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Genetically modified pigs have been considered favorable resources in xenotransplanta-
tion. Microinjection of randomly integrating transgenes into zygotes, somatic cell nuclear 
transfer, homologous recombination, zinc finger nucleases, transcription activator-like 
effector nucleases, and most recently, clustered regularly interspaced short palindromic 
repeats-cas9 (CRISPR/Cas9) are the techniques that have been used to generate these 
animals. Here, we provide an overview of the CRISPR approaches that have been used 
to modify genes which are vital in improving xenograft survival rate, including cytidine 
monophosphate-N-acetylneuraminic acid hydroxylase, B1,4N-acetylgalactosaminyltran-
sferase, isoglobotrihexosylceramide synthase, class I MHC, von Willebrand factor, C3, 
and porcine endogenous retroviruses. In addition, we will mention the importance of 
potential candidate genes which could be targeted using CRISPR/Cas9.

Keywords: clustered regularly interspaced short palindromic repeats/Cas9, xenotransplantation, zinc finger 
nucleases–transcription activator-like effector nuclease–clustered regularly interspaced short palindromic 
repeats/Cas, transplantation immunology, gene editing

inTRODUCTiOn

Xenotransplantation is a potential solution for the urgent and steadily increasing worldwide persist-
ing donor organ shortage (1). Since the 1900s, several efforts have been made in xenotransplantation 
using animal organs derived from pigs, goats, lambs, or monkeys, but none of them were successful 
(2). Several studies have shown that pigs are the best choice of source for providing the limitless organs 
on demand for human (3). The four most significant and profound barriers to organ xenotransplan-
tation are the immunologic responses to the porcine grafted organs, namely,  hyperacute rejection 
(HAR), acute humoral xenograft rejection (AHXR), immune cell-mediated rejection, and chronic 
rejection (4). To overcome xenograft rejection and the barriers mentioned above, several investigations 
using pig-to-baboon models has been performed (5). Heterotopic and intrathoracic heterotopic 
cardiac xenograft in a combination with potent immunosuppression therapy have survived beyond 
900  days (5, 6). Undoubtedly, genetic engineering has been the most important factor in these 
achievements by producing genetically modified pigs which are more compatible and acceptable for 
the human immune system. The most recent genetic technique, clustered regularly interspaced short 
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FiGURe 1 | CRISPR system in xenotransplantation.

2

Naeimi Kararoudi et al. CRISPR/Cas9 in Xenotransplantation

Frontiers in Immunology | www.frontiersin.org September 2018 | Volume 9 | Article 1711

palindromic repeats-cas9 or CRISPR/Cas9 has been a milestone 
in gene editing so far, particularly in xenotransplantation (7). This 
review provides an overview of achievements and perspectives 
of the newest approach “CRISPR/Cas9” that is used to generate 
organ donor pigs for xenotransplantation.

CRiSPR/Cas9

Clustered regularly interspaced short palindromic repeats/Cas9 
genome editing system was first discovered as an RNA-guided 
defense mechanism for bacteria against foreign genetic elements 
by viruses or phages in order to respond and eliminate their 
invading genetic elements. There exists three types of CRISPR 
mechanisms and the type II CRISPR system has been studied 
the most. The simplicity of the type II CRISPR nuclease system 
consisting of three components Cas9 protein, the CRISPR RNA 
(crRNA) and a trans-activating crRNA (tracrRNA) has allowed 
it to be used as the most favorable genome editing system to date. 
The type II requires a 20-nucleotide guide sequence as part of the 
crRNA and tracrRNA partially complementary to the crRNA, and 
a Cas9 endonuclease protein to cleave the genomic DNA. Recent 
advances has allowed synthesis of single-guide RNA (sgRNA) 
consisting of a fusion of crRNA and tracrRNA in  vitro. In the 
Cas9 nuclease protein in type II CRISPR/Cas system can cleave 
target DNA at specific sites producing a double-stranded DNA 

