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Abstract

We use first principles of population genetics to model the evolution of proteins under persistent positive selection (PPS).
PPS may occur when organisms are subjected to persistent environmental change, during adaptive radiations, or in host–
pathogen interactions. Our mutation–selection model indicates protein evolution under PPS is an irreversible Markov
process, and thus proteins under PPS show a strongly asymmetrical distribution of selection coefficients among amino
acid substitutions. Our model shows the criteria x > 1 (where x is the ratio of nonsynonymous over synonymous codon
substitution rates) to detect positive selection is conservative and indeed arbitrary, because in real proteins many
mutations are highly deleterious and are removed by selection even at positively selected sites. We use a penalized-
likelihood implementation of the PPS model to successfully detect PPS in plant RuBisCO and influenza HA proteins. By
directly estimating selection coefficients at protein sites, our inference procedure bypasses the need for using x as a
surrogate measure of selection and improves our ability to detect molecular adaptation in proteins.

Key words: positive selection, distribution of fitness effects, influenza, RuBisCO, cytochrome b, mutation–selection
model.

Introduction
Understanding how natural selection acts on molecular
sequences has long been a pursuit of evolutionary biology.
For example, Kimura (1983), using a model that assumes the
genome has an infinite number of sites, showed the relative
rate of molecular evolution is approximately given by:

u ¼ S

1� e�S
; (1)

where S is the selection coefficient acting on mutations. If new
mutations in the genome are positively selected (S> 0) the
relative rate of molecular evolution is accelerated (u> 1),
whereas the rate is the neutral mutation rate (u¼ 1) if there
is no selection (S¼ 0), and the rate is decelerated (u< 1) if
mutations are negatively selected (S< 0).

Equation (1), which is the relative probability of fixation of
selected over neutral mutations (Fisher 1930; Wright 1931;
Kimura 1962; McCandlish et al. 2015), has important impli-
cations for understanding molecular adaptation in proteins.
For a sample of protein-coding sequences from various spe-
cies, the ratio between the number of substitutions at non-
synonymous sites (which are under selection) and at
synonymous sites (which are under weak or no selection)
should approximately follow the dynamics of equation (1)

(Nielsen and Yang 2003). This ratio, commonly known as
x ¼ dN=dS, is widely used as a test of molecular adaptation
in proteins, with x > 1, x¼ 1, and x < 1 interpreted as
evidence of molecular adaptation (positive selection), neutral
evolution, and purifying selection respectively.

However, Kimura’s relative rate of molecular evolution
(eq. 1), based on the infinite-sites model (Kimura 1969;
Sawyer and Hartl 1992), assumes all new mutations appear
at new sites in the genome. This assumption appears unre-
alistic for proteins. Nielsen and Yang (2003) have argued that
if amino acid fitnesses are reassigned every time a new mu-
tation appears at a site in a protein (so that the selection
coefficient, S, is always the same at the site), then equation (1)
gives the relationship of S and x under a finite-sites model.
However, it is not clear in which condition this fitness reas-
signment should apply: if an i to j mutation has selection
coefficient S, then the reverse j to i mutation should have
coefficient �S, but Nielsen and Yang’s model assumes it
reverts to S. Without this assumption it does not appear
possible to equate x ¼ S=ð1� e�SÞ.

Spielman and Wilke (2015), and dos Reis (2015), used the
Fisher–Wright mutation–selection model (Fisher 1930;
Wright 1931; Halpern and Bruno 1998) to derive the relation-
ship between x and the selection coefficients acting on co-
don sites within a finite-sites model. They showed that
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x � 1 when selection coefficients are constant over time,
that is, they are not reassigned (dos Reis 2015; Spielman and
Wilke 2015); whereas x > 1 can be achieved for a short
period of time after selection coefficients undergo a single
shift during an adaptive event, for example, when a virus
adapts to a new host (dos Reis 2015).

However, the relationship between x and selection coef-
ficients under the more general case of persistent changes in
selection over time appears unclear. This case, which we term
persistent positive selection (PPS), is important because se-
lection coefficients acting at codon sites may change repeat-
edly during persistent environmental changes, during
adaptive radiations, and in host–pathogen interactions
(such as in a virus evading herd immunity in a host popula-
tion). Thus, understanding how PPS affects x in proteins can
inform the development of methods to detect positive selec-
tion and give us insight onto the mechanisms of adaptive
evolution in general.

