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Abstract A light-switchable transgene system called LightOn gene expression system could regulate

gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally

controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tu-

mor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded

plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles

composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated
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Microenvironment-
responsive;
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Breast cancer
hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized

into 4T1 cells via dual targeting to CD44 and avb3 receptors. The LightOn gene expression system was

able to control target protein expression through regulation of the intensity or duration of blue light expo-

sure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced

apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the

expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects,

reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression

system and NDDS may be an effective strategy for treatment of breast cancer.

ª 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gene therapy, which modifies genetic information in tumor cells,
is becoming an increasingly popular form of cancer treatment1e3.
More than 1000 gene therapy clinical trials have been conducted
in the last decade4. However, poor spatiotemporal resolution5 and
off-target expression6,7 have limited clinical application of gene
therapy for cancer treatment. To overcome these obstacles,
different endogenous or exogenous promoters were designed and
utilized to regulate gene expression in specific cell pop-
ulations8e10. Light is an ideal inducer of gene expression because
it is easy to obtain, highly tunable, non-toxic, and can provide high
spatiotemporal resolution11. Recently, the field of optogenetics, in
which use of light and genetically encoded light-sensitive proteins
are used to control the behavior of living cells and organisms, has
grown dramatically. Our previous study reported on a simple and
robust light-switchable transgene system (LightOn gene expres-
sion system)12,13, which consisted of a single, synthetic light-
sensitive transcription factor, GAVPO, and a reporter gene.
GAVPO can homodimerize and bind to its specific promoter upon
exposure to blue light, resulting in transcription of target genes.
Use of the LightOn gene expression system with a single
component can allow for precise control of gene expression with
high spatiotemporal resolution and high induction efficiency. The
LightOn gene expression system encoded with a suicide gene may
be able to control the expression of toxin proteins such as diph-
theria toxin (DT)14 and Pseudomonas exotoxin15 in tumor cells,
which may be a promising anti-cancer strategy.

Diphtheria toxin, a 62,000 Dalton protein excreted by the
bacterium Corynebacterium diphtheria, consists of fragment A
and B linked by a disulfide bond16. Fragment A of DT (DTA)
inhibits protein synthesis through NADþ-dependent ADP ribosy-
lation of elongation factor 2, which may be an effective strategy to
treat chemotherapy-resistant tumors17. First-generation18 and
second-generation19 DT therapies utilized full-length DT protein
and diphtheria toxin A, which resulted in severe toxicity and
purification difficulties20. Third-generation DT, known as recom-
binant immunotoxin14, was composed of targeting antibody
fragments and toxin domains to enhance tumor targeting and
permeability. Ontak�, the first immunotoxin approved by the US
Food and Drug Administration (FDA) in 1999, was comprised of
DTA and target fragment IL-2 for treatment of cutaneous T-cell
lymphoma21. Although Ontak� was effective, and improved pa-
tient quality of life, vascular leak toxicity limited its clinical use20.
Use of a special promoter to drive DTA expression has shown
great potential for treatment of tumors20,22. The LightOn gene
expression system encoding DTA may be a new generation of DT
application. Blue light could penetrate through the skin to the
tumor site, which could trigger gene expression to inhibit tumor
growth without damaging normal tissues. Furthermore, the
expression level and site of application could be regulated entirely
by irradiation with blue light, which may provide a simple and
focused treatment strategy12. This strategy could incorporate a
suicide gene to treat breast cancer without the development of
multidrug resistance or killing of normal body cells23.

Effective delivery of genes in vivo is a major obstacle to gene
therapy. Nonspecific distribution, rapid clearance, and low trans-
fection efficiency limit the clinical application of gene ther-
apy24,25. Recently, nano-formulations such as micelles, liposomes,
hybrid nanoparticles (NP), and exosomes have attracted increasing
attention due to their biocompatibility, tumor specificity, and high
transfection efficiency26e28. Vectors less than 200 nm in diameter
can be engineered with favorable properties to prolong blood
circulation and allow for passive accumulation in tumor tissues
through the enhanced permeability and retention effect (EPR)29.
Targeting moieties modified on nano-vectors can actively target
tumor specific receptors, resulting in reduced toxicity and
immunogenic issues in normal tissues30. Cationic polymers such
as polyethyleneimine (PEI) can condense gene and promote
endosomal escape ability through the ‘proton-sponge’ effect31,
resulting in efficient gene transfection. Moreover, tumor specific
environments such as lower pH32, higher glutathione (GSH)33

levels, and higher reactive oxygen species (ROS)34 levels can be
used to trigger gene release in the cytoplasm. Use of a light-
switchable system incorporated into a nanoparticle drug delivery
system (NDDS) may be an ideal strategy for treatment of tumors.

To exploit the potency of diphtheria toxin and minimize its side
effects, a new strategy combining the LightOn gene expression
system with an NDDS was designed to allow for spatiotemporal
control ofDTAexpression.As shown in Fig. 1, a polymer comprised
of PEI and vitamin E succinate (VES) linked by a disulfide bond
self-assembled in water to form cationic PEI-SS-VES micelles,
which were able to compress light-switchable plasmid DNA
(pDNA) through electrostatic interactions. Arginine-glycine-
aspartic acid (RGD) peptide, a targeting motif to avb3 integrin on
the surface of tumor cells and neovascular endothelial cells35, was
conjugated to PEGylated hyaluronic acid (HA) to form the anionic
polymer HA-PEG-RGD. Then, HA-PEG-RGD was coated on the
surface of pDNA-loaded micelles to form the final nanoparticulate
formulation, pDNA@PVHRs nanoparticles. The PEG coating

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Scheme of DTA-based light dynamic therapy combining nanoparticle drug delivery system with LightOn gene expression system for

breast cancer.