break. Following the DNA break, two repair mechanisms exist, 
non-homologous end joining which is error prone and can lead 
to mutations by insertion/deletion (indel) or homology-directed 
repair which is an alternative DNA repair mechanism, in the 
presence of a repair template, precise and defined modifications 
are generated at the DNA target sites. Recent improvement in the 
technology and research has lead to novel ideas such as, CRISPR/
Cpf1 genome editing system of the bacterium Francisella novi-
cida, CRIPSR Ribonucleoprotein (RNP) and CRISPRa/i (activa-
tion/interference) (8). So far, the CRIPSR/Cas9 system has been 
the only one used in pig genome editing. In 2014, the first use 
CRISPR/Cas 9 to generate pig’s knockout cells, demonstrated its 
potential in complex genome engineering (9) (Figure 1).

CRiSPR/Cas9 MODiFieD GeneS

Modifying the genes which cause the immunologic responses 
to the porcine grafted organs, namely, HAR, AHXR, immune 
cell-mediated rejection, and chronic rejection have enhanced 
survival rate of organ xenotransplantation. Here, after intro-
ducing the importance of the CRISPR modified genes viz. 
cytidine monophosphate-N-acetylneuraminic acid hydroxylase 
(CMAH), B1,4N-acetylgalactosaminyltransferase (B4GALNT2), 
isoglobotrihexosylceramide synthase (iGb3s), class I MHC, 
von Willebrand factor (vWF), C3, and porcine endo genous 
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TABLe 1 | Clustered regularly interspaced short palindromic repeats/Cas9 
modified genes and their benefits for xenotransplantation.

name of the modified gene Benefits for 
xenotransplantation

Reference

Alpha-Gal expression (GGTA1) Reduction of formation of the 
membrane attack complex (MAC)

(9)

Cytidine monophosphate-
N-acetylneuraminic acid 
hydroxylase (CMAH)

Reduction of formation of the 
MAC

(11)

B1,4N-
acetylgalactosaminyltransferase 
(B4GALNT2)

Reduction of human antibody-
mediated cytotoxicity

(12, 13)

Isoglobotrihexosylceramide 
synthase (iGb3s)

Understanding its role in Gal-
related xenograft rejection

(24)

Class I MHC Improving the ability of study 
class I MHC function in pigs

(25)

von Willebrand factor (vWF) Reduction of formation of 
activated platelets

(28)

Complement component (C3) Reduction of formation of 
complement system

(29, 34)

Porcine endogenous 
retroviruses (PERVs)

Reduction of human cell infection 
by releasing PERVs

(32)
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retroviruses (PERVs) in xenotransplantation, we will describe the 
different approaches which have been used for applying CRISPR/
Cas9 to target these genes (Table 1).

ALPHA-GAL eXPReSSiOn (GGTA1)

The porcine GGTA1 encodes a 371-amino acid protein that 
synthesizes a sugar epitope present on the surface of all porcine 
cells but not in old world monkeys such as baboons or humans. 
This protein belongs to glycosyltransferase 6 family and transfers 
galactose from UDP-galactose to an acceptor molecule. Natural 
production of antibodies against alpha-1,3-Gal in humans and 
baboons leads to the formation of the membrane attack complex 
that causes HAR by interstitial hemorrhage and edema through 
activation of several complement reactions. These responses 
lead to graft vasculature destruction, and graft failure happens 
within seconds and hours after transplantation (4, 10). Alpha-
1,3-galactosyl transferase is encoded by 6 exons (4–9), exon 4 
contains the endogenous ATG translational initiation codon 
and exon 9 that codes the catalytic domain. The last exon covers 
most of the protein (amino acids 141 to 371), including the active 
domain with a-1,3-galactosyl transferase activity.

