the defective molecule was ∆NCEA, 

which has the same GPI anchor, but external domains that are de-

fective in self-binding (Fig. 1 A; Eidelman et al., 1993). Because 

∆NCEA cannot bind to the external NCAM domain of NCB 

(Zhou et al., 1990), this combination allowed a study focused on 

the potential interaction between their GPI anchors.

∆NCEA was stably cotransfected into NCB transfectants 

of rat L6 myoblasts, which are blocked for myogenic differen-

tiation because of the expression of NCB. ∆NCEA was present 

on the cell surface of the double transfectants at slightly higher 

levels than NCB, as seen by FACS (Fig. 1 B) and Western 

blot (unpublished data). As a control for specifi city of effects, 

double transfectants stably expressing molecules with dif-

ferent GPI anchors were used, i.e., ∆NCEA or CEA with 

CEA GPI anchors, and NCAM with the NCAM GPI anchor. 

Similar expression levels were also obtained for these trans-

fectants (Fig. 1 B).

𝚫NCEA and NCB exist in close proximity
CEA and NCAM appear to exist in separate membrane regions, 

potentially explaining their opposite biological effects (Screaton 

et al., 2000). If the GPI anchor alone determines cell surface 

Figure 1. Surface expression of CEA and NCAM proteins on L6  myoblasts. 
(A) Schematic representation of proteins used in this study, with their ability 
to mediate intercellular adhesion and to inhibit myogenic differentiation 
shown (as + or −). (B) FACS profi les, after staining with mAbs D14 (anti-
CEA) or 123C3 (anti-NCAM) and FITC-conjugated secondary antibody, 
demonstrate cell surface levels of indicated proteins with fl uorescence 
means in parentheses. In coexpressing cells, D14 staining is shown by 
shaded profi les.
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 localization, then molecules with the same GPI anchor should 

exist in close proximity, whereas those with different anchors 

should not. Thus, NCAM and NCB would be expected to have 

different cell surface distributions, with NCB showing a distribu-

tion similar to that of CEA. To test this hypothesis, we examined 

whether ∆NCEA existed in close proximity on the cell surface to 

NCB, but not to NCAM, using confocal microscopy to examine 

the cell surface localization of these proteins. The relative sur-

face distribution of NCAM and NCB compared with ∆NCEA 

was determined after indirect immunofl uorescent staining. 

∆NCEA showed substantial, although incomplete, colocaliza-

tion with NCB, whereas ∆NCEA and NCAM showed essentially 

no colocalization (Fig. 2 A). Because the incubations were per-

formed at room temperature, the antibodies used for detection 

may have caused partial clustering of the proteins. This,  however, 

should not affect the heterophilic association in question, as 

clustering of rafts containing both proteins should not change the 

fi nal amount of colocalization seen. Indeed, fi xing the cells be-

fore antibody incubation to avoid clustering resulted in very sim-

ilar patterns of colocalization to what is shown in Fig. 2 A (not 

depicted). This therefore suggests that the GPI anchor of CEA is 

suffi cient to determine cell surface localization of a protein.

To verify these results, L6 cotransfectants were treated at 

4°C (to limit protein diffusion) with the chemical cross-linker 

DTSSP. Nonreducing Western blots demonstrated similar cross-

linking patterns for NCB and NCAM, consisting of dimers, 

 trimers, and higher molecular weight complexes, both alone and 

in the presence of ∆NCEA (Fig. 2 B). To determine the cellular 

distribution of ∆NCEA relative to NCAM and NCB, immuno-

precipitation (IP) studies of extracts from cross-linked cells ex-

pressing similar amounts of these proteins were performed. The 

cross-linking approach was undertaken, rather than using deter-

gent lysis because of the potential effects of detergents on mem-

brane raft structure. IP of extracts from untreated cells did not 

result in any coIP (Fig. 2 C), confi rming the expected antibody 

specifi city. However, IP with an anti-CEA mAb of extracts of 

DTSSP-treated cotransfectants resulted in the coIP of a consid-

erable amount of NCB, but, importantly, not of NCAM (Fig. 2 D). 

Similarly, IP with an anti-NCAM mAb of extracts of cross-

linked cotransfectants showed coIP of ∆NCEA only in the case 

of NCB, but not of NCAM (Fig. 2 D). The low proportion of 

coimmunoprecipitated protein can likely be explained by the 

lack of interaction between the external NCAM and CEA pro-

tein domains, the requirement for close (<12 Å) apposition to 

Figure 2. 𝚫NCEA exists in close proximity to 
NCB, but not to NCAM. (A) ∆NCEA colocal-
izes with NCB, but not with NCAM. Indirect 
immunofl uorescence was visualized by confo-
cal microscopy, using mouse anti-NCAM and 
rabbit anti-CEA primary mAbs, followed by 
Cy2-conjugated goat anti–rabbit (left) and 
 rhodamine-conjugated goat anti–mouse sec-
ondary antibodies (center). Merged fi gures 
(right) demonstrate considerable ∆NCEA colo-
calization with NCB, but not NCAM, as shown 
by the yellow regions. (B) Cross-linking with 
DTSSP resulted in a similar pattern of NCB or 
NCAM high molecular weight bands (with 
monomer [1x], dimer [2x], and trimer [3x] 
 being the predominant bands) on a nonreducing 
acrylamide gel (top), with similar protein levels 
seen on a reducing (Red.) gel (bottom). (C) IP 
of these samples was then undertaken. IP in the 
absence of DTSSP cross-linking showed spe-
cifi c antibody binding, as no coIP occurred. 
(D) IP of DTSSP cross-linked samples demon-
strated coIP of ∆NCEA with NCB and vice-
versa, but not with NCAM, demonstrating a 
specifi c, close association of ∆NCEA and NCB. 
IB, immunoblot.
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be cross-linked, the presence of large levels of monomeric pro-

teins even after cross-linking (Fig. 2 B), and the incomplete 

 colocalization seen by confocal microscopy (Fig. 2 A). These 

results demonstrate that proteins with GPI anchors of the same 

type can exist in close proximity, providing a rationalization for 

specifi c interference with protein function.

