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Abstract
Aim: Global change seriously threatens the salt marsh ecosystem, while it remains 
unclear how S. will respond to climate change and sea level rise. Here, we investi‐
gated interactions among variables and identified the impacts of climate change, sea 
level rise, and their interactions on the distribution of Spartina alterniflora.
Location: Northern Chinese coast and Southern Chinese coast.
Taxon: Spartina alterniflora Loisel.
Methods: With global sensitivity analysis, we determined interactions among varia‐
bles and their relative importance to the distribution of S. alterniflora. Integrating the 
Venn's four‐set diagram, we built ecological niche models under current and three 
future scenarios to identify pure, shared, and coupling effects of climate change and 
sea level rise on the distribution of S. alterniflora.
Results: Mean diurnal range (Bio02) and Elevation were the two most critical varia‐
bles controlling the distribution of S. alterniflora on the Chinese coast, and interac‐
tions among variables of the northern coast were much greater than that of the 
southern coast. Habitats change was mainly caused by pure effects of climate change, 
except habitats reduction on the southern coast. Pure effects of sea level rise were 
low, but it can influence habitats change through shared and coupling effects from 
complex interactions with climate change. Interactions of climate change and sea 
level rise can drive habitats change, and the changed habitats caused by shared and 
coupling effects were mainly distributed the areas near the landward side.
Main conclusions: Our research suggests paying attention to interactions among 
variables when calculating the relative importance of explanatory variables. 
Identifying pure, shared, and coupling effects of climate change and sea level rise for 
the distribution of S. alterniflora will provide scientific references for assessing the 
risk of similar coastal species.
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1  | INTRODUC TION

It is now well established that the earth's climate is warming 
(Cazenave & Cozannet, 2014; Priest et al., 2010) and that the rate of 
sea level rise is accelerating, with a projection of global sea level rise 
of 0.75–1.90 m by next century (Team et al., 2014). Although pre‐
vious studies have reported the impacts of projected sea level rise 
on salt marsh plant communities (Allen & Lendemer, 2016; Donnelly 
& Bertness, 2001; Kirwan et al., 2010; Valle et al., 2014), few in‐
vestigators have examined the interactive effects of sea level rise 
and climate change for the salt marsh plants (Garner et al., 2015; 
Kirwan & Mudd, 2012). Their interactions and compounding effects 
may lead to reduced salt marsh sustainability (Charles & Dukes, 
2009; Cherry, Mcknee, & Grace, 2009) and influenced the ability of 
salt marsh plant to survive (Kirwan et al., 2013). Kirwan (2012) also 
found that plants responses differed depending upon the elevation 
of the marsh relative to sea level under interactive effects. Recent 
studies showed that interactions may further change the composi‐
tion of species assemblages and making important ecological pro‐
cesses at salt marshes uncertain in the future (Garner et al., 2015; 
Hanson et al., 2016). So far, there has been little discussion about 
habitats change caused by the pure effects of climate change, sea 
level rise, and the shared and coupling effects from their interac‐
tions. Quantifying these effects will help us better understand the 
effects of climate change and sea level rise on the coastal ecosys‐
tem, and further accurately assess the risk caused by them.

Coastal ecosystems are expected to be exposed to the increased 
risk of experiencing adverse consequences related to climate change 
and exacerbated by rising sea level (Nicholls et al.,2007; Valle et al., 
2014), while it is still unclear how coastal ecosystems respond to 
them. It is possible that in coastal ecosystems, native species will 
decline due to their poor adaptability to these threats (Mendoza‐
Gonzalez et al., 2013). However, invasive exotic species may take 
the opportunity to expand their habitats and stabilize their colonial 
status. So, understanding how invasive coastal species respond to 
climate change and sea level rise is becoming an urgent challenge 
(Brierley & Kingsford, 2009; Hoegh‐Guldberg & Bruno, 2010).

Spartina alterniflora Loisel, native to the Atlantic and Gulf coasts 
of North America (Wang et al., 2006), is a highly invasive species 
widely distributed along the Chinese coast (Yang et al., 2008). A 
large number of published studies have already revealed the phys‐
iological characteristics and expansion mechanisms of S. alterniflora 
based on laboratory work (Deng et al., 2006; Hu et al., 2015; Shi et 
al., 2007; Wang et al., 2015; Gu & Zhang, 2009; Zhao et al., 2007; Li 
et al., 2018). These studies demonstrated that the expansion of S. al-
terniflora is influenced by elevation, climate, soil salinity, inundation 
duration, pH, and many other variables could influence, but previous 