Combination of LightOn gene expression and tumor microenvironment-responsive nanoparticle 1743
provided excellent stability and improved blood circulation. Hyal-
uronic acid and RGD promoted accumulation in tumors by actively
targeting to the CD44 receptor36 and the avb3 integrin receptor37,
respectively. In addition, this intelligent nanoparticles were able to
escape from endosomes due to the ‘proton-sponge’ effect gifted by
PEI, and were able to disintegrate rapidly through the stimuli of
hyaluronidase and GSH overexpressed in tumor microenvironment.
The LightOn gene expression system allowed for spatiotemporal
transfection with DTA in response to exposure to blue light to kill
4T1 tumor cells in vitro and in vivo. The combination of the LightOn
gene expression system and nanoparticle gene carrier exhibited
effective 4T1 tumor inhibition with negligible toxicity, which
resulted in a promising nano-platform for targeted gene delivery and
breast cancer therapy.

2. Materials and methods

2.1. Materials

All restriction enzymes, T4 ligase, and T4 polynucleotide kinase
were purchased from Thermo Scientific (Waltham, USA).
Branched polyethyleneimine (PEI, MW Z 25 kDa), hyaluronic
acid (HA, MW Z 10 kDa), N-(3-dimethylaminopropyl)-N0-eth-
ylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide
(NHS), 2-hydroxyethyl disulfide, dichloromethane, 4-
dimethylaminopyridine (DMAP), coumarin-6 (C6), YOYO-1,
LysoTracker Red and 1,10-dioctadecyl-3,3,30,30-tetramethylindo-
tricarbocyanine iodide (DIR) were purchased from Sigma‒Aldrich
Corporation (St. Louis, USA). NHS-PEG2000-MAL was purchased
from Beijing JenKem Technology Co., Ltd. (Beijing, China). The
c (RGDfK) peptide was purchased from GL Biochem Co., Ltd.
(Shanghai, China). Vitamin E succinate (VES) was purchased
from TCI Development Co., Ltd. (Shanghai, China). Dialysis bags
(molecular weight cut-off: 8 kDa) were purchased from Shanghai
Yuanye Bio-Technology Co., Ltd. (Shanghai, China). Dulbecco’s
modified Eagle’s medium (DMEM), fetal bovine serum (FBS),
phosphate-buffered saline (PBS), trypsin, and
penicillinestreptomycin (5000 U/mL) were purchased from Gibco
Co., Ltd. (New York, USA). Cell-counting-kit 8 (CCK-8), Hoechst
33342, hyaluronidase (HAase) and annexin V-FITC/propidium
iodide (PI) apoptosis detection kits were purchased from Shanghai
Maokang Biotech Co., Ltd. (Shanghai, China). Anti-CD31
(GB13063), Cy3-conjugated donkey anti-goat IgG (GB21404),
and DAPI (G1012) were purchased from Wuhan Servicebio
Technology Co., Ltd. (Wuhan, China). Diphtheria toxin A ELISA
kit was purchased from Shanghai Enzyme-linked Biotechnology
Corporation (Shanghai, China). Alanine transaminase (ALT),
aspartate aminotransferase (AST), blood urea nitrogen (BUN),
and serum creatinine (CRE) ELISA kits were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China). All
other chemicals were purchased from Titan Scientific Co., Ltd.
(Shanghai, China).

2.2. Cell culture and animals

The mouse breast cancer cell line 4T1 was purchased from the
Institute of Biochemistry & Cell Biology, Chinese Academy of
Sciences (China). Cells were cultured in DMEM supplemented
with 10% FBS and streptomycin-penicillin (1%, v/v). Cells were
incubated at 37 �C in a humidified 5% CO2 atmosphere. Cells
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were passaged using 0.25% trypsin/EDTA solution when nearly
confluent.

Female Balb/c mice (6‒8 weeks of age, 20 � 0.5 g) were
purchased from Slaccas Experimental Animal Co., Ltd.
(Shanghai, China). All animal experiments were performed in
accordance with the guidelines, and with the approval, of the
Ethics Committee of East China University of Science and
Technology.

2.3. LightOn gene expression system construction

The pGAVPO regulator plasmid containing the light-inducible
transcription factor GAVPO and the reporter plasmids pU5-DTA
and pU5-mCherry, which use DTA and mCherry as reporter genes,
were constructed as previously described12. The light-inducible
trans-activators consisted of the Gal4 DNA binding domain, the
VVD light sensor, and a transactivation domain (Supporting
Information Fig. S1). The synthetic proteins were constitutively
expressed using the CMV promoter. The expression of DTA
(Supporting Information Fig. S2) and mCherry (Supporting
Information Fig. S3) was controlled by a Gal4-responsive pro-
moter assembled by placing a 5X UASG element adjacent to a
TATA box.

2.4. Preparation of pDNA loaded HA-PEG-RGD/PEI-SS-VES
nanoparticles

The synthesis of PEI-SS-VES and HA-PEG-RGD was stated in
Supporting Information. An ethanolic solution containing PEI-SS-
VES was added to a flask and tried under nitrogen atmosphere.
The dried film was rehydrated with water and sonicated at 100 W
for 5 min to obtain PEI-SS-VES (PVs) micelles.
Polyethyleneimine-VES (PV) micelles were also prepared. For
C6- or DIR-loaded micelles, 0.5% (wt%) C6 or DIR was added to
the ethanolic PEIVES solution, as previously described. Plasmid
DNA and PVs micelles were vortex-mixed at different N/P ratios,
then held at room temperature for 15 min to prepare pDNA@PVs
micelles. Hyaluronic acid, HA-PEG, or HA-PEG-RGD were
vortex-mixed with pDNA@PVs micelles at weight ratio of 4:1
according to our previous study38, then held at room temperature
for 15 min to prepare pDNA-loaded PEI-SS-VES/HA (PVHs) NP,
PEI-SS-VES/HA-PEG (PVHPs) NP, or PEI-SS-VES/HA-PEG-
RGD (PVHRs) NP. Plasmid DNA loading efficiency was
measured using 2% agarose gel electrophoresis assay.

