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Abstract
Background: Vibrio cholerae is the causative agent of cholera. Extensive studies reveal that
complicated regulatory cascades regulate expression of virulence genes, the products of which are
required for V. cholerae to colonize and cause disease. In this study, we investigated the expression
of the key virulence regulator ToxR under different conditions.

Results: We found that compared to that of wild type grown to stationary phase, the toxR
expression was lower in an aphB mutant strain. AphB has been previously shown to be a key
virulence regulator that is required to activate the expression of tcpP. When expressed
constitutively, AphB is able to activate the toxR promoter. Furthermore, gel shift analysis indicates
that AphB binds toxR promoter region directly. We also characterize the effect of AphB on the
levels of the outer membrane porins OmpT and OmpU, which are known to be regulated by ToxR.

Conclusions: Our data indicate that V. cholerae possesses an additional regulatory loop that use
AphB to activate the expression of two virulence regulators, ToxR and TcpP, which together
control the expression of the master virulence regulator ToxT.

Background
The Gram-negative bacterium Vibrio cholerae is the etio-
logic agent of cholera. The ability of V. cholerae to colonize
and cause disease in hosts requires production of a
number of virulence factors during infection. The two
major virulence determinants of V. cholerae are encoded
by two separate genetic elements: cholera toxin (CT),
which causes the diarrhea characteristic of cholera, and
the toxin-coregulated pilus (TCP), which is essential for
attachment and colonization of intestinal epithelia [1,2].
CT is encoded by the ctxAB genes on the lysogenic CTXÖ
bacteriophage [3]. The genes required for TCP synthesis

and the genes encoding the virulence transcriptional acti-
vators ToxT and TcpP are located on a 40-kb Vibrio patho-
genicity island (VPI) [4]. Coordinate expression of V.
cholerae virulence genes results from the activity of a cas-
cading system of regulatory factors [5] (Fig. 1).

The primary direct transcriptional activator of V. cholerae
virulence genes, including ctxAB and tcpA, is ToxT, a mem-
ber of the AraC family of proteins [6]. The expression of
ToxT is under the control of a complex regulatory path-
way. The ToxR protein was identified as the first positive
regulator of V. cholerae virulence genes [7]. ToxR activity
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requires the presence of another protein, ToxS, which is
also localized to the inner membrane, but is thought to
reside predominantly in the periplasm, where ToxR and
ToxS are hypothesized to interact. ToxS serves as a media-
tor of ToxR function, perhaps by influencing its stability
and/or capacity to dimerize [6]. To regulate expression of
toxT, ToxR acts in conjunction with a second transcrip-
tional activator, TcpP, which is also membrane-localized
with a cytoplasmic DNA-binding and other periplasmic
domains [8]. TcpP, like ToxR, requires the presence of a
membrane-bound effector protein, TcpH, which interacts
with TcpP [9]. Two activators encoded by unlinked genes,
AphA and AphB, regulate the transcription of tcpPH. AphA
is a dimer with an N-terminal winged-helix DNA binding
domain that is structurally similar to those of MarR family
transcriptional regulators [10]. AphA cannot activate tran-
scription of tcpP alone, but requires interaction with the
LysR-type regulator AphB that binds downstream of the
AphA binding site [11].

The ToxR and ToxS regulatory proteins have long been
considered to be at the root of the V. cholerae virulence
regulon, called the ToxR regulon. The membrane localiza-
tion of ToxR suggests that it may directly sense and
respond to environmental signals such as temperature,
osmolarity, and pH [12]. In addition to regulating the
expression toxT, ToxR activates the transcription of ompU
and represses the transcription of ompT, outer membrane
porins important for V. cholerae virulence [13,14]. Micro-
array analysis indicates that ToxR regulates additional
genes, including a large number of genes involved in cel-
lular transport, energy metabolism, motility, and iron
uptake [15]. It has been reported that levels of ToxR pro-
tein appear to remain constant under various in vitro con-
ditions [16,17] and are modulated by the heat shock
response [18].

To further investigate the relationship between toxR
expression and other virulence regulators, we analyzed
toxR transcription and ToxR protein levels in various viru-
lence regulator mutants. We found that in addition to acti-
vating tcpP, AphB was required for full expression of ToxR
in V. cholerae stationary growth phase. AphB regulated
toxR directly as purified recombinant AphB binds to the
toxR promoter. This study suggests that V. cholerae may use
this additional layer of activation to turn on virulence fac-
tor production efficiently in optimal conditions.