studies only focus on the single‐variable and ignore the interactive 
effects of multiple variables (Braun, Schindler, & Rihm, 2017; Daniel, 
Hubert, GertJan, & Wim, 2009). Although studies have recognized 
the importance of interactions, fewer researches have systematically 
identified interactions among variables (Liu et al., 2018). Moreover, 
as a salt marsh plant, the distribution of S. alterniflora is peculiarly 
prone to the impacts of coastal change. S. alterniflora is correlated 
with variations in sea level, and its productivity peaks at intermediate 
elevations within the intertidal zone (Kirwan et al., 2013). However, 
no research has surveyed the response of S. alterniflora to climate 
change, sea level rise, and their interactions. Through the maximum 
entropy model, we built ecological niche models to explore the re‐
sponse of S. alterniflora to climate change, sea level rise, and their 
interactions under three future scenarios (only considering climate 
change, only considering sea level rise and both considering climate 
change and sea level rise) on the northern and southern Chinese.

Specifically, the following issues will be addressed: (a) whether 
there are interactions among variables influencing the distribution 
of S. alterniflora, and how the role of the key variable varied accord‐
ing to different regions. (b) Identifying pure, shared, and coupling 
effects of climate change and sea level rise on the future distri‐
bution of S. alterniflora and assessing the relative importance of 
them on different regions. (c) Determining the spatial distribution 
of S. alterniflora caused by climate change, sea level rise, and their 
interactions.

2  | MATERIAL S AND METHODS

2.1 | Study area

The geographical extent of the study area was obtained by a 50‐km 
inland buffer of the shoreline of China including 14 Chinese prov‐
inces. According to different coast types and colonization character‐
istics of S. alterniflora (Gao et al., 2014), the study area was divided 
into two regions: northern Chinese coast and southern Chinese 
coast (Figure 1).

2.2 | Data sources

Most of presence records of S. alterniflora on Chinese coast were 
obtained from published studies (An et al., 2007; Xie & Gao, 2009; 
Zhang et al., 2010; Zhang et al., 2008; Zhao et al., 2015; Zheng et al., 
2018). The others were obtained from field sampling, and the Global 
Biodiversity Information Facility (available at http://data.gbif.org/). 
The presence records were resampled in ArcGIS 10.2 to ensure that 
there is only one observation within the 1° by 1° cell to avoid spa‐
tial autocorrelation and reduce sampling bias (Merckx et al., 2011), 
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resulting in retention of 106 presence records. For the northern 
Chinese coast and southern Chinese coast, there were 56 presence 
records and 48 presence records, respectively.

We selected three factor types including climate, topography, 
and soil as environmental variables. A total of 19 bioclimatic vari‐
ables were obtained from Worldclim (www.worldclim.com; Hijmans 
et al., 2005). Bioclimatic data include two groups, one of which is 
19 bioclimatic under current conditions and the other is 19 biocli‐
matic variables of future climatic conditions (RCP 8.5: A scenario 
of comparatively high greenhouse gas emissions, Riahi et al., 2011). 
Considering the collinearity among bioclimatic variables may lead to 
overfitting, we used the following measures to reduce the number 
of variables. Firstly, using Spearman rank correlation coefficients, 
we eliminated bioclimatic variables with the highest and most sig‐
nificant correlation coefficients (|r| > 0.8 and p < 0.001) (Supporting 
information Figure S1). Then, Boruta, a wrapper built around the ran‐
dom forest classification algorithm implemented in the R, was used 
to select variables according to the relative importance of bioclimatic 
variables (Supporting information Figure S2) (Kursa, Jankowski, 
& Rudnicki, 2010). Finally, six bioclimatic variables (Mean Diurnal 
Range, Isothermality, Mean Temperature of Wettest Quarter, Mean 
Temperature of Warmest Quarter, Precipitation of Wettest Quarter, 
Precipitation of Coldest Quarter) were determined as climatic vari‐
ables. Topography variable was represented by elevation data at 30 
arc‐second‐cell resolution was downloaded from IIASA (http://we‐
barchive.iiasa.ac.at/Research/LUC/External‐World‐soil‐database/
HTML/). Furthermore, we obtained the global mean sea level when 
the sea level rises by 1 meter from CReSIS (https://www.cresis.
ku.edu/content/research/maps). Seven soil variables (Soil electrical 
conductivity, Soil organic carbon, Soil pH, Percentage sand, Volume 
percentage gravel, Soil unit symbol, and Soil drainage class) were 

derived from the Harmonized World Soil Database (HWSD) version 
1.2.1 with a spatial resolution of 1 km.

The spatial resolution of all variables was resampled into 1km to 
match those of the environmental variables (Supporting information 
Table S1 and S2) with the nearest‐neighbor approach in ArcGIS 10.2.