𝚫NCEA restores differentiation 
to NCB-expressing cells
Having demonstrated specifi c colocalization of ∆NCEA and 

NCB on the cell surface, the effect of this defective protein 

on NCB’s ability to block differentiation was examined. NCB 

levels in the ∆NCEA coexpressing L6 transfectants were ac-

tually higher than those in NCB-only transfectants, thus, vali-

dating comparisons between NCB alone and in the presence of 

∆NCEA (Fig. 1 B; FACS means of 124 vs. 63, respectively). 

NCB completely blocked differentiation, whereas coexpression 

of ∆NCEA with NCB resulted in an almost complete resto-

ration of differentiation, with a fusion index of 78% of that 

seen for ∆NCEA alone (Fig. 3 A and Table I; P < 0.0001). 

As a control, coexpressing NCAM had no effect on the dif-

ferentiation block imposed by CEA (Fig. 3 A), despite the 

 differentiation-enhancing effects of NCAM (Dickson et al., 1990). 

To confi rm this result, up-regulation of myosin, a biochemical 

differentiation marker, was examined. ∆NCEA induced myosin 

production in two independent populations of NCB-expressing 

cells, as shown by Western blot, whereas NCB alone showed 

no myosin expression (Fig. 3 B), confi rming the previous 

 results. Because of the length of the differentiation assay (10 d 

total), it was possible that a loss of NCB expression caused the 

differentiation restoration in these cotransfectants. However, no 

decrease in NCB levels was seen in differentiated ∆NCEA + 

NCB cultures, as Western blots showed higher expression levels 

in both cell populations than the NCB-alone transfectants for 

Figure 3. 𝚫NCEA restores differentiation to 
NCB-expressing cells. (A) Photomicrographs of 
L6 transfectants tested for myogenic differentia-
tion after a 7-d incubation in DM. Parental and 
∆NCEA cells fused readily, whereas NCB and 
CEA completely blocked differentiation; co-
expression of ∆NCEA with NCB restored differ-
entiation. (B) Up-regulation of the differentiation 
marker myosin, as determined by Western blot 
with mAb 47A on 10 μg of total lysate, was 
seen only in parental, ∆NCEA, and two sep-
arate populations of ∆NCEA + NCB. No 
myosin expression was seen in exponentially 
growing (exp) cultures of NCB or ∆NCEA + 
NCB transfectants. (C) NCB expression in dif-
ferentiated cultures. Western blots of 10 μg of 
total cellular lysate demonstrated that NCB ex-
pression remained higher in coexpressing cells 
than in NCB-alone transfectant cells after 7 d 
in DM.



INHIBITION OF CEA FUNCTION BY GPI ANCHOR TARGETING • NICHOLSON AND STANNERS 651

which differentiation was blocked (Fig. 3 C). Thus, ∆NCEA ex-

pression interfered markedly with the differentiation-blocking 

function of NCB, presumably via their common feature, the 

GPI anchor.

Effects of CEA-like proteins on binding 
to ECM
∆NCEA releases NCB’s block of differentiation, suggesting 

that it is interfering with downstream signaling by NCB. 

CEA signaling has been found to involve activation of the integrin 

α5β1 in rat myoblast and human colonic cell lines (Ordonez 

et al., 2006) and the integrin αvβ3 in neuronal cells (unpublished 

data). We assessed NCB signaling by incubating single-cell sus-

pensions, prepared from exponential cultures, with plates coated 

with the ECM components fi bronectin (Fn), vitronectin (Vn), and 

collagen I. Either CEA or NCB expression increased binding 

to both Fn and Vn, relative to L6 parental cells (Fig. 4 A; 

P < 0.004). Cells expressing ∆NCEA + NCB (and ∆NCEA 

alone) showed no such increase, demonstrating a complete loss, 

in the presence of ∆NCEA, of the NCB-mediated increase in 

ECM binding (P < 0.0001). As a control, no difference in 

binding to collagen I was seen between any of these cell lines 

(Fig. 4 A). In addition, LR-73 (LR) transfectants were tested 

for binding to Fn, and these cells showed a similar loss of NCB-

mediated effects upon coexpression of ∆NCEA (Fig. 4 B; 

P < 0.01). The total cell levels of α5 and β1 integrins in the L6 

transfectants were assessed by Western blot (Fig. 4 C), and cell 

surface levels were assessed by FACS (α5 only; not depicted) 

and showed only minor differences between transfectants, con-

fi rming that the ability of cells to adhere to Fn, rather than changes 

in integrin surface expression level, was the source of the 

observed difference (Ordonez et al., 2006; unpublished data). 

Figure 4. Increased ECM binding by NCB transfectants is lost 
in the presence of 𝚫NCEA. (A) L6 (CEA) and L6 (NCB) trans-
fectants showed increased binding, compared with parental 
L6 cells, to immobilized Fn and Vn, whereas the presence of 
∆NCEA in NCB transfectants abrogated this increase. No dif-
ference in collagen I binding was seen between parental and 
transfectant lines. Mean values are ± the SD from three inde-
pendent experiments are shown (*, P < 0.004). (B) LR trans-
fectants showed a similar pattern of binding to Fn, with an 
increase seen for NCB, but not for ∆NCEA + NCB transfec-
tants (*, P < 0.003). (C) No signifi cant alteration in integrin 
β1 (top) or α5 (bottom) expression was seen by Western blots 
on 5 μg of lysate from each L6 cell line.

