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Purpose: The osteochondral junction (OCJ) region—commonly defined to include the
deep radial uncalcified cartilage, tidemark, calcified cartilage, and subchondral bone plate
—functions to absorb mechanical stress and is commonly associated with the
pathogenesis of osteoarthritis. However, magnetic resonance imaging of the OCJ
region is difficult due to the tissues’ short transverse relaxation times (i.e., short T2 or
T2*), which result in little or no signal with conventional MRI. The goal of this study is to
develop a 3D adiabatic inversion recovery prepared fat saturated zero echo time (IR-FS-
ZTE) sequence for high-contrast imaging of the OCJ.

Method: An IR-FS-ZTE MR sequence was developed to image the OCJ on a clinical 3T
MRI scanner. The IR-FS-ZTE sequence employed an adiabatic inversion pulse followed by
a fat saturation pulse that suppressed signals from the articular cartilage and fat. At an
inversion time (TI) that was matched to the nulling point of the articular cartilage,
continuous ZTE imaging was performed with a smoothly rotating readout gradient,
which enabled time-efficient encoding of the OCJ region’s short T2 signal with a
minimal echo time (TE) of 12 ms. An ex vivo experiment with six cadaveric knee joints,
and an in vivo experiment with six healthy volunteers and three patients with OA were
performed to evaluate the feasibility of the proposed approach for high contrast imaging of
the OCJ. Contrast-to-noise ratios (CNRs) between the OCJ and its neighboring femoral
and tibial cartilage were measured.

Results: In the ex vivo experiment, IR-FS-ZTE produced improved imaging of the OCJ
region over the clinical sequences, and significantly improved the contrast compared to
FS-ZTE without IR preparation (p = 0.0022 for tibial cartilage and p = 0.0019 for femoral
cartilage with t-test). We also demonstrated the feasibility of high contrast imaging of the
OCJ region in vivo using the proposed IR-FS-ZTE sequence, thereby providing more
direct information on lesions in the OCJ. Clinical MRI did not detect signal from OCJ due to
the long TE (>20 ms).
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Conclusion: IR-FS-ZTE allows direct imaging of the OCJ region of the human knee and
may help in elucidating the role of the OCJ in cartilage degeneration.
Keywords: UTE, ZTE, inversion recovery, osteoarthritis, cartilage, osteochondral junction
INTRODUCTION

Osteoarthritis (OA) is one of the most common diseases,
afflicting 30 million people in the United States alone (1). The
assessment of OA is largely focused on cartilage, a complexly
structured tissue that is comprised of multiple layers—namely,
the superficial, middle, and deep layers. The osteochondral
junction (OCJ) region is commonly defined to include the
interface between the subchondral bone and both the deep
(radial) and calcified cartilage, and functions by absorbing
mechanical stress between those regions. Recently, it has been
reported that the OCJ is associated with the pathogenesis of OA,
suggesting that assessment of the OCJ region may have potential
as a new diagnostic tool for OA (2–4).

Magnetic resonance imaging (MRI) is a promising non-
invasive imaging modality for the assessment of OA due to the
excellent soft tissue contrast it offers. Conventional MRI
sequences for imaging cartilage in the knee joint typically
include fast spin echo (FSE) sequences with T2 or T1 weighting
and with or without fat suppression techniques (5–8) such as
short tau inversion recovery (STIR), spectral adiabatic inversion
recovery (SPAIR), or chemical shift-based fat saturation.
Recently, more advanced MR imaging techniques have been
proposed to characterize knee cartilage, including balanced
steady-state free precession (bSSFP) (9, 10), diffusion imaging
(11, 12), and double echo steady-state (DESS) sequences (13, 14).
Despite promising overall results in the knee images, the
abovementioned MR techniques are not able to directly resolve
tissues with short T2* relaxation times (< ~1 ms) in the OCJ
region due to the sequences’ relatively long echo times (TEs)
which are on the order of several milliseconds or longer.