2.3 | Ecological Niche Modeling based on MaxEnt

MaxEnt, one of the most popular machine algorithms, is designed 
for modeling the geographical distribution of species from the n‐di‐
mensional environmental variables spaces with presence‐only data 
(Phillips et al., 2006). A 10‐fold cross‐validation procedure, which is 
preferable to penalty functions for assessing model generality, was 
implemented to replicate model runs and data partitions (Merow et 
al., 2013). It holds out 10% of the data as a testing set at each of 
10 iterations, training the model on the remaining 90% of the data 
in each iteration. Other specified parameters and their setting are 
maximum number of background points = 10,000, Maximum itera‐
tions = 1,000, Convergence threshold = 0.00001, prevalence = 0.5.

2.4 | Global sensitivity analysis based on 
FAST method

Sensitivity analysis (SA) is the study of how the uncertainty in the out‐
put of a model can be apportioned to different sources of uncertainty 
in the model input (Saltelli & Homma, 1992) and is usually divided into 
local sensitivity analysis and global sensitivity analysis. Compared to 
local sensitivity analysis, the range of variation of the parameters of 
the global sensitivity analysis can be expanded to the entire domain 
and interactions between parameters can be considered (Haaker 
& Verheijen, 2004). The Fourier amplitude sensitivity test (FAST) 

F I G U R E  1   Study area. (a) the northern Chinese coast (b) the southern Chinese coast
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method, based on performing numerical calculations to obtain the 
expected value, is more efficient to calculate sensitivities than other 
variance‐based global sensitivity analysis methods (Dan, 2010; Mcrae 
et al., 1982; Saltelli & Bolado, 1998). The FAST method give first‐order 
sensitivity indices (SF) and total sensitivity indices (ST) using the terms 
in the Fourier decomposition of the model output. The SF measures the 
main effect contribution of each variable to the total output variance, 
and the ST accounts for the total contribution including main effects 
and interactions effects (Vanuytrecht et al., 2014). The difference be‐
tween ST and SF which can assess the impacts of interactions among 
variables (Nossent, Elsen, & Bauwens, 2011).

In order to identify interactions among variables and their relative 
importance for the distribution of S. alterniflora on different regions, 
we performed the FAST sensitivity analysis with Simlab software 
version 2.2 (Joint Research Centre of the European Commission, 
2011). The probability distribution functions were generated for all 
variables and significance levels were set at the 1% level. All fitted 
results passed the chi‐square test (p < 0.005) (Supporting infor‐
mation Table S1 and S2). The method of Fast (Saltelli et al., 1999) 
requires N= (2M∗Wmax+1)∗m model simulations, where M is the 
interference factor (M = 4), Wmax is the largest among the set of Wi 
frequencies (Wmax=416), m is the number of input factors (m = 15), 
and N is the total number of parameter sets and model executions. A 
total of 49,935 input parameter sets were generated using probabil‐
ity distribution functions on different regions with Simlab software 
version 2.2. These parameter sets were run in MaxEnt and then used 
for global sensitivity analysis in Simlab.

2.5 | Model tuning and evaluation

Feature types combination (FC) and regularization multiplier (RM) 
are two important parameters that affect model complexity (Merow 
et al., 2013; Muscarella et al., 2015). ENMeval, an R package, was 

proved to be useful for tuning these two parameters (RM and FC) 
(Muscarella et al., 2015). Thus, corrected Akaike information criteria 
(AICc) value was used to estimate the model complexity in MaxEnt 
(Dan & Seifert, 2011).The smallest AICc was chosen for model simu‐
lation and was thought to can reduce model complexity relative to 
the default model.

The threshold‐independent and threshold‐dependent measures 
were used to evaluate model performance. Area under the curve 
(AUC) metric, a typical threshold‐independent measure, was utilized 
as a measure of model accuracy ( Lobo et al., 2008). Values of AUC 
generally range from 0.5 (equivalent to that due to chance) to 1.0 
(perfect performance). Values > 0.9 are considered good, 0.7–0.9 are 
moderate, and <0.7 are poor (Fielding & Bell, 1997). The true skill 
statistic (TSS), a commonly used threshold‐dependent measure of 
model accuracy(Allouche, Tsoar, & Kadmon, 2006), is calculated as 
sensitivity + specificity −1. Values > 0.6 are considered good, 0.2–
0.6 are fair to moderate, and < 0.2 are poor (Allouche et al., 2006).