Table I. Differentiation of L6 transfectants

Cell line Fusiona

%

L6 parental 71

L6 (CEA) 0

L6 (∆NCEA) 64

L6 (NCB) 0

L6 (∆NCEA + NCB) 50

L6 (CEA + NCAM) 0

aFusion index was measured as the number of cells containing three or more 
nuclei divided by total nuclei in the fi eld and expressed as a percentage. 
Values are the mean of three different experiments, with three fi elds scored from 
each experiment.
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Thus, the ability of ∆NCEA to interfere with the NCB- mediated 

differentiation blockage is correlated with interference of en-

hanced integrin–ECM interaction promoted by NCB.

NCB raft association is unaltered 
by the presence of 𝚫NCEA
Signaling by GPI-anchored proteins requires intact membrane 

rafts (Stulnig et al., 1997). One possible mechanism for the ef-

fects of ∆NCEA on NCB functional properties could be by ex-

pulsion of NCB from rafts. When this possibility was examined, 

however, NCB remained primarily insoluble in cold Triton X-

100 after coexpression of ∆NCEA in either L6 or LR cells 

(Fig. 5, A and B, respectively). Complete cellular lysis was 

demonstrated by the fact that the integrin α5 chain, an integral 

membrane protein, was localized in the soluble fractions. As 

confi rmation, isopycnic sucrose gradient ultracentrifugation, 

where raft-associated proteins migrate to the lower density re-

gions of the gradient, was performed on cold Brj-98 lysates of 

L6 transfectants. Again, no obvious difference was noted be-

tween NCB alone and NCB coexpressed with ∆NCEA (Fig. 5, 

C and D), as almost all of the NCB was present in the low-

density fractions in both cases. Under these conditions, the α5 

integrin chain showed partial raft association for both transfec-

tants, demonstrating that an alteration of α5 localization was 

not responsible for the lack of NCB function. The distribution 

of ∆NCEA was also found to be essentially the same as that of 

NCB, as expected for two GPI-anchored proteins. As controls, 

the α2 integrin chain was found solely in higher density frac-

tions, whereas the raft lipid GM1 was entirely in the low-

density fractions. Thus, NCB retained membrane raft associa tion 

in the presence of ∆NCEA, so that this could not explain the 

loss of NCB function.

Effect of expression of 𝚫NCEA 
on NCB-mediated intercellular adhesion
The proteins of the CEA family mediate intercellular adhesion, 

as does NCAM (Soroka et al., 2003), by external domain self-

binding. Such self-binding is required for the differentiation-

inhibitory activity of CEA, presumably to affect raft clustering 

(Eidelman et al., 1993; Taheri et al., 2003). If ∆NCEA inter-

fered with NCB clustering, one might predict a reduction in the 

ability of NCB to mediate intercellular adhesion. NCAM was 

used as a control, as it inhabits different rafts from ∆NCEA 

(Fig. 2 C). NCAM and NCB were expressed at very similar 

 levels, with and without ∆NCEA, on the surface of LR cells, 

thus allowing for quantitative comparisons in adhesion between 

populations (Fig. 6 A). A signifi cant reduction in the strength of 

NCB-mediated adhesion occurred in the presence of ∆NCEA, 

as shown by a reproducible decrease of �20% in the number of 

aggregated cells in suspension after 2 h (P < 0.001), a differ-

ence that was not seen for NCAM-mediated adhesion (Fig. 6 B). 

This was accompanied by a decrease in the size of aggregates in 

NCB-expressing cells as a result of ∆NCEA coexpression (P < 

0.0001), which, again, was not seen for NCAM (Fig. 6 C). Thus, 

introducing the same functional GPI anchor with a defective 

shank led to a specifi c reduction in the strength of intercellular 

adhesion by NCB. Effective intercellular adhesion by GPI-

 anchored proteins is believed to involve the formation of large, 

zipperlike structures through the aggregation of multiple pro-

teins and rafts, creating stabilized platforms (Harris and Siu, 

2002). The ability of ∆NCEA to interfere with NCB-mediated 

adhesion is thus consistent with models invoking interference 

with NCB clustering.

𝚫NCEA alters the size 
of NCB-containing rafts
One mechanism whereby ∆NCEA could interfere with NCB 

clustering is by altering the structure of the rafts it is associ-

ated with. Therefore, the size of the rafts that NCB occupied 

was approximated by lysing the cells under conditions iden-

tical to those used for isopycnic separation on sucrose density 

Figure 5. NCB membrane raft association is unaltered in the presence of 
𝚫NCEA. Triton X-100 solubility assays of L6 (A) and LR (B) cells at 4°C 
showed no alteration in membrane raft association of NCB ± ∆NCEA 
transfectants with the majority of the protein in the insoluble (P), i.e., raft-
 associated, fraction. As a control for effi ciency of lysis, the integrin α5 
chain showed essentially no insolubility, with all protein found in the  soluble 
(S) fraction for both L6 and LR parental and transfectant cell lines. 
 Isopycnic sucrose density gradient ultracentrifugation showed similar 
 membrane raft association, as seen by fl otation at lower density fractions 
of NCB in both L6 (NCB; C) and L6 (∆NCEA + NCB; D) transfectants. 
Integrin α5 had partial raft association, whereas integrin α2 was not found 
in lower density fractions. The raft marker GM1 was found exclusively in lower 
density fractions, whereas ∆NCEA showed similar distribution to NCB.
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gradients and separating the lysate by velocity sedimentation 

through a uniform 12.5% sucrose solution. Under these condi-

tions, NCB was almost entirely raft associated (Fig. 5); there-

fore, this technique should provide a measure of the size of the 

rafts inhabited by these proteins. The fractions, which were 

collected from the top (fraction #1), were assessed by Western 

blot for protein localization, using equal volumes of each 

fraction. NCB was found to be shifted to fractions farther from 

the top when ∆NCEA was coexpressed, indicating that it was 

present in larger complexes under these conditions (Fig. 7 A). 