To assess the DNA-binding ability of the nanoparticles,
pDNA@PVHRs NP at various N/P ratios were mixed with 4 mL of
6X loading buffer, and analyzed using 0.6% agarose gel electro-
phoresis assay. The particle sizes and zeta potentials of various
nanoparticles were measured using dynamic light scattering
(Nanosizer ZS 90, Malvern, UK). The morphology of
pDNA@PVHRs NP was visualized using JEM-1400transmission
electron microscopy (TEM, JEOL, Tokyo, Japan). To determine
the stability of pDNA@PVHRs NP, the nanoparticles were
dispersed in 10 mmol/L PBS (pH 7.4 or pH 5.5), incubated at 4 �C.
At predetermined time points, size distribution and zeta potential
were measured using dynamic light scattering. To assess the
degradation of PVHRs NP, nanoparticles incubated with 1 mg/mL
HAase and/or 10 mmol/L GSH for 30 min and size distribution and
zeta potential were measured using dynamic light scattering. To
assess the degradation of PVHRs NP, nanoparticles incubated with
1 mg/mL HAase and/or 10 mmol/L GSH for 30 min and then
visualized using TEM.
2.5. In vitro pDNA release

PEI-SS-VES micelles and PVHRs NP containing 5 mg of
YOYO-1-labeled pDNA were dispersed in 2 mL of deionized
water with or without 10 mmol/L GSH, then shaken at 37 �C. At
predetermined time points, 50 mL of supernatant was withdrawn
after centrifugation at 14,000 � g for 30 min (Jinzhong, GL-18 B,
Shanghai, China), and an equal volume of deionized water was
added. The amount of YOYO-1 labeled pDNA in the supernatant
was monitored using a microplate reader (Synergy 2, BioTek,
USA) set to 490/535 nm excitation/emission. For tumor-
microenvironment responsive release, PVHRs NP containing
5 mg of YOYO-1-labeled pDNA was incubated with 1 mg/mL
HAase and/or 10 mmol/L GSH and the amount of YOYO-1
labeled pDNA was monitored in the same way.

2.6. In vitro cellular uptake

4T1 cells were seeded into 6-well plates at 1 � 105 cells/well.
After culturing for 24 h, the cells were treated with C6-loaded PV
micelles, PVs micelles, PVHPs NP, or PVHRs NP for 2 h39. For
competition assay, excess HA or RGD was added 30 min prior to
C6@PVHRs NP. Cellular uptake was measured using fluorescence
microscopy. To further quantify uptake efficiency, the cells were
dissociated following the incubation procedure, then washed twice
with PBS at 1200�g. The cells were resuspended in PBS at
1 � 106 cells/mL and analyzed using flow cytometry (FACSJazz,
BD Biosciences, USA).

To evaluate the subcellular localization of PVHRs nanoparticles,
4T1 cells were seeded into 6-well plates at 1� 105 cells/well. After
culturing for 24 h, the cells were treated with PVHRsNP containing
1 mg of YOYO-1-labeled pDNA for 2 h. The cells were stained with
LysoTracker Red for 30 min, then washed, fixed, and stained with
Hoechst 33258 solution. The cells were visualized using A1R
confocal laser scanning microscopy (Nikon, Tokyo, Japan).

2.7. Cytotoxicity analysis of PVHRs NP

Cell Counting Kit-8 (CCK-8) was used for cytotoxicity studies.
4T1 cells were seeded into a 96-well plate at 1 � 104 cells/well
and incubated with RPMI 1640 medium for 24 h at 37 �C. The
medium was replaced with serum-free RPMI 1640 medium con-
taining 5 to 100 mg/mL of PVs micelles, PVHs NP, PVHPs NP, or
PVHRs NP. After 24 h of incubation, 100 mL of CCK-8 was
added, and the cells were incubated for an additional 2 h.
Absorbance was measured at 450 nm using a microplate reader.

2.8. Light-induced gene expression

To evaluate light-induced gene expression of the LightOn gene
expression system, LED lamps were controlled with a timer to
adjust the overall dose of blue light illumination during the
specified period (Supporting Information Fig. S4A and S4B). The
red fluorescent protein mCherry was used as a reporter gene, and
gene expression was detected using a fluorescent microscope. 4T1
cells were seeded into 6-well plates at 1 � 105 cells/well. After
culturing for 24 h. Then cells were treated with PVHRs NP
containing 2 mg of pGCherry (1 mg of pGAVPO and 1 mg of pU5-
mCherry), and incubated overnight. The cells were incubated in
the dark or exposed to blue light irradiation (2 W/m2) over a
predetermined time course. The expression of mCherry was
determined using a fluorescence microscope.
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2.9. Inhibition of proliferation of 4T1 cells in vitro

2.9.1. Cytotoxicity
To evaluate DTA-induced cell death, 4T1 cells were seeded into a
96-well plate at 1 � 104 cells/well and transfected with PVHRs
NP containing 2 mg of pGDTA (1 mg of pGAVPO and 1 mg of
pU5-DTA). The cells were cultured under blue light at different
powers (0 to 2 W/m2) for 24 h. The cells treated with PVHRs NP
without pGDTA were also cultured under blue light to investigate
light cytotoxicity. Quantitative analysis of cell viability was con-
ducted using CCK-8 assay as described in section 2.7.

2.9.2. Cell apoptosis
4T1 cells (5 � 104 cells/well) were seeded into 6-well plates.
After 24 h, the cells were treated with 4 mg of pGDTA (2 mg of
pGAVPO and 2 mg of pU5-DTA). After incubation with or without
exposure to blue light (2 W/m2) for 24 h, the cells were collected,
washed, and stained with annexin V-FITC and propidium iodide
(PI). The cells were analyzed for apoptosis using flow cytometry.

2.9.3. Wound-healing assay
4T1 cells were seeded into 24-well plates at 5 � 104 cells/well and
cultured for 24 h. When the cells reached confluence, a sterile
pipette tip was used to scratch the monolayer. The cells were then
incubated with different formulations containing 4 mg of pGDTA
(2 mg of pGAVPO and 2 mg of pU5-DTA) with or without
exposure to blue light (2 W/m2) for 24 h. Wound healing was
observed using a microscope at 0 and 24 h, respectively. The
relative recover area ratios of wound healing were calculated
using ImageJ.

2.9.4. Tumor spheroid growth inhibition
Tumor spheroids were prepared by seeding 5 � 103 4T1 cells into
96-well plates pre-coated with 2% (w/v) low gelling temperature
agarose gel (70 mL per well)40. After 4 days of activation, ho-
mogeneous and compact tumor spheroids were sorted and treated
with pGDTA@PVs micelles, pGDTA@PVHPs NP, or
pGDTA@PVHRs NP (1 mg of pGAVPO and 1 mg of pU5-DTA)
with exposure to blue light (2 W/m2). Cells treated with an equal
volume of PBS with or without irradiation were used as negative
controls. The tumor inhibition efficacy of the formulations was
evaluated using microscopy.