Results and Discussion
Examination of toxR expression under different in vitro 
conditions using a transcriptional fusion reporter
ToxR is one of two proteins, along with TcpP, shown to
activate the expression of ToxT, the master virulence acti-
vator in V. cholerae (Fig. 1). The expression of tcpP has
been shown to be induced by AphA and AphB [11,19],
while toxR has been thought to be constitutively expressed
and only modulated by temperature [16,18]. To measure
toxR expression, we placed the toxR promoter upstream of
the luxCDABE operon on a plasmid [20] and transformed
into wild type V. cholerae. We then grew the resulting cells
at 37°C or 22°C. Expression of PtoxR-luxCDABE was signif-
icantly increased at 22°C (Fig. 2A), consistent with the
previous report [18] that the expression of toxR is modu-
lated by temperatures. Since the availability of oxygen
concentrations is different during V. cholerae infection, we
also examined the expression of toxR under varying oxy-
gen concentrations (Fig. 2B). The lux expression was sim-
ilar under each condition, suggesting that oxygen levels
do not regulate toxR expression.

Influence of virulence regulatory proteins on toxR 
expression
To investigate molecular influences on toxR expression,
we introduced the PtoxR-lux construct into various strains
of V. cholerae with mutations in virulence regulator genes.
We also included a tcpA mutant because a previous study
showed that TcpA, the major subunit of TCP pilin [2],
affects cholera toxin gene expression in vivo but not in vitro
[21]. We grew these strains at 37°C for 12 hours and
measured luminescence (Fig. 3A). We found that ToxR
and ToxS did not affect toxR expression, indicating that
ToxR does not autoregulate. The expression of toxR in
tcpPH, toxT, and tcpA mutants remained the same as that
of wild type, but it was significantly decreased in aphA and
aphB mutant strains (approximately 3- and 6-fold, respec-
tively). Of note, toxR expression in wild type and aphA or
aphB mutants remained similar in the early and logarith-
mic phases of growth (data not shown). We also exam-
ined toxR expression in wild type and various virulence
regulatory mutants grown under the AKI condition [22],
in which virulence genes are induced in El Tor strains of V.
cholerae. We found that toxR expression was decreased in

The ToxR regulonFigure 1
The ToxR regulon. AphA and AphB are known to activate 
tcpPH expression. TcpPH and ToxRS activate the expression 
of ToxT, which in turn activates the expression of the central 
virulence factors, cholera toxin (CT) and the toxin-coregu-
lated pilus (TCP). ToxRS also upregulates OmpU and down-
regulates OmpT, which are outer membrane porins.
Page 2 of 8
(page number not for citation purposes)



BMC Microbiology 2010, 10:3 http://www.biomedcentral.com/1471-2180/10/3

Page 3 of 8
(page number not for citation purposes)

The expression of toxR in wild type under different conditions using a PtoxR-luxCDABE transcriptional reporterFigure 2
The expression of toxR in wild type under different conditions using a PtoxR-luxCDABE transcriptional reporter. 
(A). The reporter strain was grown at 22°C or 37°C, and at successive time points, luminescence was measured. Units are 
arbitrary light units/OD600. The results are the average of three experiments ± SD. (B). The reporter strain was grown at 37°C 
aerobically, in an anaerobic chamber (Mini MACS Anaerobic workstation, Microbiology International) or in a BBL CampyPak 
Microaerophilic System. At different time points, samples were withdrawn and luminescence was measured. Units are arbitrary 
light units/OD600. The results are the average of three experiments ± SD.
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both aphA and aphB mutants to a similar degree as those
grown in LB medium (data not shown). These data sug-
gest that AphA and AphB may be important factors in
increasing toxR expression during V. cholerae stationary
growth. These studies were confirmed by Western blot to
examine ToxR protein levels (Fig. 3B): compared to those
of wild type and other mutant strains, ToxR protein levels
were notably decreased in the aphA and aphB mutants.
Interestingly, while toxR transcription was unchanged in
toxS mutant (Fig. 3A), ToxR proteins were not detected in
the absence of ToxS, suggesting that the ToxR effector ToxS
may affect ToxR stability, at least in the stationary phase
condition we tested. Beck et al. reported that loss of ToxS
had no measurable negative effect on steady-state levels of
the ToxR protein at the mid-log phase growth [9]. The
decreased ToxR expression at stationary phase in a toxS
mutant is the subject of another investigation.