2.6 | Identifying pure, shared, and coupling 
effects of climate change and sea level rise on species 
distribution

To explore the impacts of climate change, sea level rise, and their 
interactions on the distribution of S. alterniflora, we designed three 
future scenarios using MaxEnt. The scenario of climate change (CLC), 
under which climatic variables changed but remaining variables kept 
constant, obtained habitats when only considering climate change. 
The scenario of sea level rise (SLR), under which elevation changed 
but remaining variables kept constant, obtained habitats when only 
considering sea level rise. The scenario of combining climate change 
and sea level rise (CCS), under which climatic and soil variables were 
changed, obtained habitats when considering both climate change 
and sea level rise. We modeled the current potential distribution of 
S. alterniflora along the northern and southern Chinese coast and 
projected them into future under three scenarios of CLC, SLR, and 
CCS. Given the uncertainty of the MaxEnt output (Hanberry & He, 
2013; Swanson et al., 2013), three threshold rules, such as the maxi‐
mum training sensitivity plus specificity cloglog threshold (MTSS), 
10% training presence cloglog threshold (PTSS), and equal training 
sensitivity and specificity cloglog threshold (ETSS), were employed 
to calculate the weighted average threshold based on the results of 
the TSS evaluation. Then, we set the suitable habitats of S. alterni-
flora under current (CUR) and future scenarios (CLC, SLR, CCS) as 
respectively. The Venn's four‐set diagram, showing all possible logi‐
cal relations between a finite collection of different sets (Henderson, 
1963), was implemented to identify the impacts of climate change, 
sea level rise, and their interactions (Figure 2). Conceptually, four 
ellipses represented the current habitats (HCUR) and three kinds of 
future habitats (HCLC, HSLR, and HCCS) (Figure 2). Based on HCUR and 
HCCS, we defined the changed habitats (Hchanged) and unchanged habi‐
tats(Hunchanged):

(1)Hunchanged=HCCS∩HCUR=a+d+ f+g

F I G U R E  2   The Venn's four‐set diagram. Based on the 
current habitats and future habitats, we could find the changed 
habitats (Hchanged = b+c + e+n + i+j + h+k) and unchanged habitats 
(Hunchanged = a+d + f+g). For the changed habitats, we divided it into 
the increased habitats (H+

changed
= e+c+n+b) and decreased habitats 

(H−

changed
= i+ j+h+k). For the increased and decreased habitats, 

they could be spilt into 4 parts. We define e (H+

s_ics
) and k (H−

s_ics
) as 

habitats caused by the shared effects due to interactions of climate 
change and sea level rise, c (H+

p_slr
) and j (H−

p_slr
) as habitats caused by 

the pure effects of sea level rise, n (H+

p_clc
) and h (H−

p_clc
) as habitats 

caused by the pure effects of climate change, and b (H+

c_ics
) and i 

(H−

c_ics
) as habitats caused by the coupling effects due to interactions 

of climate change and sea level rise
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For the changed habitats of S. alterniflora, it was spilt into eight 
parts in Equation (2). For c and j, they belonged to the habitats when 
just considering sea level rise, so they were assumed as increased 
and decreased habitats caused by pure effects of sea level rise 
(Hp_slr). Similarly, n and h are increased and decreased habitats caused 
by pure effects of climate change (Hp_clc). e and k are increased and 
decreased habitats shared by HCLC and HSLR, and we assumed e and 
k are caused by shared effects due to interactions of climate change 
and sea level rise (Hp_ics). For b and i, they did not belong to habi‐
tats when considering only climate change or sea level rise, so, we 
assumed them as increased and decreased habitats caused by cou‐
pling effects due to interactions of climate change and sea level rise 
(Hc_ics).

Specifically, the decreased suitable habitats (H−

changed
), the de‐

creased habitats caused by shared effects (H−

s_ics
), pure effects of cli‐

mate change (H−

p_clc
), pure effects of sea level rise (H−

p_slr
), and coupling 

effects (H−

c_ics
) can be expressed as the following:

Similarly, the increased suitable habitats (H+

changed
), the increased 

habitats caused by shared effects (H+

s_ics
), pure effects of climate 

change (H+

p_clc
), pure effects of sea level rise (H+

p_slr
), and coupling ef‐

fects (H+

c_ics
) can be expressed as the following:

Finally, according to Equation (3–12), we quantified pure, shared, 
and coupling effects of climate changes and sea level rise and iden‐
tified their spatial distribution using spatial analysis tool in ArcGIS 
10.2.

3  | RESULTS

3.1 | Model performance

To reduce model complexity and avoid overfitting, RM and FC 
with the smallest AICc values were chosen in MaxEnt as shown 
in Figure 3. RM = 3 and FC = “LQH” were chosen on the northern 
Chinese coast (Figure 3a). RM = 4 and FC = “LQH” were chosen on 
the southern Chinese coast (Figure 3b).