2.9.5. Enzyme-linked immunoassay (ELISA) analysis of DTA
expression in vitro
4T1 cells (5 � 104 cells/well) were seeded into 6-well plates.
After culturing for 24 h, the cells were incubated with different
formulations containing 4 mg of pGDTA (2 mg of pGAVPO and
2 mg of pU5-DTA) with blue light irradiation (2 W/m2) for 24 h.
The expression levels of DTA in 4T1 cells and in the supernatants
were analyzed using ELISA.

2.10. In vivo biodistribution

4T1 cells (2 � 107 cells) were injected into the mammary glands
of BALB/c mice to establish a xenograft breast cancer model.
When the tumor size reached 200 mm3, DIR-labeled PVs mi-
celles, PVHs NP, PVHPs NP, or PVHRs NP were intravenous
injected at a dose of 100 mg/kg. Mice were anesthetized at
different time points (4, 8, 24, and 48 h), and real-time images
were captured using an In-Vivo Multispectral System FX
(Kodak, USA) with 750 nm excitation and 780 nm emission
filters.

2.11. In vivo antitumor efficiency

A 4T1 xenograft breast cancer model was established in BALB/c
mice as described in section 2.10. When tumor size reached
approximately 100 mm3, tumor-bearing mice were randomly
divided into 6 groups (n Z 5). Mice were intravenously injected
with saline, pGDTA@PVs micelles, pGDTA@PVHPs NP, or
pGDTA@PVHRs NP once every three days for a total of three
injections. Each dose contained 50 mg of pGDTA/mouse (10 mg of
pGAVPO and 40 mg of pU5-DTA). Twelve hours after each dose,
mice in the LightOn groups were illuminated from below using a
blue LED lamp (90 mW/cm2) for 8 h (Fig. S4C). The abdominal
fur of the mice was removed by shaving the mice to allow for
better illumination with 8% sodium sulfide. Mice treated with
equal volumes of saline or pGDTA@PVHRs NP without illumi-
nation were used as negative controls. Body weights and tumor
volumes ([major axis] � [minor axis]2/2) were measured and
recorded every other day. The survival rate of mice was calculated
based on the time of death from the beginning of treatment and a
tumor volume over 2000 mm3 was also regarded as a criteria of
death. Nine days after the final dose of blue light, mice were
sacrificed, and tumors were dissected and photographed, then
fixed with paraformaldehyde. The tumors were sliced and sub-
jected to hematoxylin and eosin (H&E), TUNEL, and CD31
staining. The sections were examined using a DM IL microscope
(Leica, Wetzlar, Germany).

2.12. Biosafety

To evaluate the side effects of pGDTA@PVHRs NP, major organs
(heart, liver, spleen, lung and kidney) were deparaffinized, sliced,
and stained using H&E as described in section 2.11. To further
evaluate the side effects of pGDTA-loaded nanoparticles, blood
samples were collected at the end of the treatment regimen, and
serum levels of ALT, AST, BUN and CRE were analyzed using
ELISA kit according to the manufacturer’s instructions.

2.13. Statistical analysis

Multiple group comparisons were conducted using one-way
analysis of variance (ANOVA). All data were analyzed using
IBM SPSS Statistics 17.0. All data are presented as the
mean � SD. P-values less than 0.05 were considered statistically
significant.

3. Results and discussion

3.1. Synthesis of PEIVES and HA-PEG-RGD

The chemical structure of PEIVES and HA-PEG-RGD were
shown in Fig. 2A. The synthetic steps for formation of PEIVES
are shown in Supporting Information Fig. S5. Vitamin E succinate
was modified with a disulfide bond to obtain VES-SS-COOH. The
structure of PEI-SS-VES and VES-SS-COOH was determined
using 1H NMR (Supporting Information Fig. S6A and S6B). The
proton peak at 2.10 ppm (-ph-CH3) and 2.81 ppm (-CH3-COOH)
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demonstrated successful synthesis of VES-SS-COOH, which was
further confirmed using ESI-TOF-MS (Fig. S6C). VES-SS-COOH
was reacted with PEI to obtain PEIVES. The appearance of a
proton peak at 4.01 ppm demonstrated successful synthesis of
PEIVES. In addition, absorption peaks at 3440 and 1640 cm�1 in
the FT-IR spectrum were assigned to (-NH-) and amide groups,
which further demonstrated successful synthesis (Fig. S6D). The
degree of substitution (DS) of the amine groups of PEI with
carboxyl groups of VESCOOH was 5.8% and the molecular
weight of PEIVES was 48,620 g/mol.

The synthetic route for HA-PEG-RGD is shown in Supporting
Information Fig. S7. Hyaluronic acid was first thiolated41 to
promote click reaction with the maleimides of MAL-PEG-NHS.
Then, HA-PEG-NHS was modified with RGD to obtain HA-
PEG-RGD. The 1H NMR spectrum of HA-PEG-RGD
(Supporting Information Fig. S8) had proton peaks at 7.22 ppm,
3.62 ppm, and 1.91 ppm, which were attributed to the benzene
protons of RGD, the methyl group of PEG, and the acetyl group of
HA, respectively, which indicated successful synthesis of HA-
PEG-RGD. The DS of the carboxyl groups of HA-SH with mal-
eoyl groups of NHS-PEG2000-MAL was 5.1% and the molecular
weight of PEIVES was 13,490 g/mol.