AphB directly regulates toxR expression
Knowing that full expression of ToxR required both AphA
and AphB, we sought to determine which was directly
responsible for this effect. To this end, we placed aphA and
aphB under control of an arabinose-inducible promoter
and measured its effect on PtoxR-luxCDABE transcription in
E. coli. Overexpression of AphB, but not AphA, dramati-
cally increased toxR transcription (Fig. 4A). We currently

do not know why in V. cholerae, both AphA and AphB are
required to fully activate toxR expression, while in E. coli,
only AphB can induce PtoxR-luxCDABE. One possibility is
that in V. cholerae, the expression of aphB is dependent on
AphA. However, we examined aphB expression in wild
type and aphA mutant strains and did not detect any dif-
ference. Another possibility is that AphA may indirectly
activate ToxR expression through an intermediate which is
absent in E. coli, or that AphA is required to repress an

Expression of toxR in different mutations of V. choleraeFigure 3
Expression of toxR in different mutations of V. chol-
erae. (A) Activity of PtoxR-luxCDABE reporter constructs (blue 
bars) in V. cholerae wild type and virulence regulatory 
mutants. Cultures were grown at 37°C overnight. Units are 
arbitrary light units/OD600. The results are the average of 
three experiments ± SD. (B) Analysis of samples in (A) by 
Western blot with anti-ToxR antiserum.

Expression of toxR in the presence of AphA or AphBFigure 4
Expression of toxR in the presence of AphA or AphB. 
(A). Activity of PtoxR-luxCDABE reporter constructs (blue 
bars) in E. coli containing pBAD24 as a vector control, pBAD-
aphA or pBAD-aphB. Arabinose (0.01%) was used to induce 
PBAD promoters and cultures were grown at 37°C to station-
ary phase. Units are arbitrary light units/OD600. The results 
are the average of three experiments ± SD. (B). toxR-lacZ 
expression (blue bars). V. cholerae lacZ- strains containing 
toxR-lacZ chromosomal transcriptional fusions and either 
pBAD24 or pBAD-aphB were grown in LB containing 0.01% 
arabinose at 37°C for 12 hrs and β-galactosidase activities of 
the cultures were measured [35] and reported as the Miller 
Unit. The results are the average of three experiments ± SD. 
(C). Analysis of samples in (B) by Western blot with anti-
ToxR antiserum.
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inhibitor of AphB that is present in V. cholera but not in E.
coli. AphA has been shown to regulate a number of other
genes [23,24]. The activation of ToxR hinted at in this
study may thus rely on the regulation of other members of
the regulation cascade not yet elucidated. We further con-
firmed AphB regulation of toxR in V. cholerae using a chro-
mosomal transcriptional toxR-lacZ fusion (Fig. 4B). We
found that compared to that of wild type, toxR-lacZ
expression was reduced in aphB mutants, while expression
of aphB from a plasmid in this mutant restored toxR
expression (Fig. 4B) and ToxR production (Fig. 4C).

To investigate whether AphB-mediated activation of toxR
is direct or acts through another regulator present in E.
coli, we purified AphB as an MBP (maltose-binding pro-
tein) fusion. Recombinant AphB is functional, as it could
activate tcpP transcription in E. coli (data not shown). We
then performed Electrophoretic Mobility Shift Assays
(EMSA) using MBP-AphB and various lengths of toxR pro-
moter DNA (Fig. 5A). Fig. 5B shows that purified MBP-

AphB was able to shift the two large toxR promoter frag-
ments. All of these mobility shifts could be inhibited by
the addition of unlabeled specific DNA, indicating that
the binding of AphB to these DNA sequences is specific
(data not shown). AphB was unable to shift the shortest
toxR promoter fragment containing the 130 base pairs
closest to the toxR translational start site, suggesting that
the AphB binding site is located between 130 and 450
base pairs upstream of the toxR gene. It has been reported
that AphB binds and regulates tcpP and aphB promoter
regions, and the AphB recognition sites in these promot-
ers were identified [25]. We identified a similar putative
AphB binding site in the toxR promoter region approxi-
mately 150 bp upstream of the toxR translational start
(Fig. 5). Further studies are required to test whether AphB
protein binds this putative recognition site. Consistent
with the gel shift data, AphB could not induce toxR expres-
sion when the 130-bp fragment was fused with the luxCD-
ABE reporter in E. coli (Fig. 5A). Taken together, these data
suggest that AphB directly regulates toxR expression.