(2)Hchanged=HCCS∪HCUR−Hunchanged=b+c+e+n+ i+ j+k+h

(3)H−

changed
=HCCS∪HCUR−HCCS= i+ j+k+h

(4)H−

s_ics
= (HCLC∩HCUR)∩ (HSLR∩HCUR)∩H

−

changed
=k

(5)H−

p_clc
= (HCLC∩HCUR)∩H

−

changed
−H−

s_ics
=h

(6)H−

p_slr
= (HSLR∩HCUR)∩H

−

changed
−H−

s_ics
= j

(7)H−

c_ics
=H−

changed
−H−

p_clc
−H−

p_slr
−H−

s_ics
= i

(8)H+

changed
=HCCS∪HCUR−HCUR=b+c+e+n

(9)H+

s_ics
= (HCLC∪HCUR−HCUR)∩ (HSLR∪HCUR−HCUR)∩H

+

changed
= e

(10)H+

p_clc
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+

changed
−H+

s_ics
=n
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+
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−H+
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= c

(12)H+
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=H+
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−H+
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−H+
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−H+
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F I G U R E  3   AICc and smallest AICc values of ecology niche 
models with different regularization multiplier and feature types 
combination. (a) the northern Chinese coast (b) the southern 
Chinese coast
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The results of model evaluation showed that the AUC values 
were all greater than 0.9 and the values of TSS (three threshold rules 
such as the maximum training sensitivity plus specificity cloglog 
threshold, 10% training presence cloglog threshold, and equal train‐
ing sensitivity and specificity cloglog threshold) were greater than 
0.7 in Figure 4. So all the models performed well.

3.2 | Interactions among variables and their relative 
importance for the distribution of S. alterniflora on 
different regions

As shown in Table 1, on the northern Chinese coast, mean diur‐
nal range (Bio02), as well as elevation, had much higher first‐order 

F I G U R E  4   Model evaluation metrics 
for ecology niche models at the northern 
Chinese coast and southern Chinese coast 
using Area Under the Curve(AUC) and 
true skill statistic(TSS)
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TA B L E  1   Relative importance of different variables based on First‐order and total sensitivity index from global sensitivity analysis on the 
northern Chinese coast

Variables
First‐order sensitivity 
indices (SF) Rank

Total sensitivity 
indices (ST) Rank

Difference between first‐order and 
total sensitivity indices Rank

Bio02 0.2775 (0.0552) 1 0.6437 (0.0818) 1 0.3663 1

Bio03 0 (0) 13 0.0212 (0.0061) 13 0.0211 13

Bio05 0.0338 (0.0185) 4 0.1531 (0.0637) 4 0.1193 4

Bio08 0.0333 (0.0205) 5 0.1267 (0.0511) 5 0.0935 5

Bio14 0.0001 (0.0001) 10 0.0257 (0.0065) 9 0.0256 9

Bio15 0 (0) 13 0.0149 (0.0027) 15 0.0148 15

Bio19 0.0001 (0.0001) 10 0.0229 (0.0080) 12 0.0229 11

Tece 0.0014 (0.0019) 6 0.0237 (0.0098) 11 0.0223 12

Tgravel 0.0001 (0.0001) 10 0.0268 (0.0084) 8 0.0267 8

Toc 0.0478 (0.0363) 3 0.1832 (0.1215) 3 0.1354 3

Tph 0 (0) 13 0.0277 (0.0080) 7 0.0277 7

Tsand 0.0002 (0.0001) 9 0.024 (0.0069) 10 0.0239 10

Drainage 0.0006 (0.0003) 7 0.0168 (0.0039) 14 0.0162 14

Tclass 0.0006 (0.0005) 7 0.0366 (0.0093) 6 0.0359 6

Elevation 0.1141 (0.0375) 2 0.3524 (0.0759) 2 0.2383 2

Sum 0.5096 ‐ 1.6994 ‐ 1.1899 ‐



5386  |     GONG et al.

sensitivity indices (SF) and total sensitivity indices (ST) than the 
other variables, which meant they were the two most important 
variables for the distribution of S. alterniflora. The sum of ST ar‐
rived at 1.6994, which was three times than that of SF (0.5096). 
It indicated that there were strong interactions among variables. 
The SF of soil electrical conductivity (Tece) and soil drainage class 
(Drainage) ranked higher than their ST, while the SF of Soil pH (Tph) 
ranked lower than their ST, indicating interactions reduced the im‐
portance of Tece and drainage, while enhanced the importance 
of Tph. Meanwhile, some variables (Bio02, Elevation, Toc, Bio05, 
and Bio08) had great differences between SF and ST, especially for 
Bio02 (0.3663) and Elevation (0.2383), which meant that they had 
strong interactions with the others.