Ultrashort echo time (UTE) imaging has been actively
investigated as a promising approach for imaging those tissues
with short T2* relaxation times. UTE imaging relies on the ability
to shorten the TE by simply removing the rewinding gradient
required in conventional Cartesian MR imaging, and to
subsequently acquire center-out projection data. While the
shortened TE could provide a number of imaging advantages,
there are still several technical challenges in the UTE approach.
First, TE is limited by the RF coil transmit/receive switching
time, which is typically ~30-200 µs depending on the
performance of both the MR system and the RF coil (15, 16).
Second, the encoding efficiency and effective TE of UTE imaging
is limited by the gradient slew rate, where an additional delay
must be imposed to reach the maximum gradient amplitude that
corresponds to the desired readout bandwidth (BW) (15–17).
Zero echo time (ZTE) imaging is based on a different encoding
strategy where a fully ramped-up, constant gradient with a short
RF pulse enables more time-efficient encoding, which may be
beneficial in imaging tissues with very short T2* relaxation times
(18–20). However, some important imaging parameters such as
n.org 2
the flip angle (FA) and the readout BW are often limited in ZTE
imaging (21–24). Another limitation associated with UTE and
ZTE imaging is the poor image contrast for tissues with short T2

relaxation times, largely due to the high signal from surrounding
tissues with long T2 relaxation times

Recently, various magnetization preparation techniques such
as inversion recovery (IR), magnetization transfer (MT), and T1r
have been explored in UTE imaging (25–33). Among them,
adiabatic IR has shown promising results in achieving high
contrast UTE imaging of tissues with short T2 relaxation times
while achieving efficient suppression of tissues with long T2

relaxation times. This technique has been further utilized in
many neuro and musculoskeletal imaging studies (26, 28, 32–
34). More recently, it has been shown that adiabatic IR
preparation followed by chemical shift-based fat saturation can
provide simultaneous suppression of fat and cartilage tissues with
long T2 relaxation times (35, 36). Given these recent results, a
combination of adiabatic IR preparation and fat saturation with
ZTE data acquisition could prove useful for high contrast
imaging of the OCJ region.

In this study, we explored the feasibility and efficacy of ZTE
imaging combined with adiabatic IR preparation and chemical
shift-based fat saturation for volumetric imaging of the OCJ
region. An ex vivo experiment with six cadaveric knee joints and
an in vivo experiment with six healthy volunteers and three
patients with OA were performed to evaluate the proposed
adiabatic IR-prepared fat-saturated ZTE (IR-FS-ZTE)
technique for imaging of the OCJ region in the human knee joint.
MATERIALS AND METHODS

Inversion Recovery-Prepared Fat-
Saturated Zero Echo Time Sequence
Figure 1A illustrates typical signal inversion recovery curves for
articular cartilage and the OCJ region. Due to its short T2*
relaxation time (< ~1 ms), the longitudinal magnetization of the
OCJ is not inverted by the relatively long adiabatic IR pulse
(pulse duration ~10 ms), but partially inverted or saturated.
Meanwhile, articular cartilage has a T2* relaxation time that is
much longer than the duration of the adiabatic IR pulse, so its
longitudinal magnetization is fully inverted. By selecting an
inversion time (TI) that is tuned to the nulling point of
articular cartilage, the OCJ region can be selectively imaged
with excellent contrast and dynamic range. Figure 1B shows a
pulse sequence for the signal preparation, where an adiabatic IR
pulse is followed by chemical shift-based fat saturation to
suppress signals from the articular cartilage and marrow fat
simultaneously. ZTE imaging is then performed immediately
after the fat saturation pulse (Figure 1C). Note that ZTE imaging
benefits from short RF excitation to shorten a minimum TE, and
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fully ramped-up readout gradients to shorten an effective TE
targeting rapidly decaying signal from short T2 components (20–
22, 37). To speed up the data acquisition, multiple spokes are
continuously acquired with a smoothly ramping (or rotating)
readout gradient, as shown in Figure 1C. Unfortunately, ZTE
encoding inevitably leaves a hole of missing data in the encoded
central k-space due to the RF coil deadtime (a blind time during
RF transmit/receive mode switching). In this study, the hole was
filled with additional encoding with a reduced readout gradient
amplitude, similar to the strategy used in Water- And Fat-
Suppressed Proton Projection MRI (WASPI) (38, 39), as
indicated with blue dots in Figure 1D. A WASPI factor,
defined as the ratio between the gradient amplitude of ZTE
and WASPI encoding, was introduced to control the size of the
central k-space data to be acquired in the second acquisition.