The effects of AphB on ToxR-regulated genes
In addition to regulation of toxT, ToxR has been previ-
ously shown to alter the porin levels in V. cholerae by acti-
vating expression of ompU and repressing ompT [26,27].
Since we showed that AphB affects ToxR levels, we
hypothesized that AphB might thus indirectly modulate
the expression of ompU and ompT as well. We performed
SDS-PAGE on total protein extracts of wild type V. cholerae
as well as toxR and aphB mutants. As expected, the toxR
strain had significantly lower OmpU and higher OmpT
levels than in the wild-type strain. Interestingly, the aphB
mutant strain produced slightly higher levels of OmpT
than wild type, though OmpU levels did not seem to
change (Fig. 6A). In addition, Provenzano et al. showed
that ToxR-dependent modulation of outer membrane
proteins enhances V. cholerae resistance to antimicrobial
compounds such as bile salts and sodium dodecyl sulfate
(SDS) [28]. We confirmed that the toxR mutant strain had
a reduced minimum bactericidal concentration (MBC) of
SDS compared to wild type strains, but AphB did not
affect the MBC of SDS (Fig. 6A). Thus, AphB may only
subtly modulate outer membrane porin expression
through its effect on toxR expression. This may be another
downstream effect of AphB on the virulence capabilities
of V. cholerae in addition to its better characterized influ-
ences on ToxT levels. Moreover, as both ToxR and TcpP
are required to activate toxT expression and AphB is
required to activate tcpP expression (Fig. 1) [19,29], we
tested whether AphB effects on toxR expression affect toxT
expression under the AKI virulence induction condition
[22]. As expected, toxT expression in aphB mutants was
significantly reduced as compared to that of wild type
(Fig. 6B), however, bypassing the AphB regulation of tcpP
by constitutively expressing tcpPH (pBAD-tcpPH induced

AphB binds to the toxR promoter region to regulate toxR gene expressionFigure 5
AphB binds to the toxR promoter region to regulate 
toxR gene expression. (A) Three different lengths of toxR 
promoter regions used in (B) were PCR amplified and cloned 
into pBBRlux containing a transcriptional lux reporter. The 
level of Lux induction with pBAD-aphB compared to 
pBAD24 in E. coli in the presence of 0.01% arabinose is given 
in the table. Alignment of putative AphB binding sites in tcpP, 
aphB, and toxR promoter region is given. (B) Gel shift assays 
using purified MBP-AphB and DNA containing various 
lengths of the regulatory regions of the toxR promoter. Pro-
tein concentrations used in the gel shift assay (shown as 
shaded triangles) were 0, 20, 40, 80 ng/reaction (5 μl).
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with 0.01% arabinose) restored toxT expression in aphB
mutants. These data suggest that AphB modulation of toxR
expression has minor effects on virulence gene expression
as compared to that of AphB regulation of tcpP under the
condition we tested.

Conclusion
The ToxR regulon is the classic virulence gene regulation
pathway in V. cholerae. In this pathway, AphA and AphB
activate tcpP transcriptional expression directly by binding
to different promoter regions of tcpP. ToxR and TcpP
cooperate in turn by binding different sites of the toxT pro-
moter to activate transcription, leading to the production
of the virulence factors TCP and CT. However, the full
ToxR regulon is more complex than previously thought.
In this paper, we showed that AphA and AphB are also
necessary for full ToxR production at the stationary phase.
Furthermore, we demonstrated that AphB is sufficient for
toxR transcriptional activation in the heterogenic host E.
coli through binding of the toxR promoter region. Thus,
the effect of AphB on ToxR levels propagates further in the
transcription cascade, increasing the transcription of a key
gene in V. cholerae pathogenesis, toxT. We have therefore
identified another factor responsible for altering end
product levels in the V. cholerae virulence axis. Since AphB
is at the top of a virulence cascade with multiple end path-
ways, it appears now that AphB is a central factor in
switching the cell from an environmental state to a viru-
lent one. Since it activates ToxR in addition to TcpP, and
further influences porin expression, AphB is a divergence
point at which nonlinearity is introduced into the V. chol-
erae virulence pathway. Eukaryotic cells have extremely
complex networks of protein and DNA interactions lead-
ing to precise control of protein expression levels. Having
a more complex network of transcriptional activation and
repression in the V. cholerae virulence cascade could ena-
ble the bacterial cell to fine-tune its expression levels to
optimize its ability to colonize the intestine and spread to
other hosts.