The distribution of NCAM, on the other hand, was found to be 

similar whether ∆NCEA was present or not (Fig. 7 B), demon-

strating that the size of the NCAM complexes was not altered 

in the presence of ∆NCEA. The distribution of ∆NCEA was 

very similar to that of NCB in shifting to larger complexes 

when coexpressed with NCB, while remaining in smaller 

complexes when coexpressed with NCAM (unpublished data). 

A signifi cant (P < 0.05) difference in NCB distribution (Fig. 

7 C) relative to NCAM distribution (Fig. 7 D) upon coexpres-

sion with ∆NCEA was demonstrated by densitometric analysis 

of three independent experiments. This suggests that the pres-

ence of ∆NCEA specifi cally alters the rafts containing NCB. 

To confi rm that this was a raft-specifi c effect, cells were pre-

treated with methyl-β-cyclodextrin (MβCD) to sequester cho-

lesterol and disrupt raft structure. Initially, sucrose gradient 

ultracentrifugation was performed on lysates of these treated 

cells, to confi rm the disruption of the rafts. The distribution 

of NCB demonstrated that this treatment partially disrupted 

the rafts, as a portion of the NCB was now present in higher 

density fractions (Fig. 7 E; compare to Fig. 5). When these 

samples were tested for the size of the complexes that NCB 

was localized to, it was found that NCB, both alone and co-

expressed with ∆NCEA, remained in the fi rst few fractions after 

velocity sedimentation (Fig. 7 F). Thus, treatment with MβCD 

Figure 6. 𝚫NCEA interferes with NCB-
 mediated intercellular adhesion. (A) LR surface 
expression (fl uorescence means are shown in 
parenthesis) of NCAM-like proteins (unshaded 
profi les) and ∆NCEA (shaded profi les) after 
staining with mAbs 123C3 and D14, respec-
tively. (B) Adhesion assays of LR (NCB) and LR 
(∆NCEA + NCB; right) and LR (NCAM) and 
LR (∆NCEA + NCAM; left). Note the 20% 
 decrease (*, P < 0.001) in NCB-mediated adhe-
sion in the presence of ∆NCEA, which is not 
seen in NCAM versus NCAM + ∆NCEA trans-
fectants. Values represent the mean ± the SEM 
for four independent experiments. (C) Aggre-
gate assays of cells from B, showing that the 
size of multicellular aggregates created by 
NCB was signifi cantly reduced in the presence 
of ∆NCEA. The number of cells per  multicellular 
aggregate was determined, after 1 h of incu-
bation, in four separate fi elds per experiment. 
Data represent the mean ± SEM of three inde-
pendent experiments (*, P < 0.0001).
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abrogated the difference seen for NCB complex size after 

∆NCEA coexpression, confi rming that the difference seen was 

a raft-mediated effect. Although cellular lysis with detergents 

at low temperatures can affect raft structure (Shogomori and 

Brown, 2003), the fact that the ∆NCEA-dependent sedimenta-

tion difference is seen for NCB, but not for NCAM transfec-

tants, suggests that it represents a valid increase in raft size. 

This would indicate a dilution of the NCB concentration in 

membrane rafts, as an increase in the size of a raft containing 

the same number of NCB molecules would cause a relative 

concentration decrease. This would thus reduce the incidence 

of cis-interactions between the proteins, which are necessary 

for clustering, explaining the decrease in intercellular adhe-

sion (Fig. 6 B), and the loss of biological function (Figs. 3 A 

and 4 A).

Antibody cross-linking restores function 
of NCB inhibited by 𝚫NCEA
As the mechanism of inhibition of NCB function by ∆NCEA 

appears to involve interference with clustering, NCB func-

tion should be restored by artifi cial clustering with antibodies. 

 Antibody cross-linking of cell surface proteins induces signaling 

events, including restoring the defective differentiation-blocking 

function of ∆NCEA (Taheri et al., 2003) through integrin 

 activation manifested by increased cellular binding of Fn 

(unpublished data). ∆NCEA and NCB coexpressed with ∆NCEA 

both appear to be nonfunctional because of defects in protein 

clustering, so clustering of NCB with antibodies should have 

a similar effect to what has previously been seen for ∆NCEA. 