MR Imaging
The 3D IR-FS-ZTE sequence was implemented on a 3T clinical
MR system (MR750, GE Healthcare, Milwaukee, WI, US). To
evaluate the proposed method, six cadaveric human knee joints
were scanned ex vivo. Additionally, six healthy volunteers
(males, aged 35.3 ± 1.9) and three OA patients (males, aged
52.0 ± 3.7) were scanned in compliance with the Human
Research Protection Program (HRPP) of the University of
California, San Diego. All MR imaging was performed using
an 8-channel transmit/receive knee coil (GE Healthcare).

Ex vivo imaging was performed using IR-FS-ZTE with the
following parameters: an adiabatic Silver-Hoult inversion pulse
(duration = 8.64 ms, BW = 1.5 kHz), a GE standard fat saturation
pulse (duration = 16 ms, offset frequency = -440 Hz, BW =
500 Hz), TR = 1200 ms, TE = 12 ms, TI = 520 ms, FA = 8̊ , readout
BW = 62.5 kHz, field-of-view (FOV) = 130x130x80 mm3,
acquisition matrix = 256x256x40, slice thickness = 2 mm,
Frontiers in Endocrinology | www.frontiersin.org 3
RF-to-RF timing (tau) = 2.3 ms, total number of spokes
(TNSP) = 30338, number of spokes per IR (NSP) = 24, WASPI
factor = 8, and scan time = 25 min 20 sec. For the first knee
sample, an expanded IR-FS-ZTE imaging was performed with
TIs = 200, 300, 420, 520, and 700 ms. ZTE with fat saturation but
without IR preparation (FS-ZTE) was also performed for
comparison using parameters matched with those of IR-FS-
ZTE except for a reduced scan time of 1 min 41 sec.

In vivo imaging was performed using the following sequences:
1) IR-FS-ZTE with the same parameters as ex vivo imaging except
matrix = 220x220x40, TI = 600 ms, tau = 1.9 ms, TNSP = 17940,
NSP = 36, and scan time = 9 min 58 sec; 2) T1-weighted fast spin
echo (T1w-FSE): FA = 140̊ , TR = 4818 ms, TE = 28.4 ms, FOV =
130×130mm2, matrix = 352×256, slice thickness = 2mm, number of
slices = 40, acceleration factor = 2, and scan time = 2 min 30 sec;
3) T2-weighted fast spin echo (T2w-FSE): GE standard fat saturation,
FA = 140̊ , TR = 9461 ms, TE = 72.5 ms, FOV=130×130 mm2,
matrix = 352×256, slice thickness = 2 mm, number of slices = 40,
acceleration factor = 2, and scan time = 2 min 32 sec.

Data Processing
IR-FS-ZTE and FS-ZTE images were reconstructed using online
reconstruction based on GE Orchestra SDK v1.7.1. In ZTE, the
low-resolution k-space data acquired using WASPI were
combined with high-resolution data using a linear merging
filter with a transition duration of two data points. The density
function was analytically calculated based on the inter-spoke
distance and intra-spoke sampling density. For gridding, the
following parameters were used: alpha = 2 and kernel width = 3
data points. The reconstructed images in each RF receiver
channel were combined using the weighted sum of squares
method in which the weighting factors were calculated based
on the noise power in each channel.
A

B

C

D

FIGURE 1 | Pulse sequence diagram for IR-FS-ZTE. (A) An example of typical inversion recovery with an adiabatic inversion pulse, (B) signal preparation, (C) ZTE
imaging, and (D) a 2D example of the k-space trajectory (black dots: high-resolution ZTE encoding, blue dots: low-resolution WASPI encoding). As shown in (B), the
adiabatic inversion pulse is followed by a fat saturation pulse that simultaneously suppresses the water signal (which has a long T2 relaxation time) and fat signal,
which improves contrast and dynamic range of the targeted OCJ region.
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For all ex vivo subjects, contrast-to-noise ratios (CNRs)
between the OCJ and its neighboring femoral and tibial
cartilage were measured in FS-ZTE and IR-FS-ZTE images.
CNR was calculated by taking the absolute difference of
average signal intensities in two regions normalized by
standard deviation of background noise. Each ROI was
manually segmented by a researcher with 10 years of research
experience in musculoskeletal MRI under the supervision of a
radiologist with over 20 years of experience. A student’s t-test
was performed between the CNRs measured in the FS-ZTE and
IR-FS-ZTE images, with a p-value of 0.05 considered statistically
significant. For in vivo subjects, CNRs were only measured for
IR-FS-ZTE because FS-ZTE images were not acquired. CNR
measurement was not performed in the clinical MR images
because no direct signal from OCJ was captured.