As seen from the Table 2, on the southern Chinese coast, 
whether the SF or ST, Elevation was by far the most important for 
the distribution of S. alterniflora with the values being 0.8561 and 
0.9294, respectively, which were much greater than those of the 
second most important Bio02 with SF and ST being only 0.0658 and 

0.1423, respectively. The SF of Bio14, Bio19, Tgravel, Tph, Tsand, 
and Tclass were 0, while the ST of them became non‐zero values. 
Moreover, the sum of SF is 0.9289 and the sum of ST was 1.3310. 
It indicated that there were still interactions among variables, but 
much weaker than that on the northern Chinese coast. Although the 
SF and ST of Elevation were much higher than Bio02, the difference 
was as great as that of Bio02, which indicated that both of them had 
distinguished interactions, especially for Bio02.

3.3 | Pure, shared, and coupling effects of climate 
change and sea level rise on the distribution of 
S. alterniflora

As shown in Table3, on the northern Chinese coast, the habi‐
tats of S. alterniflora increased by 30,934 km2, while decreased by 
9,628 km2. 87.41% of habitats increment can be interpreted as being 
caused by pure effects of climate change, while only 0.53% by pure 
effects of sea level rise, 3.47% by shared effects, and 8.60% by 

TA B L E  2   Relative importance of different variables based on First‐order and total sensitivity index from global sensitivity analysis on the 
southern Chinese coast

Variables
First‐order sensitivity 
indices (SF) Rank

Total sensitivity 
indices (ST) Rank

Difference between first‐order and 
total sensitivity indices Rank

Bio02 0.0658 (0.0166) 2 0.1423 (0.0362) 2 0.0764 1

Bio03 0.0019 (0.0007) 4 0.0230 (0.0023) 4 0.0211 4

Bio05 0.0002 (0.0005) 8 0.0191 (0.0021) 9 0.0189 10

Bio08 0.0012 (0.0008) 5 0.0211 (0.0018) 5 0.0199 5

Bio14 0 (0) 9 0.0188 (0.0014) 11 0.0187 12

Bio15 0.0029 (0.0017) 3 0.0250 (0.0043) 3 0.0221 3

Bio19 0 (0) 9 0.0185 (0.0017) 14 0.0185 14

Tece 0.0004 (0.0002) 6 0.0202 (0.0013) 6 0.0198 6

Tgravel 0 (0) 9 0.0191 (0.0015) 9 0.0190 8

Toc 0.0004 (0.0014) 6 0.0194 (0.0030) 7 0.0190 9

Tph 0 (0) 9 0.0187 (0.0015) 13 0.0187 13

Tsand 0 (0) 9 0.0183 (0.0017) 15 0.0183 15

Drainage 0 (0) 9 0.0188 (0.0015) 11 0.0188 11

Tclass 0 (0) 9 0.0193 (0.0016) 8 0.0192 7

Elevation 0.8561 (0.0380) 1 0.9294 (0.0156) 1 0.0733 2

Sum 0.9289 ‐ 1.3310 ‐ 0.4017 ‐

TA B L E  3   Changed habitat caused by pure, shared, and coupling effects of climate changes and sea level rise on the northern Chinese

Northern 
Chinese coast Hp_clc percentage Hp_slr percentage Hs_ics percentage Hc_ics percentage Hchanged percentage

Increased 
habitats(km2)

27,038 87.41 164 0.53 1,073 3.47 2,659 8.60 30,934 100

Decreased 
habitats(km2)

9,169 95.23 35 0.36 240 2.49 184 1.91 9,628 100

Note. Hp_clc: the changed habitats caused by pure effects of climate change; Hp_slr: the changed habitats caused by pure effects of sea level rise; Hs_ics: 
the changed habitats caused by shared effects from interactions of climate change and sea level rise; Hc_ics: the changed habitats caused by coupling 
effects from interactions of climate change and sea level rise; Hchanged: the changed habitats.
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coupling effects. For habitats reduction, the proportion caused by 
pure effects of climate change, pure effects of sea level rise, shared 
effects, and coupling effects accounted for 95.23%, 0.36%, 2.49%, 
and 1.91%, respectively. Pure effects of climate change mainly ex‐
plained habitats change, while pure effects of sea level rise were 
quite low for whether habitats increment or reduction. Shared and 
coupling effects could explain 12.07% of habitats increment and 
only 4.4% of habitats reduction, which meant that the increased 
habitats were more deeply affected by interactions than the de‐
creased habitats.