Methods
Bacterial strains, plasmids and media
All experiments were performed with El Tor Vibrio cholerae
C6706 [30] or Escherichia coli DH5α, which were grown in
LB with relevant antibiotics at 37°C, except where noted.
V. cholerae virulence genes were induced in vitro (the AKI
condition) as previously described [22]. Briefly, 3 ml of
AKI medium was inoculated with 0.5 μl of overnight cul-
ture and incubated for 4 hrs at 37°C without agitation. 1
ml of culture was transferred to a fresh tube and incubated
with shaking for a further 4 hrs at 37°C.

PtoxR-luxCDABE fusion plasmid was constructed by
polymerase chain reaction (PCR) amplifying the toxR pro-
moter regions, ranging from 450 bp, 300 bp, to 130 bp,
respectively, and cloning them into the pBBRlux vector
[20]. PtoxT-luxCDABE plasmid was constructed by cloning
toxT promoter regions into the pBBRlux vector. The chro-
mosomal toxR-lacZ transcriptional fusion was constructed
by cloning the 5' toxR region into the suicide vector
pVIK112, which also contains a promoterless lacZ gene
[31]. The resulting plasmid was then integrated into the

The influence of AphB on V. cholerae outer membrane com-position, SDS resistance, and toxT expressionFigure 6
The influence of AphB on V. cholerae outer mem-
brane composition, SDS resistance, and toxT expres-
sion. (A). Analysis of outer membrane preparations of V. 
cholerae derivatives. SDS-PAGE gel stained with Coomassie 
blue. OmpT and OmpU are indicated at the right. The mini-
mum bactericidal concentration (MBC) of SDS is listed below 
the SDS-PAGE gel. (B). Wild type or aphB mutant containing 
a PtoxT-luxCDABE reporter plasmid with or without pBAD-
tcpPH were grown under the AKI condition. 0.01% arab-
inose was added to induce PBAD-tcpPH. Lux expression (blue 
bars) was measured and normalized against toxT expression 
in wild type. The results are the average of three experi-
ments ± SD.
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chromosomes of V. cholerae lacZ- strains by homologous
recombination to create a single-copy toxR-lacZ and an
intact copy of toxR. PBAD-controlled aphA and aphB plas-
mids were constructed by cloning aphA and aphB coding
sequences into the pBAD24 vector [32]. pBAD-tcpPH
plasmid construct was described in [8]. In-frame deletions
of toxR, toxS, tcpP, tcpA, toxT, aphA, and aphB were either
described previously [15] or constructed by cloning the
regions flanking target genes into the suicide vector
pWM91 containing a sacB counter-selectable marker [33].
The resulting plasmids were introduced into V. cholerae by
conjugation and deletion mutants were selected for dou-
ble homologous recombination events.

Lux activity assays
Bacteria were grown at 37°C or 22°C under conditions
indicated. At different time points, cultures were with-
drawn and luminescence was measured by using a Bio-
Tek Synergy HT spectrophotometer. Lux expression is cal-
culated as light units/OD600.

Western blotting and SDS-PAGE electrophoresis
Whole-cell lysates were prepared from bacteria overnight
cultures in LB conditions at 37°C and samples were nor-
malized to the amount of total protein as assayed by the
Biorad protein assay (Biorad). The isolation of outer
membrane (OM) proteins from V. cholerae was performed
using the method described by Miller and Mekalanos
[34]. Whole-cell lysates or OM preparations were sepa-
rated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) on a 10% polyacrylamide gel
and stained with Coomassie brilliant blue for visualiza-
tion. SDS-PAGE gels were transferred to nitrocellulose
membrane for Western blot analysis using polyclonal rab-
bit anti-ToxR antibody.

Gel retardation assays
MBP-AphB protein was purified through amylose col-
umns according to the manufacturer's instructions (New
England Biolabs). PCR products of the different lengths of
toxR promoter regions were digested with EcoRI and end-
labeled using [α-32P]dATP and the Klenow fragment of
DNA polymerase I. Binding reactions contained 0.1 ng of
DNA and MBP-AphB proteins in a buffer consisting of 10
mM Tris-HCl (pH 7.9), 1 mM EDTA, 1 mM dithiothreitol,
60 mM KCl, and 30 mg of calf thymus DNA/ml. After 20
minutes of incubation at 25°C, samples were size-frac-
tionated using 5% polyacrylamide gels in 1× TAE buffer
(40 mM Tris-acetate, 2 mM EDTA; pH 8.5). The radioac-
tivity of free DNA and AphB-DNA complexes was visual-
ized by using a Typhoon 9410 PhosphorImager
(Molecular Dynamics).
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