MRI osteoarthritis knee score (MOAKS) was used to semi-
quantitatively score cartilage degeneration for all ex vivo subjects
and in vivo OA patients (40). The knee was divided into fourteen
subregions (medial e lateral patella; medial and lateral trochlea,
central, and posterior femur; medial and lateral anterior, central,
and posterior tibial plateau) for scoring of articular cartilage. The
articular cartilage was assessed on the sagittal T2w-FSE MRI for
both lesion size (any cartilage loss) and degree of full-thickness
loss (if present): grade 0 (none); grade 1 (<10%); grade 2 (10-
75%); grade 3 (>75%).
RESULTS

Ex Vivo Study
Figure 2 shows IR-FS-ZTE images from a representative ex vivo
knee sample (from a 71-year-old male donor) acquired with five
different TIs (200, 300, 420, 520, and 700 ms) compared with FS-
Frontiers in Endocrinology | www.frontiersin.org 4
ZTE images without adiabatic IR preparation. IR-FS-ZTE images
with TI = 520 ms showed the best contrast for the OCJ region,
suppressing signals from both articular cartilage and bone
marrow while preserving signals from the OCJ region.
Compared to FS-ZTE, IR-FS-ZTE provided improved
morphology of not only the OCJ region (red arrows) but also
of regional loss in the OCJ (green arrows). Figure 3 shows a
comparison between FS-ZTE and IR-FS-ZTE from another ex
vivo knee sample (from a 48-year-old male donor). IR-FS-ZTE
showed good contrast for the OCJ region and other tissues with
short T2* relaxation times, such as the menisci in the knee joint,
compared to FS-ZTE without IR preparation, as indicated by
red arrows.

For all ex vivo knee samples, IR-FS-ZTE showed high contrast
for the OCJ. In the FS-ZTE images, the CNRs measured between
the OCJ and the femoral and tibial cartilage were 4.9 ± 3.1 and
9.0 ± 3.7, respectively. In the IR-FS-ZTE images, CNRs measured
between the OCJ and the femoral and tibial cartilage were 13.5 ±
1.6 and 18.4 ± 6.0, respectively. In the t-test, IR-FS-ZTE showed
significantly improved CNRs in both tibial (p = 0.0022) and
femoral cartilage (p = 0.0019) compared to FS-ZTE without
IR preparation.

Among the six knee samples, knee sample 1 (71-year-old
male donor, shown in Figure 2) had a particularly high degree of
cartilage degeneration, presenting with a total of eight subregions
with full-thickness cartilage loss across at least 50% of the
surface. Their combined MOAK scores were 62, 13, 20, 9, 2,
and 3, respectively (Table 1).
FIGURE 2 | Ex vivo experiment with a knee joint sample (from a 71-year-old
male donor). Two representative slices are shown to demonstrate the efficacy
of inversion recovery preparation in OCJ imaging. IR-FS-ZTE with a TI of 520
ms shows the best image contrast, where the OCJ is well-delineated and
represented by a bright line (red arrows), which is not obvious in FS-ZTE
without inversion recovery preparation. Complete-thickness cartilage erosions
involving the OCJ in the tibial plateau and posterior femoral condyle are better
seen on the IR-FS-ZTE sequence compared to the FS-ZTE sequence,
visualized as interruption of the bright line (green arrows).
A B

FIGURE 3 | Ex vivo experiment with a knee joint sample (from a 48-year-old
male donor). Two representative slices with (A) FS-ZTE and (B) IR-FS-ZTE.
IR-FS-ZTE shows improved OCJ contrast compared to FS-ZTE, as indicated
by red arrows and represented by the bright line.
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In Vivo Study - Healthy Volunteers
For all healthy volunteers, IR-FS-ZTE yielded high contrast
images of the OCJ, where morphology was well-delineated.
CNRs measured between the OCJ and the femoral and tibial
cartilage were 16.8 ± 3.9 and 16.8 ± 7.5, respectively.