3.2. Preparation of pDNA-loaded nanoparticles

The LightOn gene expression system consists of a light-inducible
transactivator plasmid and a gene expression plasmid. Following
light activation, GAVPO homodimerizes, interacts with UASG
Figure 2 (A) Molecular structures of cationic core PEI-SS-VES a

pGDTA@PVHRs NP, which were constituted of pGDTA, PEI-SS-VES

pGDTA@PVHRs NP at different N/P ratio. (D) TEM image of pGD

pDNA@PVHRs NP at pH 7.4. Data were presented as mean � SD (n Z 3

and/or 10 mmol/L GSH solution (pH 7.4) for 30 min. (G) Particle size and

pH 7.4 or pH 5.5. Data were presented as mean � SD (nZ 3). (H) In vitro

pGDTA in the PBS (pH 7.4) with or without 10 mmol/L GSH. Data were p

profile of pGDTA from PVHRs NP incubating with 1 mg/mL HAase and/o

mean � SD (n Z 3).
elements (5X UASG), and initiates the expression of DTA13. To
prepare nanostructures via self-assembly with amphiphilic poly-
mers, PVs micelles were prepared using dialysis. Plasmid DNA
was condensed on the surface of PVs micelles through electrostatic
interactions, and then the micelles were coated onto the anionic
polymer HA-PEG-RGD to form nanoparticles (Fig. 2B). To
investigate gene loading capacity, the N/P ratio of gene-loaded
nanoparticles was evaluated using agarose gel electrophoresis. As
shown in Supporting Information Fig. S9A and Fig. 2C, pDNA
migration was completely inhibited in gel wells when the N/P ratio
was greater than 6. This N/P ratio was selected for further study.
The average size and zeta potential of pDNA@PVs micelles were
65.2 � 1.3 nm and 32.5 � 2.5 mV, respectively, with a narrow PDI
of 0.10. An ideal nanocarrier should maintain structural integrity in
the bloodstream, and should have active tumor targeting abil-
ity42,43. The negative charge of HA prevented unwanted protein
absorption, and PEG modification extended stability in the blood
circulation44,45. Supporting Information Table S1 showed the
physicochemical properties of pDNA@PVHRs NP in different
weight ratios of PEIVES/HA-PEG-RGD. A slight increase of
average size (from 65.2 to 74.3 nm) and a reversion of zeta po-
tential (from 32.5 to �20.3 mV) were observed as the weight ratio
of PEIVES/HA-PEG-RGD increased from 1/0 to 1/4. Considering
the narrow nanosize distribution and the preferred negative charge,
the ratio of 1/4 (PEI-SS-VES/HA-PEG-RGD) was selected for
further study. Transmission electron microscopy images showed
that pDNA@PVHRs NP exhibited a spherical and core‒shell
structure, with the size of approximately 70 nm (Fig. 2D), which
nd multifunctional outer layer HA-PEG-RGD. (B) Formation of

and HA-PEG-RGD (schematic). (C) Gel electrophoresis assay of

TA@PVHRs NP. (E) Particle size and zeta potential changes of

). (F) Particle size change of PVHRs NP incubated in 1 mg/mL HAase

zeta potential changes of PVHRs NP incubated in 1 mg/mL HAase at

gene release of PVs micelles and PVHRs NP loading YOYO-1 labeled

resented as mean � SD (n Z 3). HAase- and redox-responsive release

r 10 mmol/L GSH at (I) pH 7.4 and (J) pH 5.5. Data were presented as
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met the size criterion of less than 200 nm for EPR effects. More-
over, pDNA@PVHRs NP exhibited stability for 28 days, with only
slight changes in size and zeta potential due to the negative surface
charge and the shielding effects of PEG (Fig. 2E and B). To
evaluate the protective effects of nanoparticles on pDNA stability,
pDNA@PVHRs nanoparticles were incubated with DNase I for
different time intervals46, then analyzed using agarose gel elec-
trophoresis. As shown in Fig. S9C, the nanoparticles protected
pDNA against DNase I for at least 6 h.

To confirm the tumor microenvironment-responsive degrada-
tion of PVHRs NP, nanoparticles were incubated with HAase and/
or GSH. As shown in Fig. 2F, the size of PVHRs NP dramatically
increased with the presence of GSH, suggesting the cleavage of
disulfide bonds lead to the disintegration of PVHRs nanoparticles.
HAase in tumor microenvironment can promote HA degrada-
tion47. To further investigate the effect of hyaluronidase on
PVHRs NP, nanoparticles were incubated with 1 mg/mL HAase
for 8 h. As shown in Fig. 2G, the zeta potential of PVHRs NP
increased from �20.3 to �8.2 mV at pH 7.4 and from �19.5 to
�0.5 mV at pH 5.5, respectively. HAase induced higher zeta po-
tential increase of PVHRs NP at pH 5.5, which might be due to the
higher hyaluronidase activity at acidic pH, resulting the more
detachment of HA layer.

3.3. In vitro pDNA release

Nanotechnology can prevent rapid clearance of free pDNA. To
evaluate the reduction-responsive profile of the nanoparticles
produced in this study, YOYO-1-labeled pDNAwas loaded in PVs
micelles and PVHRs NP. As shown in Fig. 2H, the 72 h-cumu-
lative release percentages of pDNA from pDNA@PVs micelles
and pDNA@PVHRs NP were 28.1% and 10.3%, respectively. The
slow release profile of pDNA@PVHRs NP may have been due to
the shielding effects of PEG. Concentration differences in GSH in
the bloodstream (<5 mmol/L) and tumor cells (2e10 mmol/L)
may be used to promote intracellular drug release in tumor cells48.
Glutathione-cleavable disulfide bonds have been used as efficient
intracellular redox-responsive components for drug release. After
incubation with 10 mmol/L GSH for 72 h, the cumulative release
of pDNA@PVs micelles and pDNA@PVHRs NP sharply
increased to 57.1% and 56.3%, respectively. Cleavage of the di-
sulfide bond led to rapid dissociation of the nanoparticles,
resulting in the enhanced release of entrapped pDNA. The total
release of pDNA was still relatively low due to electrostatic in-
teractions between pDNA and cationic PEI. Consistent with the
release profiles observed in PBS, PVHRs nanoparticles were
excellent nanocarriers that exhibited excellent stability in the
blood circulation, and selectively released pDNA in the tumor site.
For the tumor microenvironment-responsive gene release study,
PVHRs NP showed a faster pDNA release at pH 7.4 (Fig. 2I) and
pH 5.5 (Fig. 2J) after incubating with HAase, proving the
detachment of HA could improve gene release. PVHRs NP
exhibited highest in vitro gene release after co-incubating with
HAase and GSH, suggesting the complete disassociation of
nanoparticles could enhance gene release. These results demon-
strated PVHRs nanoparticles could rapidly degrade in tumor
microenvironment and trigger gene release in a timely fashion.