To test if NCB retained the potential to modulate ECM  binding, 

in spite of the deactivating effects of coexpressed ∆NCEA, 

cells in monolayer culture were treated with mAbs directed 

against the NCAM external domains of NCB, along with sec-

ondary antibodies to enhance clustering, and binding of  soluble 

Fn was measured. Several mAbs were used, including J22, 

which binds to internal CEA domains and, as such, remains ca-

pable of clustering ∆NCEA; D13, which is a control mAb that 

has an epitope in the region deleted from ∆NCEA; and 123C3, 

which binds to the NCAM external domains of both NCAM 

125 and NCB. As expected, cross-linking ∆NCEA with J22, 

but not with D13, resulted in a signifi cant increase in bound Fn 

(Fig. 8). Similarly, cross-linking of NCB, alone and in the pres-

ence of ∆NCEA, increased bound Fn (Fig. 8). Cross-linking 

NCAM, which does not normally modulate integrins, with the 

NCAM-specifi c antibody did not lead to an increase in bound 

Fn levels, demonstrating the specifi city of this effect. The lack 

Figure 7. 𝚫NCEA increases the size of NCB-containing rafts. Cellular lysates were assessed for membrane raft size by velocity centrifugation through a 
12.5% sucrose column. Fractions collected from the top were probed for protein localization; note that only the fi rst 13 of 25 fractions are shown, as no 
NCB/NCAM protein was located in lower fractions. (A) Fractions of L6 (NCB) and L6 (∆NCEA + NCB) were analyzed for NCB, integrin α5, and GM1 
distribution by Western blot. (B) Similar analysis of L6 (NCAM) and L6 (∆NCEA + NCAM) lysates was performed. Densitometric quantitation of NCB (C) 
and NCAM (D) localization was then performed for these fractions. Values represent the mean ± the SEM of 3 independent experiments (*, P < 0.05). 
(E) Effect of raft disruption with MβCD on sucrose gradient fl otation of NCB. Note the shift of NCB distribution into higher density fractions, when compared 
with Fig. 5. (F) Treatment with MβCD results in a complete loss of the effect of ∆NCEA on NCB complex size. Fractions of cells pretreated with MβCD were 
collected as in A, and probed for protein localization. Raft disruption caused NCB to be found solely in the highest fractions, whether ∆NCEA was present 
or not.
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of difference in Fn binding between NCB and parental cells, 

unlike that seen in Fig. 4, in monolayer culture is likely caused 

by the intact ECM surrounding the cells in this assay. This 

would provide the ligands for integrins that have previously 

been activated, so that these integrins would not bind to the 

Fn added to the culture medium. Thus, NCB, in the presence 

of ∆NCEA, remained capable of altering Fn interaction after 

antibody cross-linking, which is consistent with the hypothesis 

that a defect in NCB clustering is created upon introduction 

of ∆NCEA.

Discussion
The GPI anchor of CEA contains specifi c information deter-

mining protein function (Screaton et al., 2000) when attached to 

an adhesive extracellular protein domain. We investigated the 

hypothesis that interference with the GPI anchor could cause 

specifi c inhibition of function using a defective CEA GPI 

 anchor–bearing molecule, ∆NCEA, coexpressed with NCB, 

a chimera of the NCAM external domain attached to the CEA 

GPI anchor. Coexpression of ∆NCEA with NCB resulted in a 

complete loss of the latter’s biological function.

Determination of specifi c protein function 
by GPI anchors
TM- and GPI-anchored NCAM isoforms exhibit different ef-

fects on myoblast fusion (Peck and Walsh, 1993). Genetically 

attaching the CEA GPI anchor to the external domains of CC1 

and NCAM, two adhesive cell surface molecules that do not 

 inhibit cellular differentiation, results in chimeras that block 

differentiation, demonstrating functional anchor specifi city 

(Screaton et al., 2000). Anchors may determine associated 

 signaling proteins, as GPI-anchored CD59 can signal through 

 kinases after having been exogenously administered to cells 

(van den Berg et al., 1995). Attaching this anchor to GFP also 

recreates the same signaling events upon antibody cross-linking 

(Hiscox et al., 2002). Membrane rafts concentrate a wide  variety 

of different proteins on both sides of the plasma membrane; 

thus, GPI anchor-mediated targeting of a protein to rafts con-

taining specifi c signaling molecules, in conjunction with clus-

tering through external domain interactions, would explain how 

the CEA anchor can determine specifi c protein function.

Existence of distinct membrane 
raft domains
To have functionally distinct membrane rafts, these domains 

should contain different molecules; indeed, the segregation of 

gangliosides GM1 and GD3 into different domains has been 

 observed (Gomez-Mouton et al., 2001, 2004; Vyas et al., 2001). 

This may help determine signaling specifi city, as a close and 

specifi c association occurs between some gangliosides and cer-

tain signaling molecules (Kasahara et al., 1997; Iwabuchi et al., 

1998). Similarly, GPI anchors are heterogeneous, as differences 

in both hydrophobic and hydrophilic GPI anchor regions have 

been documented (Ferguson et al., 1988; Armesto et al., 1996). 

These raft and anchor variations may be suffi cient to create GPI 

anchor–specifi c membrane domains with different protein 

 repertoires. In support of this idea, human folate receptor and 

placental AP do not exist in close proximity (Wang et al., 2002), 

whereas Thy-1 and prion protein associate with different do-

mains (Madore et al., 1999) that show major differences in lipid 

composition (Brugger et al., 2004). CEA and NCAM do not co-

patch on the cell surface (Screaton et al., 2000), which was con-

fi rmed by IP and colocalization results presented in this study 

(Fig. 2). Replacing the GPI anchor signal sequence of NCAM 

for that of CEA, however, produces a chimera (NCB) partially 

located in close proximity to ∆NCEA (Fig. 2). This incomplete 

colocalization is likely a result of the small size of membrane 

rafts before activation, as it has been suggested that under rest-

ing conditions GPI-anchored proteins are primarily found as 

monomers, with a proportion found in small clusters (Sharma 

et al., 2004). NCB affects cell–Fn interaction similarly to CEA 

(Fig. 4 A), but unlike NCAM, suggesting that this altered local-

ization affects signaling. Different Ras isoforms inhabit separate 

cytoplasmic leafl et compartments (Prior et al., 2003), showing 

that differences in protein distribution on the cell surface may be 

mirrored on the cell interior. We suggest that the C-terminal pri-

mary amino acid sequence can direct the addition of a specifi c 

type of GPI anchor, which determines both membrane localiza-

tion and function through associated signaling elements.