Figure 4 shows IR-FS-ZTE (Figure 4C), clinical T1w-FSE
(Figure 4A), and T2w-FSE (Figure 4B) images from a
representative healthy volunteer (35-year-old male). While the
OCJ region was invisible in T1w-FSE and T2w-FSE images as a
result of the sequences’ long TEs and the fast T2* decay for the
OCJ, the proposed IR-FS-ZTE sequence showed high signal
intensity and high contrast for the OCJ region, as indicated by
red arrows. T2w-FSE showed bright contrast for fluid with long
T2 relaxation times, whereas IR-FS-ZTE showed dark contrast
for the same fluid, as indicated by yellow arrows.

In Vivo Study - OA Patients
For all three OA patients, IR-FS-ZTE showed high contrast
for the OCJ region. CNRs measured between the OCJ and
the femoral and tibial cartilage were 15.4 ± 3.9 and 16.3 ±
2.5, respectively. The combined subregional cartilage MOAK
scores for the three patients were 11, 36, and 15,
respectively (Table 1).
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In the clinical reading, the first patient (a 47-year-old male) did
not present any regions of full-thickness cartilage loss, although a
combination of lesser degree cartilage degeneration throughout
different subregions was observed (combined MOAKS = 11).
Figure 5 shows the MR images from the patient. The T1w-FSE
sequence showed only subtle subchondral bone irregularities in
the posterior region of the femoral condyle (red arrows). The T2w-
FSE sequence was unable to detect subchondral or cartilage
abnormalities (white arrows). The IR-FS-ZTE sequence,
however, was able to show abnormalities in both the
subchondral bone and cartilage (red and yellow arrows). Note
the varying thickness of cartilage in the posterior femoral condyle
(yellow arrows), the subchondral bone protrusions into the deep
cartilage (red arrows), and the irregularities in the interface
between the deep and superficial cartilage.

The second patient (a 56-year-old male) presented with three
subregions of full-thickness cartilage loss greater than 75% of the
articular surface and one subregion with a full-thickness loss
involving 10-75% of the articular surface, reflecting a high degree
of cartilage degeneration (combined MOAKS = 36). Figure 6
shows the MR images from the patient. Regional loss of articular
cartilage was well-delineated in both T1w-FSE and T2w-FSE
images, as indicated by red arrows in Figures 6A, B, but it was
not enough to directly reveal lesions in the OCJ region due to the
poor contrast with which both normal and abnormal OCJ
appeared. On the other hand, IR-FS-ZTE directly detected
degeneration in the OCJ region as a discontinued line, as
shown in Figure 6C (red arrow). Figure 7 shows images with
T1- and T2-weighting and IR-FS-ZTE from the same patient. The
T1w- and T2w-FSE sequences (Figures 7A, B) did not show any
evident abnormalities in the interface between the cartilage and
subchondral bone in the lateral tibial plateau (red and white
arrows). On the IR-FS-ZTE sequence (Figure 7C), however, the
highlighted OCJ allowed for the visualization of a small signal
abnormality in the deep cartilage (yellow arrow) that may have
represented a cartilage calcification or protrusion from the
subchondral bone. There was also a notably altered signal in
TABLE 1 | Combined cartilage MOAKS for each patient and ex vivo knee
sample.

Subject Combined Cartilage Score

Patient 1 (47M) 11
Patient 2 (56M) 36
Patient 3 (53M) 15
Knee Sample 1 (71M) 62
Knee Sample 2 (48M) 13
Knee Sample 3 (64M) 20
Knee Sample 4 (57M) 9
Knee Sample 5 (72M) 2
Knee Sample 6 (25M) 3
FIGURE 4 | A healthy volunteer (35-year-old male). (A) T1w-FSE, (B) T2w-
FSE, and (C) IR-FS-ZTE images (top) and the corresponding zoomed-in
images (bottom). The short T2 signal from the OCJ region is resolved with
high contrast in IR-FS-ZTE imaging (C), while the signal is not captured at all
by the conventional clinical MR imaging sequences (A, B), as indicated by red
arrows. The joint fluid with long T1 and T2 appears bright in T2-FSE imaging,
but dark in IR-FS-ZTE imaging (yellow arrow).
FIGURE 5 | A patient with OA (47-year-old male). (A) T1w-FSE, (B) T2w-
FSE, and (C) IR-FS-ZTE images (top) and the corresponding zoomed-in
images (bottom). The T1w-FSE sequence shows only subtle subchondral
bone irregularities in the posterior region of the femoral condyle (red arrows).
The T2w-FSE sequence cannot detect subchondral or cartilage abnormalities
(white arrows). The IR-FS-ZTE sequence, however, can show both
subchondral bone and cartilage abnormalities (red and yellow arrows).
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the posterior horn of the lateral meniscus (white arrowheads),
representing degeneration and which was better visualized on the
IR-FS-ZTE sequence.