The first try to destroy the function of porcine GGTA1 using 
the CRISPR/Cas9 system was done by Sato et al. in 2014 (9). They 
obtained biallelic KO cells for GGTA1 by the combined use of the 
CRISPR/Cas9 system with targeted toxin-based selection [IB4 
conjugated with saporin (IB4SAP)]. In their study, a pair of gRNA 
oligos were designed and cloned into an hCas9 expression vector 
carrying a codon-optimized Cas9 gene for targeting the exon 4 
of GGTA1 in porcine embryonic fibroblast (PEFs). PEFs were 
electroporated in nucleofector solution (for primary fibroblasts) 
containing the hCas9 expression vector, gRNA expression vec-
tor, and pmaxGFP. Approximately 90% of colonies that survived 
after IB4SAP treatment were α-Gal epitope negative. In another 
attempt in 2014, Li et  al. generated genetically distinct pigs in 

a single pregnancy using multiplexed sgRNA and carbohydrate 
selection. They used the magnetic beads to separate the cells and 
made a model for targeting three genes including GGTA1, CMAH, 
and iGb3s (11). Other independent groups used a similar method 
for knocking out GGAT1 to test human-anti-pig cytotoxicity 
(12–14). In another attempt, the exon 8 of GGAT1 were targeted 
to produce KO pigs using microinjection of GGTA1-CRISPR/
Cas9 using px330 expression vector to transduce PEFs (15).

Interestingly, Su et al. (16) in 2015 improved the efficiency of 
targeting pig genome. They developed a CRISPR–Cas9 system 
that was particularly adaptive in porcine PK1 cells. They flanked 
the SV40 T-antigen NLS (PKKKRKVG, NLS1) and the Dax NLS 
(KKSRKEKK, NLS2) at the N and C termini, respectively, to the 
Streptococcus pyogenes A20 Cas9 with the humanized codon.  
An overlapped Flag2 tag (EYKDDDGDYKDDDDK) was added at 
the end of the N terminus. The CMV enhancer-chicken b-actin pro-
moter was used to derive the Flag2-NLS1-Cas9-NLS2mRNA, and 
the porcine U6 promoter was used to transcribe the spacer-gRNA 
chimeric RNA. Four target sites within GGTA1 gene region, includ-
ing parts of the last intron and last exon, were picked up in this study.

Nevertheless, knocking out is not the only way to reduce alpha-
Gal expression. Sato et al. reported the first successful knock-in 
of a small sequence at an endogenous target (GGTA1 locus) in 
porcine cells via homologous recombination (HR) by CRISPR/
Cas9 system. Due to the generally low efficacy of CRISPR/
Cas9-mediated knock-in, they employed IB4SAP as targeted 
toxin-based drug-free selection system and they significantly 
improved facilitating the creation of loss-of-function alleles by 
combining IBS4SAP. In this study, PEFs were transfected by 
phCas9 and a pE4 plasmid termed pgRNA which carries the 
specific guide RNA sequence targeted (spanning ~800 bp) at the 
exon 4 of GGTA1. They successfully obtained several knock-in 
clones within 3 weeks of initial transfection (17).

CYTiDine MOnOPHOSPHATe- 
N-ACeTYLneURAMiniC ACiD 
HYDROXYLASe

In addition to alpha-Gal, the expression of another carbohydrate 
xenoantigen N-glycolylneuraminic acid (Neu5Gc) is present in 
pigs, but not in humans. The CMAH gene was inactivated like 
GGTA1 during evolution because of its protective role against a 
prevailing malaria strain (18). This gene similar to GGTA1 gene is 
widely expressed on the endothelial cells of pigs. This epitope can 
activate anti-non-Gal antibody in humans as it is responsible for 
the expression of Neu5Gc, a key non-Gal antigen. Human beings 
express the acetylated form of the sugar (Neu5Ac) instead. It has 
been hypothesized that elimination of CMAH gene expression in 
pigs is crucial for increasing survival rate of xeno-organ (19–21). 
Furthermore, the pigs lacking both GGTA1 and CMAH KO genes 
reduce the humeral barrier to xenotransplantation in comparison 
to those lacking GGTA1 alone (22).