3.4. Cellular uptake

To investigate cellular uptake, 4T1 cells were treated with
different nanoparticles loaded with the hydrophobic dye
coumarin-6. As shown in Fig. 3A and B, fluorescent signal was
higher in C6@PVs micelles than that in C6@PV micelles, which
suggested that cleavage of disulfide bonds triggered dissociation
of the micelles. The fluorescence intensity of C6@PVHPs NP was
significantly higher than that of C6@PVs micelles, which may
have resulted from selective targeting to CD44, which was over-
expressed in 4T1 cells, through endocytosis. C6@PVHRs NP
induced 1.7-fold greater fluorescence than C6@PVHPs NP due to
overexpression of avb3 integrin receptors in 4T1 cells, which
highlighted the dual targeting ability of HA and RGD. To further
confirm receptor-mediated endocytosis, 4T1 cells were pretreated
with excess free HA or RGD to competitively block the corre-
sponding receptors49. The green fluorescence in the HA or RGD
pretreated groups was not significantly different than that
observed in response to treatment with C6@PVHPs NP, which
demonstrated receptor-mediated internalization. These results
demonstrated the effective active targeting ability of PVHRs
nanoparticles due to HA and RGD surface modifications.

The intracellular localization of pDNA@PVHRs nanoparticles
were monitored using confocal scanning laser microscopy. The
plasmids and lysosomes were labeled with YOYO-1 and Lyso-
Tracker Red, respectively. As shown in Fig. 3C, green fluor-
escence of the pDNA was not co-localized with red fluorescence
of the lysosomes, which indicated successful lysosomal escape of
PVHRs nanoparticles through the “proton sponge” effect of PEI31.

3.5. Nanocarrier cytotoxicity

The CCK-8 assay was used to evaluate the cytotoxicity of
different nanoparticles. As shown in Fig. 3D, all blank nano-
particles showed negligible cytotoxicity from 5 to 100 mg/mL.
Treatment with 0.05e0.5 mg/mL PVHRs NP resulted in a low
hemolysis ratio (Fig. S9D). These results suggested that PVHRs
nanoparticles may exhibit superior biocompatibility and
hemocompatibility.

3.6. Light-induced gene expression

To investigate the spatial controllability of the LightOn gene
expression system in vitro, 4T1 cells were transfected with the
mCherry reporter and pGAVPO, then irradiated with blue light.
As shown in Fig. 3E and F, mCherry fluorescence increased
rapidly after exposure of cells to blue light, while very little
fluorescence signal was observed in cells kept in the dark, which
confirmed that gene expression was strictly triggered by exposure
to blue light with fast kinetics. Moreover, fluorescence increased
with irradiation time, which indicated time-dependent gene
expression in response to blue light. These results showed that the
LightOn gene expression system allowed for spatiotemporal
control of gene expression with high sensitivity and low non-
specific expression.

3.7. In vitro tumor inhibition

3.7.1. In vitro cytotoxicity
We investigated blue light-induced toxicity. As shown in Fig. S9E,
blue light did not induce cell death from 0.3 to 2 W/cm2. Cyto-
toxicity caused by light-induced DTA expression was evaluated in
4T1 cells across a range of blue light intensities. All groups
showed dose-dependent decreases in cell viability across the range
of 0.3 to 2 W/cm2 (Fig. 4A). The pU5-DTA reporter gene and
pGAVPO gene (pGDTA) were used to inhibit tumor cell growth



Figure 3 In vitro cellular uptake studies qualitatively by (A) fluorescence microscopy, and quantitatively by (B) flow cytometry in 4T1 cells.

4T1 cells were treated with C6-loaded nanoparticles 2 h before image. To further study the mechanism of cellular uptake, excess amount of HA or

RGD was added and incubation for 30 min before uptake. **P < 0.01 compared with C6@PVs micelle, ##P < 0.01 compared with C6@PVHRs

NP. Data were presented as mean � SD (n Z 3). (C) Confocal images of 4T1 cells treated with pDNA@PVHRs NP for 2 h pDNA was labeled

with YOYO-1, the lysosomes were stained with LysoTracker Red, while the nuclei were stained with Hoechst 33342. (D) Cell viability of 4T1

cells after 24 h incubation with nanocarriers of different concentrations. Data were presented as mean � SD (n Z 3). (E) Time-dependent gene

expression of mCherry after different irradiation time. Cells were incubated with pGCherry@PVHRs NP for 6 h in dark, fresh medium was

replaced and cells were cultured under blue light (2 W/m2) for 4, 6 or 8 h. (F) Mean fluorescence intensity of mCherry was quantitatively analyzed

by ImageJ. Data were presented as mean � SD (n Z 3).
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through light-induced expression of DTA. After 24 h of incuba-
tion, intensity-dependent decreases in cell viability were observed.
Furthermore, pGDTA@PVHRs NP significantly inhibited 4T1
cell growth, as evidenced by 28.5% cell viability after 24 h of blue
light exposure, which suggested effective tumor inhibition in vitro.
To maximize in vitro tumor inhibition, 2 W/cm2 was selected for
further experiments.

3.7.2. Apoptosis assay
Apoptosis of 4T1 cells following incubation with different
pGDTA-loaded nanoparticles with or without exposure to blue
light was evaluated using flow cytometry (Fig. 4B and C). All
groups exhibited negligible apoptosis, which demonstrated that
DTA was not expressed in the absence of light stimulation. After
irradiation, all pGDTA-loaded nanoparticles induced apoptosis,
and pGDTA@PVHRs NP induced the greatest level of apoptosis
of 4T1 cells (65.1%), which indicated that this formulation had the
best targeting ability of PVHRs NP evaluated in this study. These
results indicated that pGDTA@PVHRs nanoparticles could allow
for spatiotemporal control of DTA expression, leading to effective
tumor apoptosis in vitro.