Here, we develop a mutation–selection model of codon
substitution under PPS. The new model can be used to study
the mechanistic relationship between the scaled selection
coefficients and x, providing insight into the evolutionary
dynamics of proteins under PPS. Furthermore, we develop a
penalized-likelihood implementation of the model and suc-
cessfully use it to detect PPS directly in real proteins bypassing
the need to use x as a surrogate measure of selection.
Analysis under the new model indicates codon substitution
is an irreversible Markov process, leading to a highly asym-
metrical distribution of selection coefficients among substi-
tutions in proteins under PPS. More strikingly, the PPS model
shows the criteria x > 1 to detect molecular adaptation in
proteins is conservative and indeed arbitrary, as we find evi-
dence of PPS at codon sites where x < 1.

New Approaches

The PPS Codon Substitution Model
We develop the new model by integrating the nonhomoge-
neous selection model of Kimura and Ota (1970) with the
mutation–selection codon substitution model of Halpern and
Bruno (1998). Consider a population of organisms with hap-
loid genome number N. That is, the number of copies of the
genome in the population is N (i.e., the population size is N if
the organism is haploid and N=2 if it is diploid). Suppose a site
k in a protein-coding gene is fixed for codon i in the popula-
tion, and the scaled Malthusian fitness of i is Fi;k. A new mu-
tant codon j appears at the site and has initial selective
advantage S�ij;k ¼ F�j;k � Fi;k; F�j;k > Fi;k. The selective advan-
tage then decays exponentially as a function of time (Kimura
and Ota 1970), for example, due to gradual environmental
change. Kimura and Ota (1970) showed the fixation probabil-
ity of j is approximately Sij;k=ð1� e�Sij;kÞ � N�1 where Sij;k is
constant and 0 < Sij;k < S�ij;k. In other words, the fixation
probability of j is the same as that of an allele with interme-
diate, but constant, selective advantage Sij;k.

It appears other types of decay function lead to the same
fixation probability. For example, the same result is obtained
in the case of frequency-dependent selection when the fitness

of j decays exponentially as a function of the frequency of j in
the population (dos Reis 2013). In the case of frequency-
dependent selection, once j becomes fixed, any new mutant
alleles may have high fitnesses because they would be rare.
We expect this type of dynamics in, for example, viruses es-
caping the herd immunity of a host population. Similarly, if
the environment gradually shifts between two states, then
the selective advantage of j or i would be continuously reset
depending on the particular environment. This would then
lead to resetting (or reassignment) of the fitnesses of i and j.
This persistent change in the selection coefficient is what we
term PPS. We formalize codon substitution under the PPS
model next.

Let the selection coefficient for the i! j mutation be
Sij;k ¼ Fj;k � Fi;k þ Zk, where Fj;k; Fi;k and Zkð� 0Þ are con-
stant. Let the selection coefficient for the reverse mutant,
j! i, be Sji;k ¼ Fi;k � Fj;k þ Zk. In other words, we have
partitioned the fitnesses of j and i into two components: a
constant component, Fj;k and Fi;k, representing structural
constrains of the protein on the amino acid encoded by
the codon; and Zk, the PPS component. Thus, when
Zk > 0, the selection coefficient is persistently reset with
new mutations.

The substitution rate from i to j at location k, qij;k, is equal
to the neutral mutation rate, lij, times the number of i alleles
in the population, N, times the fixation probability of the j
mutant (Kimura 1983; Halpern and Bruno 1998). Assuming
synonymous substitutions are neutral, this gives:

qij;k¼
lij

Sij;k

1�e�Sij;k
; if the substitution is nonsynonymous;

lij otherwise:

8<
:

(2)

Irreversibility of Codon Substitution under PPS
Equation (2) describes codon substitution as a continuous
Markov process. Polymorphisms are ignored and the popu-
lation is assumed to switch from i to j instantaneously. This
assumption appears reasonable if Nlij � 1, for all lij (Bulmer
1991). The proportion of time location k remains fixed for j
(i.e., the stationary frequency of j) is pj;k. A Markov process is
said to be reversible in equilibrium if it satisfies the detailed-
balance condition pi;kqij;k ¼ pj;kqji;k (Grimmet and Stirzaker
2004). When Zk¼ 0, the model of equation (2) is reversible
(Yang and Nielsen 2008). However, when Zk > 0 the process
is, in general, irreversible because the detailed balance condi-
tion does not hold. When Zk > 0, the stationary frequencies
are found by solving the system of equations

P
j pj;kqji;k �P

j pi;kqij;k ¼ 0 with the constraint
P

i pi;k ¼ 1. We calcu-
late the irreversibility index for site k as
Ik ¼ jpi;kqij;k � pj;kqji;kj, where Ik > 0 indicates evolution
at site k is irreversible, and Ik¼ 0 otherwise (Huelsenbeck
et al. 2002).