As shown in Table 4, on the southern Chinese coast, the habi‐
tats of S. alterniflora increased by 69,417 km2, while decreased by 
4,580 km2. It indicated that habitats will greatly increase in the fu‐
ture. 78.86% of habitats increment could be interpreted as being 
caused by pure effects of climate change, 1.25% by pure effects 
of sea level rise, 0.99% and 18.90% by shared and coupling effects, 
respectively. For the decrease habitats, the proportion caused by 
pure effects of climate change, pure effects of sea level rise, and 
shared effects accounted for 38.38%, 57.16%, and 4.45%, respec‐
tively. Coupling effects of interactions had no impacts on habitat 
reduction. Different from the northern coast, pure effects of climate 
change mainly explained habitats increment, while habitats reduc‐
tion were explained by pure effects of sea level rise. For habitats 
increment, coupling effects were much greater than shared effects 
with the sum of shared and coupling effects of 19.89%, while shared 
effects were greater than coupling effects with the sum of only 
4.45% for habitats reduction. The interactive way was different, 
which mainly appeared as coupling effects in habitats increment and 
shared effects in habitats reduction.

3.4 | Spatial distribution of changed habitat of 
S. alterniflora caused by pure, shared, and coupling 
effects of climate change and sea level rise on 
different regions

Along the northern Chinese coast (Figure 5a), the decreased 
habitats caused by pure effects of climate change mainly distrib‐
uted on the Bohai bay, Laizhou bay, and Yangtze River Estuary, 
while the increased habitats mainly distributed on the Shandong 
Peninsula, Liaodong Peninsula, and northern Jiangsu Province. 
The changed habitats caused by shared and coupling effects 
were small and it mainly distributed in the coastal zone of Jiangsu 

province. On the southern Chinese coast (Figure 5b), the in‐
creased habitats caused by pure effects of climate change almost 
occupied the entire coast from Zhejiang to Guangxi Province. We 
found the increased habitats caused by coupling effects mainly 
distributed in the landward side of Guangxi and Guangdong and 
by shared effects were very small. Moreover, the decreased habi‐
tats caused by pure effects of sea level rise and climate change, 
which were very small, mainly distributed in Zhejiang coast and 
Pearl River Estuary, respectively.

4  | DISCUSSION

Earlier studies used the rules provided by MaxEnt (percent con‐
tribution, permutation importance, and jackknife test) to deter‐
mine the variable importance(Fand et al., 2014; Liu et al., 2018; 
Saatchi et al., 2008; Smart et al., 2012; Yao et al., 2016). Given 
interactions among variables were unavoidable, variable impor‐
tance should be interpreted with caution when using these tra‐
ditional methods (Parisien & Moritz, 2009). However, the global 
sensitivity analysis can reveal the importance of the main and 
total effects of different variables with considering interactions 
among variables (Haaker & Verheijen, 2004; Liu et al.,2019). Our 
research demonstrated that Bio02 and Elevation were the most 
important variables in controlling the distribution of S. alterniflora 
on the northern coast, whether main or total effects. The find‐
ing was consistent with previous studies (Kirwan et al., 2010; Liu, 
2018; Priest, 2011). However, Elevation is by far the most impor‐
tant variable on the southern coast due to the width of tidal flat 
was narrow and the altitude has a relatively high limitation for the 
expansion of S. alterniflora (Gao et al., 2014). Bio02 and Elevation 
showed strong interactions among variables. An explanation for 
this might be that altitude can directly affect climatic factors such 
as temperature and precipitation and in turn climatic factors af‐
fect species distribution at different altitudes (Crosby et al., 2017; 
Idaszkin & Bortolus, 2011; Marangoni & Costa, 2012; Zhao et al., 
2015). There were obvious interactions among variables influence 
the distribution of S. alterniflora on the Chinese coast, and inter‐
actions of the northern coast were much greater than that of the 
southern coast. Interactions reduced the importance of Tece and 
Drainage, while enhanced the importance of Tph on the northern 
Chinese coast. On the southern Chinese coast, interactions were 

TA B L E  4   Changed habitat caused by pure, shared and coupling effects of climate changes and sea level rise on the southern Chinese

Southern 
Chinese coast Hp_clc Percentage Hp_slr Percentage Hs_ics Percentage Hc_ics Percentage Hchanged Percentage

Increased 
habitats (km2)

54,743 78.86 868 1.25 685 0.99 13,121 18.90 69,417 100

Decreased 
habitats (km2)

1,758 38.38 2,618 57.16 204 4.45 0 0.00 4,580 100

Note. Hp_clc: the changed habitats caused by pure effects of climate change; Hp_slr: the changed habitats caused by pure effects of sea level rise; Hs_ics: 
the changed habitats caused by shared effects from interactions of climate change and sea level rise; Hc_ics: the changed habitats caused by coupling 
effects from interactions of climate change and sea level rise; Hchanged: the changed habitats.
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low and it still enhanced the importance of Bio02, making the im‐
portance of Bio14, Bio19, Tgravel, Tph, Tsand, and Tclass change 
from zero to non‐zero.