3.7.3. Wound-healing assay
Migration of 4T1 cells was evaluated by wound healing assay50.
Migration was significantly inhibited in response to pGDTA@PVs
micelles and pGDTA@PVHRs NP following exposure to blue
light (Fig. 4D). Decreased migration may have been due to high
transfection efficiency and light-induced DTA expression of the
nanoparticles. Furthermore, the scratch area in cells treated with
pGDTA-loaded nanoparticles widened following exposure to blue
light, which demonstrated excellent antitumor effects in vitro
(Fig. 4E). These results suggested that pGDTA@PVHRs nano-
particles exhibited light-controllable inhibition of cell migration.

3.7.4. Tumor spheroid inhibition
4T1 spheroids were employed to mimic 3D solid tumors in vitro40.
4T1 cells were cultured in 96-well plates pre-coated with 1% (w/v)
low gelling temperature agarose gel to form tumor spheroids. After
one week of incubation, 4T1 spheroids were incubated with different
nanoparticles and exposed to blue light for five days. Anti-
proliferation effects were evaluated using microscopy (Fig. 4F).
Significant tumor growth inhibition was observed in all pGDTA-
treated groups, as evidenced by gradual collapse and loss of integ-
rity following blue light irradiation. Moreover, pGDTA@PVHRs
nanoparticles exhibited the best anti-proliferation ability, which
agreed with the results of the apoptosis assay.

3.7.5. Detection of DTA
The intracellular and extracellular DTA concentrations after 24 h
of exposure to blue light were evaluated using a DTA ELISA kit.



Figure 4 (A) Cell viability of 4T1 cells after 24 h incubation with pGDTA loaded nanoparticles under blue light radiation with different

intensity. **P < 0.01. Data were presented as mean � SD (nZ 3). (B) Apoptosis study of 4T1 cells induced by pGDTA loaded nanoparticles. (C)

Total apoptosis was quantified by flow cytometry. Cells were incubated with pGDTA loaded nanoparticles for 12 h in dark, fresh medium was

replaced and cells were incubated with or without blue light irradiation (2 W/m2). **P < 0.01, ***P < 0.001. Data were presented as mean � SD

(n Z 3). (D) Wound healing ability of 4T1 cells. Cells were incubated with pGDTA loaded nanoparticles for 12 h in dark, fresh medium was

replaced and cells were incubated with or without blue light irradiation for 24 h (2 W/m2), scale bar: 500 mm. (E) Quantitative analysis of relative

recover area ratio in different groups. ***P < 0.001. Data were presented as mean � SD (n Z 3). (F) In vitro 3D tumor spheroid growth in-

hibition. pGDTA-loaded nanoparticles were incubated with 4T1 tumor spheroids for 12 h in dark. Fresh medium was replaced and tumor

spheroids were incubated under blue light for 5 days under blue light irradiation (2 W/m2). (G) Real DTA level of intracellular and extracellular

samples. Cells were incubated with pGDTA loaded nanoparticle for 12 h in dark, fresh medium was replaced and cells were incubated under blue

light radiation for 24 h ***P < 0.001. Data were presented as mean � SD (n Z 3).
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As shown in Fig. 4G, treatment with pGDTA@PVHRs NP
resulted in the highest intracellular and extracellular DTA con-
centrations, with a total concentration of 7.67 ng/mL, which may
have been due to excellent cellular uptake efficiency of this
nanocarrier. The relatively high extracellular concentration of
DTA likely resulted from release from apoptotic cells.

3.8. Pharmacokinetics and biodistribution study

Supporting Information Fig. S10A showed relative profiles of mean
plasma DIR concentration over time following the intravenous in-
jection of different nanoparticle systems loaded with DIR;
Supporting Information Table S2 showed the corresponding phar-
macokinetic parameters. The plasma concentration of DIR
decreased rapidly following DIR treatment. Furthermore, the mean
area under the curves (AUC) for the plasma concentration of DIR-
loaded nanoparticles was significantly higher than that of free
DIR (*P < 0.05), thus demonstrating that the nanocarriers were
stable. The AUC0e24h of the DIR@PVHRs NP treatment increased
from 226.9 to 529.5 mg$h/L compared with that of PVs micelle
treatment. The corresponding mean residence time (MRT) of the
DIR@PVHRs NP was 1.9-fold longer than that of the PVs micelle
treatment, thus indicating a longer duration of circulation in the
blood; we believe that this characteristic was attributable to the PEG
modification on the surface of the nanoparticles.

To investigate the in vivo targeting ability of PVHRs nano-
particles, the near-infrared dye DIR was loaded into different
nanoparticles, and the nanoparticles were intravenously injected
into 4T1 tumor-bearing mice. At pre-determined timepoints, mice
were anesthetized and imaged using an In-Vivo Multispectral
System. As shown in Fig. 5A, DIR@PVHs NP exhibited better
accumulation in tumors than DIR@PVs micelles because HA
actively targets CD44, which is overexpressed on tumor cells.
However, the nanoparticles showed significant liver accumulation



Figure 5 Evaluation of in vivo 4T1 tumor inhibition. (A) Biodistribution of DIR loaded nanoparticles, among which the dashed circles indicate

the tumor foci of mice. In vivo fluorescence images of 4T1-bearing mice after intravenous injection with different DIR loaded nanoparticles for 4,

8, 24 and 48 h. (B) Schematic diagram of 4T1 bearing Balb/c mice treated with blue light radiation after intravenous injection of samples. (C) The

tumor growth profiles after different treatments with or without blue light irradiation Data were presented as mean � SD (n Z 5). **P < 0.01,
***P < 0.001. (D) Tumor morphology of different groups on day 16. (E) Body weight and (F) survival rate of mice after different treatments with

or without blue light irradiation. Data were presented as mean � SD (n Z 5). (G) Immunofluorescence staining of H&E, TUNEL and CD31 for

tumor tissue sections, scale bar: 50 mm. Quantitative analysis of (H) TUNEL and (I) CD31 positive ratio in different groups were calculated by

ImageJ. *P < 0.05, **P < 0.01, ***P < 0.001. Data were presented as mean � SD (n Z 3).
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due to non-specific uptake by the reticuloendothelial system
(RES)51 and high expression of CD44 in liver cells. Treatment with
DIR@PVHPs NP and DIR@PVHRs NP showed greater tumor
accumulation at 24 and 48 h due to the ability of PEG to increase
circulation time. The excellent targeting ability of DIR@PVHRs
NP may have been due to the dual-targeting ability of HA and
RGD, which resulted in active targeting to CD44 and avb3 re-
ceptors on 4T1 cells, respectively. The quantitative analysis of DIR
uptake in both tumors and main organs at 4, 8, and 24 h post-
treatment is shown in Fig. S10B; the corresponding AUC0e24h

data are summarized in Supporting Information Table S3. The
concentrations of DIR in tumors following treatment with PVHs