For the first time in 2015, CRISPR technology was applied for 
knocking out the CMAH gene. Li et al. used the same knocking 
out method for the CMAH gene as GGTA1. They showed that 
knocking out the CMAH using CRISPR/Cas9 is more promising 
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than zinc finger nucleases (ZFN) and transcription activator-like 
effector nucleases (TALENs) method (11). In addition, GGTA1 
and CMAH knockout pigs were produced by the same method 
(12, 13). In 2017, GGTA1/CMAH double knockout pigs were 
generated via “handmade cloning” using CRISPR/Cas9. The 
GGTA1 sgRNA targeted exon 6, and the CMAH sgRNA targeted 
exon 1. The Cas9-coding DNA and sgRNAs were cloned in into 
the pMD-18T vector to modify the genes in Wuzhishan porcine 
fetal fibroblasts (PFFs) cells (23).

B1,4n-ACeTYLGALACTOSAMinYLTRAnS-
FeRASe

B1,4N-acetylgalactosaminyltransferase is a glycosyltransferase that 
catalyzes the terminal addition of N-acetylgalactosamine to a sialic 
acid modified lactosamine to produce GalNAcb4 [Neu5Aca2,3] 
Gal b1-4GlcNAc, b1-3Gal and the Sda (Sid blood group, also 
known as CAD or CT) blood group antigen. Most humans pro-
duce low levels of antibodies to Sda. Therefore, its deletion would 
be a promising approach to reduce pig organ rejection. Butler 
et al. described the first characterization of the effect of silencing 
the B4GalNT2 gene on human antibody-mediated cytotoxicity. 
Genetically modified pigs were created utilizing a CRISPR/Cas9 
approach transfer as described by Li et al. in 2015 (12, 13).

iSOGLOBOTRiHeXOSYLCeRAMiDe 
SYnTHASe

The importance of iGb3s was due to this hypothesis that it might 
be a source of α-Gal epitopes in GGTA1(−/−) animals. iGb3s is 
another member of the glycosyltransferase family that catalyzes 
the synthesis of isoglobo-series glycosphingolipids with a α- 
 Gal-terminal disaccharide (iGb3). To examine the impact of silencing 
the iGb3s gene (A3GalT2) on pig-to-primate and pig-to-human 
immune cross-reactivity, creating and comparing GGTA1(−/−) 
pigs to GGTA1(−/−) and A3GalT2(−/−) double knockout pigs, 
Butler et al. generated the GGTA1 and A3GalT2 knock out pigs 
using CRISPR/Cas9. They showed that iGb3s is not a contributor 
to antibody-mediated rejection in pig-to-primate or pig-to-
human xenotransplantation (24).

CLASS i MHC

Class I MHC or Swine Leukocyte Ags (SLA)-null pigs were 
created using CRISPR/Cas9 system by Reyes et  al. in 2014. 
Classical class I MHC gene synthesizes polymorphic proteins that 
have several activities such as CD8+ T  lymphocyte activation; 
additionally, they regulate the activity of other immune effectors 
such as NK cells. The class I region of swine MHC contains three 
classical class I genes (SLA-1, -2, and -3), several pseudogenes 
(SLA-4, -5, and -9), and two class I-like genes (SLA-11 and -12). 
To improve the ability of study class I MHC function in xenograft 
rejection, authors used the Cas9 nuclease and gRNAs targeting 
sequences of exon 4 of the class I gene which consists of 276 bp in 
the different alleles. Following somatic cell nuclear transfer, they 
created cloned animals lacking class I MHC protein expression. 
Although these animals have reduced levels of CD4(−)CD8(+) 

T cells in peripheral blood, the pigs appeared healthy and were 
developing normally (25).

von wiLLeBRAnD FACTOR

Pig vWF is a glycoprotein that plays a critical role in the patho-
genesis of xenograft failure, especially in pulmonary xenotrans-
plantation, because the lung releases more vWF than the heart or 
kidneys. This multimeric glycoprotein spontaneously aggregates 
human platelets in the absence of shear stress due to an aber-
rant interaction through an aberrant between its O-glycosylated 
A1 domain and platelet glycoprotein Ib (GPIb) receptors (26). 
After GPIb–vWF interaction happens, intracellular signaling 
occurs, and platelets become activated. Circulating activated 
platelets develop thrombus after being recruited to the place of 
the endothelial cells injury (27).