Identifying Protein Locations under PPS
Given an alignment of protein-coding genes with correspond-
ing phylogeny, the model of equation (2) can be used to
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estimate the Fi;k and Zk using maximum penalized likelihood.
To estimate the Fi;k, we use the Dirichlet-based penalty of
Tamuri et al. (2014) and for Zk, we use an exponential penalty
with parameter k (see Materials and Methods). For each site
in the alignment, we compare the null model Zk¼ 0 (no PPS)
against Zk > 0 (PPS) using a likelihood-ratio test. Because of
the boundary condition (Zk > 0) in the test and the use of
penalized likelihood, the distribution of the likelihood-ratio
statistic does not follow the typical v2 distribution. Thus, we
use Cox (1962) simulation approach as used in phylogenetics
(Goldman 1993) to obtain the appropriate null distribution
(see Materials and Methods).

The Relationship between Selection Coefficients
and x
The average substitution rate of codon site k, averaged over
time is:

qk ¼
X
i6¼j

pi;kqij;k:

This rate can be separated into its nonsynonymous and
synonymous components, qk ¼ qN;k þ qS;k, where,

qN;k ¼
X
i 6¼j

pi;kqij;kIN and qS;k ¼
X
i6¼j

pi;kqij;kð1� INÞ;

and where the indicator function IN ¼ 1 if the i to j substi-
tution is nonsynonymous, and¼ 0 otherwise. For a neutrally
evolving sequence (e.g., a pseudogene) the corresponding
rates are:

qð0ÞN ¼
X
i 6¼j

pð0Þi lijIN and qð0ÞS ¼
X
i6¼j

pð0Þi lijð1� INÞ;

where pð0Þi is the stationary frequency of i without selection,
which is the same for all sites. Thus, the relative nonsynon-
ymous rate is:

xk ¼
qN;k

qð0ÞN

: (3)

See dos Reis (2015) for the full derivation. Spielman and
Wilke (2015) give a slightly different definition of xk (see also
Jones et al. 2016, Youssef et al. 2020).

We note the PPS model is general and has other models as
special cases. For example, when Zk 6¼ 0 and Fi;k ¼ Fj;k for all
i, j, we have:

xk ¼
Zk

1� e�Zk
;

and the model of equation (2) can be written as qij;k ¼ lijxk

if the substitution is nonsynonymous and qij;k ¼ lij other-
wise. In other words, the classic codon models (Muse and
Gaut 1994; Yang and Nielsen 1998) are a special case of equa-
tion (2) when all codons are assumed to have the same fit-
ness. On the other hand, when Zk¼ 0 and Fi;k 6¼ Fj;k, the
model of equation (2) reduces to the mutation–selection
model of Halpern and Bruno (1998).

Results

Detection of PPS in Simulated Data
Extensive simulations on the estimation of Fi;k are available in
Tamuri et al. (2012, 2014). Here, our focus is on using simu-
lations to assert whether sites under PPS (Zk > 0) can be
identified using Cox’s method. We simulate codon align-
ments (1,000 codons in length) on a 512-taxa phylogeny,
under various strengths of PPS, with Zk ¼ 0; 2; 5; and 10.
The values of Fi;k are drawn from random distributions to
produce sharp amino acid profiles as in real proteins (see
Materials and Methods). These Fi;k and Zk values result in
xk values roughly between 0.05 and 6 (eq. 3). When Zk¼ 0,
6.6% of sites are incorrectly detected to be under PPS, which is
slightly higher than the 5% error I threshold (table 1). When
the selective advantage is slight (Zk ¼ 2Þ, the method roughly
identifies 44% of sites under PPS (table 1). The power of the
method is excellent and roughly over 95% when the selective
advantage is strong (Zk � 5). We note the exponential pen-
alty on Zk has a noticeable, albeit slight, effect on the power of
the test. When the penalty parameter, k is small, the resulting
penalty is diffuse and the penalty is weak. However, as k
increases, the penalty becomes stronger with probability den-
sity in the exponential moving toward zero. In this case,
estimates of Zk � 0 are more strongly penalized and this
translates in a small reduction in the power of the test (ta-
ble 1). We note the penalized likelihood method used here is
essentially the same as posterior mode finding giving our
penalties are proper probability densities (Cox and
O’Sullivan 1990; Tamuri et al. 2014), and thus the penalties
on Zk and Fi;k act as prior densities which regularize the pa-
rameter estimates (Cox and O’Sullivan 1990).