Figure 8. Antibody cross-linking restores integrin 
activation. Clustering induced by anti-CEA mAb J22 and 
anti-NCAM mAb 123C3, plus secondary anti–mouse 
 antibodies, of ∆NCEA and NCB, respectively, leads to an 
increase in binding of Fn from the culture media by 
∆NCEA- and NCB-expressing cells. A nonbinding anti-
body, D13, as well as cross-linking of NCAM, did not 
lead to such an increase. Values shown are the means ± 
the SD for a representative experiment (*, P < 0.005).
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Role of membrane raft clustering 
in signaling
Intense study of membrane raft dynamics has been undertaken 

in T cells, where these domains have a key role in signaling 

upon activation of the T cell receptor. Costimulation of T cells 

by CD28 is caused by raft redistribution, which alters internal 

tyrosine phosphorylation patterns (Viola et al., 1999), whereas 

antibody cross-linking of raft lipids replicates the membrane re-

arrangements that occur upon receptor activation (Janes et al., 

1999). CEA mediates intercellular adhesion by antiparallel 

binding (Zhou et al., 1993) and differentiation inhibition by 

both antiparallel and parallel binding (Taheri et al., 2003), both 

of which may cause clustering of the rafts inhabited by CEA. 

The discovery of CEA mutants that retain intercellular adhesive 

ability but do not block differentiation indicates the key role, in 

conjunction with antiparallel adhesion, of parallel interactions in 

CEA’s biological function (Taheri et al., 2003). NCAM-mediated 

adhesion involves intermolecular cis- and trans-interactions 

(Rao et al., 1992; Soroka et al., 2003), so at a threshold cell sur-

face density, CEA and NCAM could create large cell surface 

raft aggregates leading to signaling (Harris and Siu, 2002). 

CEACAM7, a weakly adhesive member of the CEA family, 

poorly activates integrin α5β1; however, attaching its anchor to 

the stronger adhesive external domain of CC1 results in in-

creased integrin activation (unpublished data). Previous work 

has demonstrated that treatment of CEA-expressing cells with 

fragment antigen-binding antibody fragments (Fabs) to reduce 

protein clustering is suffi cient to release the CEA block of dif-

ferentiation (Taheri et al., 2003). Similarly, reducing initial cis-

clustering, through the addition of molecules with defective 

nonadhesive extracellular domains attached to the same GPI 

anchor, could also interfere with effective protein and raft 

clustering, causing substantial effects on downstream signaling. 

∆NCEA coexpression resulted in a reproducible decrease in inter-

cellular adhesive strength of NCB-expressing cells (Fig. 6 B) 

and an observed loss of cell–Fn interaction (Fig. 4 A). ∆NCEA 

expression increased the size of the membrane rafts containing 

NCB (Fig. 7 A), which would dilute the NCB molecules within 

the raft compartment. Thus, a larger raft with the same number 

of NCB molecules would lead to less effi cient cis-clustering, 

decreasing the resulting adhesive strength. Consistent with this 

model, mimicking the clustering seen upon adhesion by antibody-

mediated cross-linking of the NCB molecules restored its ef-

fects on integrin–Fn interaction (Fig. 8). Therefore, it would 

appear that treatment with Fabs or nonfunctional GPI anchors 

leads to similar effects on clustering and protein activity.

Modulation of raft lipid content
The function of membrane proteins can be altered by modu-

lating membrane lipid content. Depletion of cellular cholesterol 

inhibits signaling from membrane raft domains (Incardona and 

Eaton, 2000), whereas administration of exogenous ganglio-

sides displaces GPI-anchored proteins from membrane rafts 

(Simons et al., 1999). Treatment of T cells with polyunsaturated 

fatty acids interferes with tyrosine kinase activation and cal-

cium release upon stimulation (Stulnig et al., 1998), which ap-

pears similar to this study, where signaling by NCB is inhibited 

via its GPI anchor. The key difference lies in the GPI-anchor 

specifi city because exogenous administration of lipids likely 

causes a global alteration in raft structure, whereas GPI anchors 

contain information that targets specifi c subdomains. Thus, 

∆NCEA is not found in close proximity to NCAM, but changing 

the anchor of NCAM for that of CEA alters the localization of 

this protein, such that it now colocalizes with ∆NCEA (Fig. 2). 

This colocalization explains how ∆NCEA, which shows no 

 effect on differentiation, can restore differentiation to NCB-

 expressing cells, whereas NCAM, which accelerates differenti-

ation, does not restore fusion to CEA-expressing cells (Fig. 3 A). 

It is intriguing to note that ∆NCEA expression has such a sig-

nifi cant effect on NCB function despite the fact that the proteins 

are found on the cell surface at similar levels. This suggests that 

once a threshold number of proteins have been inhibited, the bio-

logical function is completely lost, as any remaining functional 

proteins may be incapable of clustering suffi ciently to lead to 

effective signaling activation.

We therefore suggest that the GPI anchor plays a key role 

in protein function by directing localization to a specifi c subset 

of membrane rafts, which determines the associated signaling 

molecules. Exploiting this biological specifi city by competition 

with functionally specifi c GPI anchors attached to nonfunc-

tional external protein domains results in a complete loss of bio-

logical activity. This therefore confi rms the key biological role 

of the GPI anchor, and suggests a novel method for the manipu-

lation GPI-anchored proteins.

Materials and methods
Constructs and antibodies
∆NCEA is a CEA deletion mutant that has the last 75 amino acids of the 
N domain deleted, such that it is no longer biologically active (Zhou et al., 
1993). The NCAM splice variant used in this study, p125, is a human 
GPI-anchored NCAM isoform containing the muscle-specifi c domain 
(Barton et al., 1988). NCB is a chimera of the NCAM p125 external do-
main genetically fused to the CEA GPI anchor signal sequence (Screaton 
et al., 2000). The mAbs J22 and D14 bind to internal CEA domains 
(Zhou et al., 1993), whereas the epitope of D13 is in the portion of the 
CEA N domain that is deleted in ∆NCEA, and rabbit polyclonal anti-CEA 
binds to all CEA external protein domains. The mAb 123C3 (Santa Cruz 
Biotechnology, Inc.) recognizes human NCAM, whereas antibodies 
H-293, H-104, and M-106 (Santa Cruz Biotechnology, Inc.) recognize the 
α2, α5, and β1 integrins, respectively. The mAb 47A (De Giovanni et al., 
1993) binds to myosin. C20 is a goat polyclonal anti-Fn antibody (Santa 
Cruz Biotechnology, Inc.).