The third patient (a 53-year-old male) presented with one
subregion of full-thickness cartilage loss involving 10-75% of the
articular surface (combined MOAKS = 15). Figure 8 shows the
images from the patient. Focal complete-thickness cartilage
erosion involving the OCJ (represented by interruption of the
bright line in the femoral trochlea) was well-depicted with the
proposed IR-FS-ZTE sequence, as indicated by a red arrow in
Figure 8C, but invisible in the clinical T1w-FSE and T2w-FSE
images, as indicated by red arrows in Figures 8A, B. This was
because the image contrast was not specific to the OCJ region.
DISCUSSION

In the literature, it has been reported that degeneration of the OCJ is
commonly associated with the pathogenesis of OA. In OA,
Frontiers in Endocrinology | www.frontiersin.org 6
osteoclasts are activated in cartilage and subsequently form
channels to the subchondral bone plate, triggering angiogenesis
and peripheral nerve innervation from the bone marrow to the deep
cartilage (2, 3). This is associated with a cascade of abnormalities
including local inflammation and upregulation of metalloproteinase
activity, degradation of the extracellular matrix, impairment of
cartilage load-bearing capacity, and other degenerative changes (3,
4, 41). Characterization of the OCJ region is therefore of high
interest and importance in the assessment of OA. We showed that
the proposed IR-FS-ZTE sequence can directly capture signal from
the OCJ region with significantly improved image contrast and
dynamic range as a result of the proposed technique’s adiabatic IR
preparation and fat suppression. This directly obtained
morphological information may substantially improve the clinical
diagnosis of lesions in the OCJ region.

The signal source in IR-FS-ZTE imaging of the OCJ remains to
be investigated. It is likely that the deepest radial layer of articular
cartilage, the calcified cartilage, and the subchondral bone plate all
contribute to the IR-FS-ZTE signal. The calcified cartilage has a
short T2* of around 2.0 ms (42), and the subchondral bone plate is
believed to have a T2* close to that of cortical bone, which has been
reported to have an extremely short T2* of around 1.0 ms or less
(43). Therefore, the IR-FS-ZTE sequence’s TE of 12 µs should be
able to directly detect signals from these tissue regions. However, a
recent study by Nykanen et al. found that the bright signal line
seen in UTE sweep imaging with Fourier transformation (SWIFT)
imaging of cartilage samples resided within the deep radial
noncalcified cartilage (44). This is likely due to the low proton
densities of the calcified cartilage and subchondral bone, as well as
their extremely short T2*s, which together result in a very low
signal intensity in SWIFT imaging. Considering that the calcified
cartilage and subchondral bone have short T2*s as well as short T1s
(35), higher T1 weighting with a shorter TR and a higher flip angle
may further increase their signal contribution. Higher RF power
and stronger gradient strength are also helpful for direct imaging
of the OCJ region. Clearly more research is needed to
systematically investigate the effects of RF power, gradient
FIGURE 6 | A patient with OA (56-year-old male). (A) T1w-FSE, (B) T2w-
FSE, and (C) IR-FS-ZTE images (top) and their corresponding zoomed-in
images (bottom). Regional loss of OCJ is well-delineated with IR-FS-ZTE (C),
whereas the lesion is obscured in clinical images (A, B), as indicated by
red arrows.
FIGURE 7 | A patient with OA (56-year-old male). (A) T1w-FSE, (B) T2w-FSE,
and (C) IR-FS-ZTE images (top) and the corresponding zoomed-in images
(bottom). The T1w- and T2w-FSE sequences do not show any evident
abnormality in the interface between the cartilage and subchondral bone in
the lateral tibial plateau (red and white arrows), whereas the IR-FS-ZTE
sequence highlights the OCJ, allowing for the visualization of a small signal
abnormality in the deep cartilage (yellow arrow) as well as the altered signal
in the posterior horn of the lateral meniscus (white arrowheads).
FIGURE 8 | A patient with OA (53-year-old male). (A) T1w-FSE, (B) T2w-FSE,
and (C) IR-FS-ZTE images (top) and the corresponding zoomed-in images
(bottom). Focal complete-thickness cartilage erosion involving the OCJ and
represented by interruption of the bright line in the femoral trochlea is detected
in the IR-FS-ZTE image (C), whereas the clinical images provide only indirect
information of the lesion due to poor contrast for the OCJ region (A, B), as
indicated by red arrows.
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strength, spatial resolution, as well as T1, T2*, and PD weighting on
IR-FS-ZTE imaging of the OCJ region. Validation by histology and
mCT would provide strong corroboration of the signal sources.