Detection of PPS in Real Proteins
We tested for PPS sites in three real sequence data sets: the
hemagglutinin protein (HA) from human influenza H1N1
virus, the rbcL protein subunit from flowering plants, and
the mitochondrial cytochrome b (CYTB) protein from mam-
mals (table 2). Given the multiple sequence alignment, phy-
logeny, and mutational parameters, we estimated the Fi;k and
Zk using two penalty strengths, k ¼ 0:001; and 0.05. We then
performed the LRT of PPS versus no PPS and used false dis-
covery rate (FDR) at the 5% level to identify sites under PPS.
Using the weak penalty, k ¼ 0:001, we detected PPS
(Zk > 0) at 65 sites in the plant rbcL and 18 sites in the
influenza HA, but we found no PPS sites in mammal CYTB

Table 1. Performance of the LRT for Detecting PPS Sites in Simulated
Data after FDR Correction (5%).

True Model k ¼ 0:01 k ¼ 0:5 k ¼ 1:0

swMutSel FPR at 0.05 Significance
ðZ ¼ 0Þ 0.066 0.066 0.066
swMutSel1PPS TPR at 0.05 Significance
(Z 5 2) 0.441 0.452 0.449
(Z 5 5) 0.952 0.952 0.947
(Z 5 10) 0.965 0.963 0.960

NOTE.—FPR, false-positive rate; TPR, true-positive rate.
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(table 2). Interestingly, only 55 out 65 of PPS sites in rbcL have
x > 1. For HA, all 18 PPS sites also have x > 1. The location
of PPS sites and estimated xk values are shown in figure 1A to
A00. When using the stronger penalty, k ¼ 0:05, the number
of sites detected in rbcL and HA are reduced to 50 and 17 sites
respectively (table 2). This is not unexpected because, as
noted above, stronger penalties push estimates of Zk toward
zero affecting the likelihood ratio test.

The Distribution of Selection Coefficients at Sites
under PPS Is Asymmetrical
We estimated the distribution of selection coefficients among
nonsynonymous substitutions (Tamuri et al. 2014) in the
three protein-coding genes analyzed (fig. 1B to B00). For
non-PPS sites (i.e., sites where Zk¼ 0), the distribution of se-
lection coefficients is symmetrical, with a mode at S¼ 0, be-
cause in this case codon substitution is reversible and the
detailed balance condition guarantees the proportions of
slightly advantageous and deleterious mutations fixed in
the population will be equal over time (Yang and Nielsen
2008). However, among PPS sites in plant rbcL and influenza
HA, the distribution is highly skewed with a mode at S> 10
because irreversibility of the substitution process means the
detailed balance condition does not apply, and hence there is
a persistent excess of advantageous mutations being
substituted into the population. For example, for sites with
Zk � 10, the irreversibility index is as high as 0.12, indicating
there is a deviation of 12% of substitutions from detailed
balance, which is a strong deviation (fig. 2A). Larger values
of Zk are also associated with faster substitution rates (fig. 2B)
and larger xk values (fig. 2C). For example, for sites with
Zk � 10, the corresponding xk values range from about 1
to 4 (fig. 2C).

PPS Sites Are under Strong Purifying Constraints
At equilibrium, the average selection coefficient of new muta-
tions at site k is:

�Sk ¼
X
i6¼j

pi;kPijSij;k;

where Pij ¼ lij=
P

j lij is the probability that the next mu-
tation is j given the site is currently fixed for i (dos Reis 2015). If
most new mutations are very deleterious, then the site is
under purifying selection and �Sk < 0; whereas if most new
mutations are advantageous, the site is under positive selec-
tion and �Sk > 0. Historically, xk has been used as a proxy for
�Sk, based on the approximation of equation (1) (Nielsen and
Yang 2003). Thus calculating �Sk should provide insight into

the relationship between the strength of selection at a site
and xk.