Cell culture and differentiation assay
Cells were grown attached to tissue culture plastic surfaces (Nunc), as pre-
viously described (Screaton et al., 2000). In brief, CHO-derived LR-73 
 fi broblasts were grown in α-MEM with 10% FBS. Rat L6 myoblasts were 
grown in DME containing 10% FBS (GM), and were subcultured before 
reaching confl uency to avoid selecting for nonfusing variants. Cell concen-
trations were determined using a particle counter (Beckman Coulter). For 
myoblast differentiation, 104 L6 cells/cm2 were seeded in 60-mm dishes. 
After 3 d, the media was switched to DME with 2% horse serum (DM). 4–7 d 
later, cultures were assessed for differentiation by hematoxylin (Sigma-
 Aldrich) staining and microscopic examination (Screaton et al., 1997), or 
by lysing and assessing myosin levels by Western blotting.

Transfections
100-mm dishes were seeded with 2 or 4 × 105 cells/plate for LR or L6, 
 respectively. 24 h later, cells were cotransfected by calcium phosphate 
 coprecipitation with 5 μg of cDNA, 0.5 μg of pSV2(neo), and 10 μg of 
carrier DNA isolated from LR-73 cells. Double transfections were performed 
in the same manner, either by cotransfecting both cDNAs at once (for LR cells) 
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with pSV2(neo) or with 0.5 μg of pBabe(puro) to supertransfect L6 trans-
fectants; transfectants were isolated by selection with 400–600 μg/ml 
neomycin (G418; Invitrogen) or 1 μg/ml puromycin (Sigma-Aldrich). After 
10–14 d, resistant clones were pooled and sorted for high expression by 
FACS using mAbs J22 or 123C3. Although pooled populations of many 
clones were used, two independent transfections of L6 cells were per-
formed to ensure no clonal variation occurred, with identical assay results. 
Note that the L6 (NCB) cells were pooled colonies resistant to both G418 
and puromycin, and that although data from L6 and LR-73 parental cells is 
shown, no difference between these cells and pooled G418-resistant 
clones transfected with the pSV2(neo) alone has been noted (Ordonez 
et al., 2006).

FACS analysis
Cells were collected with PBS-citrate containing 4 mM EDTA (PBSCE) for 
NCAM-expressing transfectants (because of the sensitivity of the NCAM 
external domain to trypsinization; Screaton et al., 2000) or 0.063% trypsin 
in PBS-citrate for CEA transfectants. 2.5 × 105 cells were resuspended 
in ice-cold PBS with 2% FBS (PBSF). Cells were incubated for 30 min with 
mAb at a dilution of 1:50–100, washed with PBSF, and incubated with 
FITC-conjugated goat anti–mouse antibody (Jackson ImmunoResearch 
 Laboratories) diluted 1:100. After an additional 30 min, cells were 
 pelleted, resuspended in PBSF, and analyzed using a FACScan instrument 
(Becton Dickinson).

Binding to purifi ed ECM components
Cells were seeded at 104 cells/cm2 on day 0. On day 2, subconfl uent cul-
tures were collected with PBSCE, resuspended in GM, and incubated at 
37°C for 30 min. Cells were washed with serum-free media and resus-
pended in serum-free media at 4 × 105 cells/ml. 100 μl/well of this sus-
pension was added to wells from a 96-well plate coated with Fn, Vn, or 
collagen I (CHEMICON International, Inc.) and incubated for 1 h at 37°C. 
Wells were washed with PBS containing Mg2+, and adherent cells were 
stained with crystal violet. Wells were washed again with PBS, and the 
bound stain was solubilized with 0.05 M NaH2PO4, pH 4.5, plus 25% 
ethanol. Staining was quantifi ed with a microplate reader (Bio-Tek Instruments) 
at 570 nm. Statistical signifi cance was determined using a t test 
(http://www.physics.csbsju.edu/stats/t-test_bulk_form.html).

Immunoblotting
Proteins in cellular lysates were resolved by SDS-PAGE and transferred 
electrophoretically to a 0.45-μm PVDF membrane (Millipore). Immunoblot-
ting was performed as previously described (Screaton et al., 2000), with 
antibody binding detected using ECL Plus reagent (GE Healthcare).

Triton X-100 solubility and isopycnic sucrose gradient ultracentrifugation
Triton X-100 solubility was determined as previously described (Screaton 
et al., 2000). In brief, subconfl uent cell cultures were rinsed with PBS, col-
lected with PBSCE, and rendered single-cell suspensions by passing 
through a 27-gauge needle. 107 cells/ml were resuspended in ice-cold lysis 
buffer containing 1% Triton X-100 and the protease inhibitors aprotonin 
(Roche), leupeptin (Roche), and PMSF (Sigma-Aldrich). Lysates were sy-
ringed with a 27-gauge needle, incubated on ice for 15 min, and centri-
fuged at 13,500 g for 20 min at 4°C. Soluble fractions were removed, and 
the pellets were resuspended in 0.9 vol of lysis buffer and 0.1 vol 10% 
SDS. The relative amounts of soluble versus pellet protein were determined 
by immunoblotting. For sucrose gradient ultracentrifugation, two T175 
fl asks were seeded with 104 cells/cm2. 2 d later, cells were collected with 
PBSCE, and lysed with 1 ml of 1% Brij-98 (Sigma-Aldrich) in sucrose gradi-
ent buffer (10 mM Tris, pH 8.0, and 140 mM NaCl) containing aprotonin, 
leupeptin, and PMSF for 30 min at 4°C. 1 ml of ice-cold 80% sucrose was 
added to this lysate and overlayed successively with 2 ml of 35% sucrose 
and 1 ml of 5% sucrose. Lysates were centrifuged with a rotor (SW55; 
Beckman Coulter) for 19 h at 45,000 RPM at 4°C. 400-μl fractions were 
collected from the top of the gradient, and equal volumes of each fraction 
were assessed by immunoblotting.