It is recognized that climate change and sea level rise affect the 
species’ habitats (Cazenave & Cozannet, 2014; Garner et al., 2015; 
Reyer et al., 2013; Rincón, 2008; Valle et al., 2014). A number of 
researchers have reported that future climate change may further 
exacerbate invasive species expansion (Clout & Williams,2009; 
Crowl, Crist, Parmenter, Belovsky, & Lugo, 2008; Pyke et al., 2010). 
However, our results showed that habitats change was mainly 
caused by the pure effects of climate change. Climate change could 
not only exacerbate the expansion of S. alterniflora, but also cause 
its habitats reduction, especially on the northern Chinese coast. 
Pure effects of sea level rise were by far lower than that of climate 
change. The results differ from Hester's (2016) found that sea level 
rise will be dominant drivers in structuring S. alterniflora coastal wet‐
lands and S. alterniflora is very sensitive to it. This discrepancy could 
be attributed to their research did not distinguish pure effects of sea 
level rise and interactions with other factors, and thus may overesti‐
mate the impact of sea level rise.

Our studies also showed that habitats change was influenced not 
only by pure effects of climate change and sea level rise but also 
by shared and coupling effects of their interactions, which is sim‐
ilar with the previous studies that habitats change was influenced 
by their interactions in a complex manner (Hering et al., 2009; Milad 
et al., 2011; Reyer et al., 2013; Wu, 2017). There were two ways of 
interactions (shared and coupling effects) between climate change 
and sea level rise. The shared and coupling effects mainly affected 
the habitats increment of S. alterniflora on the northern Chinese 
coast and independently affected habitats increment (coupling ef‐
fects) and reduction (shared effects) on the southern coast. So, if 

interactions were ignored, the influences of climate change and sea 
level rise may be underestimated (Hering et al., 2009).

Most previous studies focused on habitats change (Cazenave 
& Cozannet, 2014; Garner et al., 2015; Reyer et al., 2013; Rincón, 
2008; Valle et al., 2014), while almost no study has identified the 
spatial distribution patterns of habitats change caused by pure, 
shared, and coupling effects of climate change and sea level rise. Our 
results showed that habitats in Shandong Peninsula and Liaodong 
Peninsula will increase due to pure effects of climate change, while 
that of Bohai Bay, Laizhou Bay, and the Yangtze River Estuary will 
decrease. Therefore, we should pay attention to the distribution of 
S. alterniflora in Shandong Peninsula and Liaodong Bay to avoid fur‐
ther expansion. The changed habitats caused by shared and coupling 
effects mainly distributed in the landward side. It is because sea level 
rise will cause species, especially invasive species, to migrate to the 
landward side (Kebede & Mokrech, 2012; Kerstin et al., 2013; Ober 
& Martin, 2018), and thus caused interactions.

Overall, our findings illustrated that the distribution of S. alterni-
flora was controlled not only by the pure effects of climate changes 
and sea level rise, but also by the shared and coupling effects caused 
by their interactions in different regions. Thus, climate changes, sea 
level rise, and their interactions should be taken into consideration 
for robust predictions of the spatial distribution patterns of S. al-
terniflora. It will provide more scientific and reasonable suggestions 
for preventing and controlling the invasion of S. alterniflora.

Although ecological niche modeling (MaxEnt) is a superior 
technology for modeling the potential distribution of species, it 
has several limitations including its uncertainty and transferabil‐
ity (Phillips et al., 2006; Swanson et al., 2013). Given the model's 
uncertainty, our research was built on 10‐fold cross‐validation and 
multiple threshold rules, together with its high accuracy, and all 

F I G U R E  5   The spatial distribution of the changed habitats of spartina alterniflora caused by pure, shared, and coupling effects of sea level 
rise and climate change. (a) the northern Chinese coast (b) the southern Chinese coast



     |  5389GONG et al.

of them supported the reliability of the results obtained (Elith & 
Yates, 2015; Radosavljevic et al., 2013). MaxEnt assumes that spe‐
cies will not exhibit phenotypic adaptation to new environmental 
conditions (Hernandez et al., 2006). Our model did not account 
for species dispersal, while the seeds of S. alterniflora can spread 
over long distances by wind and waves. Thus, further work is 
needed to combine the dispersal of S. alterniflora to better pre‐
dict its actual distribution. Furthermore, we only assumed that the 
average sea level will rise by 1 meter without considering the spa‐
tial heterogeneity of sea level rise. Abiotic environmental factors 
such as interspecies competition and ecosystem dynamics could 
also influence S. alterniflora's survival and colonization success 
(Woolfolk, Wasson, 2013; Garner et al., 2015). Therefore, further 
studies require considering the effects of biological factors such 
as species dispersal, competition, the spatial patterns of sea level 
rise in different regions.
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