A potential downside of the IR-FS-ZTE technique is that the
range of available FAs is limited due to the prescribed readout
BW and to the excitation-readout scheme where a readout
gradient is turned on before RF excitation. This approach is
beneficial in imaging tissues with short T2 relaxation times
because an effective TE that is near to zero can be achieved.
However, this has the potential to limit the attainable signal-to-
noise ratio. However, in this study we showed that IR-FS-ZTE
can achieve high-quality images of the OCJ region, owing to the
short tau (2.3 ms in the ex vivo protocol and 1.9 ms in the in vivo
protocol) and high NSP (24 in the ex vivo protocol and 36 in the
in vivo protocol) which allow oversampling (2x in the ex vivo
protocol and 1.6X in the in vivo) to enhance the signal-to-noise
ratio. Another limitation is that slab selection is not compatible
with ZTE, which may limit the utilization of IR-FS-ZTE in body
imaging where slab selection is desired. In applications where
slab selection is required or desired such as spine imaging, spatial
saturation technique can be utilized to improve image quality in
IR-FS-ZTE imaging of the cartilaginous endplate (CEP).

More advanced techniques may be applied to the current IR-
FS-ZTE sequence to further improve image quality for the OCJ.
Interleaved encoding has recently been proposed to improve
image quality and scan efficiency in IR-based hybrid UTE
encoding (i.e., a mixture of Cartesian single point imaging (SPI)
and radial frequency encoding), where SPI encoding is interleaved
near the best nulling point (31). This approach significantly
reduced imaging artifacts and improved image contrast in IR-
based UTE imaging by assuring optimal nulling of targeted tissues
in the center of k-space, which is the major contributor to image
contrast. IR-FS-ZTE can also benefit from this strategy by
interleaving WASPI encoding near the nulling point of articular
cartilage. Another potential technique that may improve IR-FS-
ZTE is frequency sweeping (or phase-modulated) RF excitation.
Schieban et al. have recently shown the feasibility and efficacy of a
short hyperbolic secant (HSn) pulse to achieve improved FA with
reduced blurriness in ZTE imaging (23), which may also be an
effective approach in IR-FS-ZTE-based OCJ imaging. We will
further investigate this possibility in future studies.

This study has several limitations. First, only focused sets of
imaging parameters were investigated in the MR experiments.
There are more parameters that directly contribute to image
quality in IR-FS-ZTE such as NSP, FA, and view ordering (31).
Further investigation will be performed on those parameters in
our future studies. Second, the current implementation of IR-FS-
ZTE is based on a single IR (SIR) technique. As T1 may vary in
articular cartilage, SIR may not be able to evenly suppress the
tissues with long T2 relaxation times. The combination of a shorter
TR and TI or the use of a dual IR technique could be used to
address this challenge (27, 45), which will be further investigated.
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Third, no systematic comparison between IR-FS-ZTE and IR-FS-
UTE was performed. Since UTE and ZTE are based on different
acquisition and image reconstruction schemes, it is not trivial to
perform fair comparison. It is still unknown whether the bright
signal line represents the deep radial layer of cartilage, the calcified
cartilage, the subchondral bone, or their combination. A
systematic comparison requires further optimization of each
sequence based on the T1, T2* and proton density of the OCJ
(and its tissue components), which are largely unknown. Lastly,
only a limited number of healthy volunteers and OA patients were
scanned for our in vivo experiment. The efficacy of IR-FS-ZTE
imaging of the OCJ region in the clinical assessment of OA must
be further investigated through the recruitment of more patients
who have differing degrees of degeneration.

In this study, we implemented the IR-FS-ZTE sequence on a
clinical 3T MR system and showed its feasibility in high contrast
OCJ imaging. IR-FS-ZTE showed improved image contrast for
the OCJ region compared to clinical and FS-ZTE sequences. This
technique can detect morphological changes in the OCJ region
and its involvement in cartilage degeneration.
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