Velocity sedimentation
L6 cells from 2–4 T175 fl asks were collected with PBSCE, pooled, and 
lysed with 500 μl of 1% Brj-98 in sucrose gradient buffer for 30 min on 
ice. The lysate was then added on top of 11 ml of 12.5% sucrose, and 
centrifuged for 1 h at 12,300 RPM (�18,700 g) in an SW41 rotor 
(Beckman Coulter). 25 460-μl fractions were collected from the top, and 
assayed by immunoblotting. In certain cases, cells were pretreated with 
mβCD (Sigma-Aldrich) for 15 min at 37°C before Brj-98 lysis, to disrupt 
membrane rafts.

Chemical cross-linking and IP
4 × 105 L6 cells were seeded in three 100-mm dishes for each transfectant. 
2 d later, cells were washed with PBS and incubated, with gentle rocking 
at 4°C, with either 1 ml of 1 mM DTSSP (Pierce Chemical Co.) in PBS 
or with PBS alone. After 1 h, unconjugated DTSSP was neutralized with 
100 mM Tris, pH 7.4. Cells were lysed with 400 μl/plate of 60 mM n-Octyl 
β-D glucopyranoside (Sigma-Aldrich) in lysis buffer containing protease 
 inhibitors. Lysates were pooled and syringed to reduce viscosity. 1.2 ml of 
each lysate was precleared by rotation with 75 μl of Protein A/G Plus–
Agarose beads (Santa Cruz Biotechnology, Inc.) for 3 h at 4°C. Precleared 
lysates were then diluted with an equal amount of lysis buffer, and divided 
into three aliquots, receiving no antibody, 5 μg 123C3, or 5 μg J22. 
Samples were rotated overnight at 4°C, and then 75 μl of Protein A/G 
Plus–Agarose beads were added. 3 h later, the beads were washed fi ve 
times with lysis buffer and resuspended in 75 μl 1× Laemmli sample buffer 
for analysis by Western blotting

Immunofl uorescence and confocal microscopy
L6 transfectants were seeded in 8-well Lab-Tek Permanox chamber slides 
(Nunc) at a density of 104 cells/well. 2 d later, cells were washed with 
PBSF and incubated with primary antibodies 123C3 (at a dilution of 1:100 
in PBSF) and rabbit polyclonal anti-CEA (1:2,000 dilution) for 30 min at 
RT. Cells were washed with PBSF, and then incubated at RT for 30 min, in 
the dark, with a 1:250 dilution of both Cy2-conjugated goat anti–rabbit 
and rhodamine-conjugated goat anti–mouse secondary antibodies. Cells 
were then washed twice with PBSF, and fi xed by incubation with 4% form-
aldehyde for 10 min at 4°C, followed by 100% methanol for 20 min at 
4°C. Samples were then mounted using fl uorescent mounting medium 
(DakoCytomation). Localization of stained proteins was observed using a 
LSM 510 Axiovert 100M confocal microscope with a Plan-Achromat 
63×/1.4 NA oil differential interference contrast objective (both Carl 
Zeiss MicroImaging, Inc.).

Adhesion and aggregate size assays
Adhesion assays were performed as previously described (Zhou et al., 
1993). In brief, 106 LR cells were seeded in 80-cm2 tissue culture fl asks 
(Nunc), and collected 2 d later by incubation with PBSCE. 3 × 106 cells 
were resuspended in 3 ml α-MEM containing 0.8% FBS and 10 μg/ml 
DNase I (Roche), syringed with a 27-gauge needle to obtain single-cell 
suspensions, and allowed to aggregate at 37°C with stirring at 100 rpm 
using a small magnetic stirring bar. Aliquots were removed at the indicated 
times, and the cells were counted with a hemocytometer to determine the 
percentage of single cells. For the aggregate assay, cells were prepared as 
for adhesion assays, but the number of cells present in each of �50 multi-
cellular aggregates was scored after 1 h in suspension.

Soluble Fn-binding assay
On day 0, 104 cells/well were seeded in a 96-well plate. 2 d later, cells 
were washed with PBSF and incubated for 30 min at 37°C in DME with 
50 μl of 10 μg/ml human Fn (BD Biosciences), along with, where indicated, 
5 μg/ml primary mAb and 30 μg/ml donkey anti–mouse secondary anti-
body (Jackson ImmunoResearch Laboratories) to further cross-link CEA or 
NCAM constructs. Cells were then washed three times with PBSF, and fi xed 
with 4% formaldehyde. Bound Fn was determined by incubation with anti-
Fn antibody, C20, at a dilution of 1:100 in 3% BSA (Sigma-Aldrich) in PBS 
(PBSB) for 90 min at RT, having blocked nonspecifi c binding by incubation 
for 1 h at RT with PBSB. Cells were washed with PBSB, and incubated with 
HRP-conjugated rabbit anti–goat secondary antibody (Jackson) at a dilu-
tion of 1:2,500 in PBSB for 1 h. After incubation with a hydrogen peroxide 
solution containing ABTS (Sigma-Aldrich), bound Fn was determined with 
a microplate reader at 405 nm, with a reference wavelength of 490 nm.
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