These incompatibilities can be resolved by the generation of 
vWF knockout pigs by zygote injection of CRISPR/Cas9 system. 
Hai et al. in 2014 generated vWF knockout to improve bleeding 
efficiency for slaughtering procedures and blood collection that 
could be used for xenotransplantation purposes as well. They 
designed sgRNA-targeted exon 5 of the pig vWF gene, which lies 
in the first trysin-inhibitor-like domain and its mutation could 
lead to the loss of function of vWF protein. Indels were confirmed 
by the T7E1 assay. The high birth rate (16/76, 21%) and survival 
rate (14/16, 88%) indicated that Cas9 mRNA/sgRNA had little 
toxicity to pig embryonic development (28).

COMPLeMenT COMPOnenT (C3)

C3 encoded by the C3 gene is the central component of the com-
plement system as it has a major role in the adaptive immune 
response. Several tissues and cells have the capacity to produce C3 
such as hepatocytes as a primarily source, macrophages, dendritic 
cells, etc. The activation of complement system can lead to HAR 
of xenograft. Therefore, its deletion has always been an aim for 
researchers to produce C3 deficient pigs to reduce complement 
system. Recently, Zhang and colleagues generated 19 complement 
protein C3 deficient pigs by CRISPR/Cas9-mediated gene target-
ing. They transfected PFF cells by a pX330 plasmid that expresses 
human codon-optimized Cas9 and sgRNA under the chicken 
beta-actin hybrid and human U6 promoters, respectively. The 
sgRNAs targeted the exon 26 of C3 gene. They showed that C3 
α-chain was undetectable in KO piglets contrary to that of the 
WT controls. Besides, no complement activity was detected in 
the serum of C3 KO piglets (29).

PORCine enDOGenOUS ReTROviRUSeS

Porcine endogenous retroviruses are one of the most important 
challenges in the field of xenotransplantation. Under stress, 
pig cells can infect human cells invitroby releasing PERVs, but 
so far there has never been a report of a primate receiving pig 
cells or tissue being infected by PERVs. These viruses cannot be 
eliminated by biosecure breeding. ZFN or TALENs were used for 
inactivating PERVs, but with limited success (30). Inactivating the 
PERVs by CRIPSR could prevent the transmission of retroviruses 
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in vitro. Recently Yang et  al. using CRISPR-Cas9, disrupted 62 
PERV sites in the animal’s genome and demonstrated a >1,000-
fold reduction in PERV transmission from edited porcine cells 
(PK15) to human cells. Their study demonstrates that CRISPR–
Cas9 genome editing system can inactivate PERVs for clinical 
application of porcine-to-human xenotransplantation. First, they 
analyzed the sequences of publicly available PERVs and other 
endogenous retroviruses in pigs to design Cas9 guide RNAs. For 
having higher editing efficiency by a Cas9 system, they used a 
PiggyBac transposon system to deliver a doxycycline-inducible 
Cas9 and the two gRNAs into the genome of PK15 cells (31). The 
first report on PERV-inactivated pig production using CRISPR/
Cas9 was published in Science magazine in August 2017. Niu 
et  al. used the R library DECIPHER to design specific gRNAs 
that target  all pol catalytic sequences in FFF3 cell line. They 
synthesized a DNA fragment encoding U6-gRNA1-U6-gRNA2 
and incorporated it into a previously constructed PiggyBac-cas9 
plasmid. By these results, they demonstrated the successful 
production of PERV-inactivated animals to address the safety 
concern in clinical xenotransplantation (32).

Considering the above-mentioned achievements, the challenge 
is to combine multiple genetic modifications to enable normal 
animal breeding and to defeat rejection mechanisms. To overcome 
this problem, as the first try Fischer et al. in 2016 produced multi-
modified pigs for xenotransplantation by “combineering,” gene 
stacking and gene editing. They generated new multi-transgenic 
pigs carrying genomic versions of human complement regulators 
CD46, CD55, CD59 plus cDNA cassettes for human A20 and 
HO1 to provide endothelium protection, with all transgenes at a 
single locus. Later, by using CRISPR/Cas9, biallelic knockout of 
GGTA1 and CMAH genes24 were then carried out in this multi-
transgenic background. A CRISPR/Cas9 enzyme targeted exon 10 
of CMAH gene in kidney-derived fibroblasts (PKF) that had the 
multi-transgenic background. Subsequently, CMAH knockout 
clones were used for nuclear transfer; pregnancy was terminated 

at day 28, fetal fibroblasts isolated and transfected with a CRISPR/
Cas9 genome editing system targeting exon 8 of GGTA1 gene (33).