Figure 6 Safety evaluation of DTA-based treatment in mice. (A) H&E stained major organs from different treatment groups. (scale bar:

100 mm) (B) Serum levels of AST, ALT, CRE and BUN after treatment. Data were presented as mean � SD (n Z 3).
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NP, PVHPs NP, and PVHRs NP were 1.3-, 2.3-, and 2.8-folds
higher compared with those following treatment with PVs mi-
celles, respectively; these data were consistent with in vivo ob-
servations. Ex vivo imaging of tissue distribution showed the
strongest DIR fluorescence 24 h after the injection of PVHRs NP,
thus confirming the enhanced accumulation of PVHRs NP in tu-
mors (Fig. S10C).

3.9. In vivo antitumor efficiency

Invivo antitumor efficacywas evaluated in 4T1 tumor-bearingmice.
When tumor size increased to approximately 100 mm3, 200 mL of
different formulations (0.5 mg/mL pGAVPO and 2 mg/mL
pU5-DTA) were intravenously injected a total of three times each.
Twelve hours after administration, the mice were exposed to blue
light or placed in the dark for 8 h (Fig. 5B). As shown in Fig. 5C and
D, all pGDTA-loaded nanoparticles exposed to blue light demon-
strated remarkable suppression of tumor growth, but exposure to
blue light alone did not inhibit tumor growth. Administration of
pGDTA@PVHRsNP resulted in the strongest antitumor effect, with
a tumor inhibition rate of 71.7%, which may have been due to su-
perior tumor targeting ability. Notably, the tumor volumes in the
pGDTA@PVHRs NP group were reduced following exposure to
blue light, which demonstrated light-dependent tumor cell death.
The body weights of the mice were monitored and recorded every
other day. As shown in Fig. 5E, therewere no significant differences
in weight among the mice exposed to the LightOn gene expression
system, which suggested that light therapy did not induce systemic
toxicity. The median survive time of pGDTA@PVHRs NP pro-
longed from 25 to 40 days compared with saline group, exhibiting
the best survival rate (Fig. 5F). These results demonstrated light-
induced antitumor effects in response to treatment with the
LightOn gene expression system, which precisely expressed the
suicide gene DTA in the illuminated area but did not express DTA in
the absence of blue light.

To further evaluate antitumor activity, tumor specimens from
mice were collected, sliced, and subjected to H&E, TUNEL, and
CD31 staining. As shown in Fig. 5G, all pGDTA loaded nano-
carrier groups induced extensive tumor necrosis after blue light
irradiation, which demonstrated excellent tumor inhibition. In
addition, the number of TUNEL-positive cells (green) signifi-
cantly increased following exposure to blue light, and treatment
with pGDTA@PVHRs NP resulted in the highest TUNEL-
positive ratio, which indicated the best antitumor efficacy
(Fig. 5H). Staining for CD31 was used to evaluate blood vessel
content in tumor tissues52. Reduced CD31 fluorescence in
pGDTA-loaded nanocarrier groups indicated that light therapy
inhibited tumor angiogenesis. Notably, pGDTA@PVHRs NP
exhibited the greatest inhibition of tumor angiogenesis, which
may have been due to the targeting ability of RGD to avb3, which
is highly expressed tumor neovascular cells (Fig. 5I)35. These
results indicated that pGDTA@PVHRs nanoparticles were able to
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induce the expression of DTA to kill tumor cells, and also
normalized the tumor vasculature to reduce the nutrient supply to
the tumor, which resulted in excellent inhibition of tumor
growth53.
3.10. Biosafety

Non-specific expression of DTA could result in tissue damage. To
investigate the potential for systemic toxicity in response to
pGDTA@PVHRs nanoparticles, non-tumorous organs were
collected following therapy, sliced, and then stained with H&E
(Fig. 6A). No significant necrosis was observed in the heart, liver,
spleen, lung, or kidney following therapy, which showed that
pGDTA@PVHRs NP with blue light exposure, resulted in
neglectable toxicity. The treatment groups did not show any dif-
ferences in biochemical parameters compared with the treatment
groups (Fig. 6B), which indicated that pGDTA@PVHRs nano-
particles were safe. Although some nanoparticles accumulated in
the livers of the mice, no obvious tissue damage was observed.
Light-induced gene expression was limited to a depth of 1 mm or
less in the liver12, so the remaining fur could block normal tissues
from blue light penetration, avoiding unwanted DTA expression in
other tissues. Consistent with in vivo antitumor efficiency, DTA
expression can be triggered in certain tumor sites by blue light
irradiation and avoid systemic toxicity, which maximize the
antitumor efficiency of DTA treatment and minimize its side ef-
fects. In conclusion, these results indicated that the nanoparticles
evaluated in this study were biocompatible.
4. Conclusions

In summary, a multifunctional gene delivery system based on the
polymers PEIVES and HA-PEG-RGD was successfully con-
structed to encapsulate the LightOn transgene system. The sta-
bility of PVHRs nanoparticles was excellent, and they showed
redox-sensitive characteristics, and good tumor accumulation.
Importantly, the LightOn gene expression system was effectively
delivered to 4T1 cells due to CD44 receptor- and avb3 integrin
receptor-mediated endocytosis. Encapsulation of the LightOn
gene expression system resulted in structure-, dose- and
spatiotemporal-dependent gene expression through exposure to
blue light. Moreover, in vitro and in vivo studies showed that DTA
expression following administration of pDNA@PVHRs nano-
particles with exposure to blue light resulted in excellent tumor
growth inhibition. Furthermore, we showed that the LightOn gene
expression system formulations developed in this study exhibited
excellent biosafety. Therefore, pDNA@PVHRs nanoparticles
exhibited excellent antitumor properties by effectively utilizing a
light-switchable gene expression system encapsulated in a nano-
particle delivery system, which may be a promising platform for
treatment of breast cancer.
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