PeRSPeCTive

Besides the CRISPR modified genes, there are other important 
genes which have been modified in pigs using other gene editing 
techniques such as HR, ZFN, and TALENS. Recreating these 
genetically modified pigs by CRISPR/Cas9, regarding its simplic-
ity and accuracy and other benefits, would be considered as a per-
spective for the future use of this system in xenotransplantation 
viz. Human CD59+, CD55+, GLA+, H-transferase+, GnT-III+, 
CD46+, TRAIL+, DAF and MCP+, Porcine CTLA4-Ig+, Human 
thrombomodulin+, HLA-E/Human Beta-2-microglobulin+, 
Human A20+, Endo-B-Galactosidase+, CIITA-DN+, Human 
Fas Ligand+, Human TNFRI-Fc+, Human heme oxygenase 1+, 
Human CD39+ and LEA29Y+. Table 2 shows the list of these 
candidate genes and their benefits for xenotransplantation.

COnCLUSiOn

Production of transgenic pigs has helped substantial progress the 
field of xenotransplantation and created hope that clinical trials may 
no longer be a distinct prospect. CRISPR/Cas9 technology would 
likely accelerate these achievements by its ease and precision. New 
improvements in CRISPR/Cas9 technology such as Cas9/RNP 
and CRISPR/Cpf1 can accelerate this field (55–57). The CRISPR 
approaches that were described in this review might advance and 
help researchers to design their CRISPR/Cas9 project and lead 
xenotransplantation from bench closer to bedside (58–59).
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TABLe 2 | The potential genes for CRISPR modification.

name of the modified gene Benefits for xenotransplantation Reference

Human CD59+ Reduction of activation of serum complement on the luminal surface of the vascular endothelium (35)
Human CD55+ Reduction of activation of serum complement on the luminal surface of the vascular endothelium (36)
Human GLA+ Reduction of interaction of Galα(1,3)Gal with antibodies and complement directed against swine Gal antigen (37)
Human H-transferase+ Reduction of Galα1,3-Gal expression (38)
Human CD46+ Reduction of activation of serum complement on the luminal surface of the vascular endothelium (39)
Human GnT-III+ Reduction of antigenicity to natural human antibodies, especially the Galalpha1-3Galbeta1-4GlcNAc-R (40)
Human TRAIL+ Controlling post-hyperacute rejection mechanisms mediated by cellular components of the immune system (41)
Human DAF and MCP+ Supporting the idea of modulating coagulation pathway activation in transgenic pigs (42)
Porcine CTLA4-Ig+ Reduction of T-cell activity (43)
Human thrombomodulin+ Elevation in activated protein C production to control xenogenic coagulation (44)
HLA-E/Human Beta-2-microglobulin+ Protection against xenogeneic human anti-pig natural killer cell cytotoxicity (45)
Human A20+ Protection against apoptotic and inflammatory stimuli (46)
Endo-B-Galactosidase+ Reduction of alphaGal expression (47)
CIITA-DN+ Reduction of human CD4(+) T-cell proliferation reduction of humoral and cellular responses to the pig aortic 

endothelial cells (pAECs)
(48)

Human Fas Ligand+ Reduction of CD8+ CTL-mediated cytotoxicity (49) (50)
Human TNFRI-Fc+ Reduction of activation of porcine endothelial cells (51)
Human heme oxygenase 1+ Increasing the protection of xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion 

injury, and/or acute rejection mediated by cytokines
(52)

Human CD39+ Protection against myocardial injury and ischemia/reperfusion injury (53)
LEA29Y+ Normalize blood glucose levels and inhibition of human–anti-pig rejection (54)
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