Figure 1C to C00 shows the estimated �Sk for the three data
sets plotted against xk. For 43 PPS sites in rbcL and one PPS
site in HA, we find that �Sk < 0. This shows PPS sites are
effectively under a mixture of purifying selection against del-
eterious amino acid substitutions, and diversifying selection in
favor of a few amino acids that substitute rapidly among each
other. This trend is evidenced when studying the pattern of
PPS substitution in the influenza HA protein. The H1N1 in-
fluenza virus entered the human population sometime prior
to the 1918 influenza pandemic (Taubenberger et al. 2005;
dos Reis et al. 2009) and has remained largely as a single
lineage since then, except from the introduction of a separate
lineage of reassortant H1N1 swine virus in the 2009 pandemic
(Smith et al. 2009). Figure 3 shows the pattern of amino acid
substitution for the 18 PPS sites in influenza HA between
1918 and 2009. For example, site 3 remained virtually fixed
for alanine between 1918 and the late 1990s, and then suf-
fered several back and forth substitutions between alanine
and valine between the late 1990s and 2009, whereas site 142
has been characterized by shifts between lysine and aspara-
gine between 1918 and 2009. It is clear from figure 3 that the
majority of PPS sites in the HA protein are characterized by
back-and-forth substitutions among a fairly reduced set of
amino acids.

Discussion
Mutation–selection models of codon substitution have been
successfully used to study the distribution of selection coef-
ficients in proteins (Rodrigue et al. 2010; Tamuri et al. 2014),
to detect selection shifts during adaptation (Parto and
Lartillot 2017), shifting balance (Jones et al. 2016), and to
understand protein evolution given structural constraints
(Youssef et al. 2020). Previous works have also accommodated
a x parameter within the mutation–selection model to de-
tect adaptation at amino acid sites (Yang and Nielsen 2008;
Rodrigue and Lartillot 2017; Rodrigue et al. 2021). However in
these works x is a separate parameter and not a function of
the selection coefficients and thus its population genetics
interpretation is not clear (Rodrigue and Lartillot 2017).
Here, we extended the mutation–selection framework to
the case of PPS without the need for the additional x param-
eter. Instead, in the new model, x is a function of the selec-
tion coefficients and we believe this modeling approach can
help gain insight on the nature of protein adaptation.

The new PPS model is flexible as it appears to have per-
formed well for the different modes of selection studied here.
For example, rbcL is the major subunit of the RuBisCo enzyme
responsible for the fixation of carbon during photosynthesis.
The efficiency of RuBisCo is affected by environmental factors
and rbcL has been under persistent adaptive pressures during
the successful adaptive radiation of angiosperms around the
ecoregions of the world (Kapralov and Filatov 2007; Parto and
Lartillot 2018). This is akin to the environment change model
envisaged by Kimura and Ota (1970). On the other hand, the
influenza HA protein is the classic example of positive

Table 2. Number of Sites Estimated to be under PPS in Three Real
Data Sets.

Data Set # Taxa # Sites # Z > 0 (x>1)
k ¼ 0:001 k ¼ 0:05

Plant rbcL 478 466 65 (55) 50 (40)
Influenza HA 466 589 18 (18) 17 (14)
Mammal CYTB 418 407 0 (0) —
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selection on a pathogen evading its hosts’ herd immunity
(Fitch et al. 1997), and we showed here the PPS model per-
formed well in detecting this mode of adaptation. We believe
the new PPS model, together with previous mutation–selec-
tion models that relaxed the assumption of constant fitnesses
(Tamuri et al. 2012; Parto and Lartillot 2017), now encompass
the major modes of selection in proteins.

We would like to note here two features of coding-
sequence evolution that are ignored in our formulation of

the PPS mutation–selection model. First, the model assumes
amino acid sites within the protein evolve independently.
This is unrealistic because amino acids are linked and their
substitution pattern is affected by interactions with other
amino acids within the folded protein (Pollock et al. 2012;
Youssef et al. 2020). In particular, substitutions toward sub-
optimal amino acids can be compensated by rapid substitu-
tion in another interacting amino acid, so as to reduce
contact energies in the folded protein (Pollock et al. 2012).

FIG. 2. Relationship between Zk and evolutionary parameters for PPS sites in HA and rbcL. (A) Irreversibility index, Ik, versus Zk. The index is
normalized to give the expected excess number of substitutions from detailed balance. (B) Site substitution rate, rk ¼ �

P
i pkqii;k , versus Zk. Note

the qij;k are scaled so that they give the relative rate with respect to a neutral sequence (Tamuri et al. 2014). Thus, if rk¼ 1, then the site evolves at
the same rate as, say, a pseudogene. (C) Nonsynonymous rate, xk versus Zk. The penalty on Zk is k ¼ 0:001 in all cases.

FIG. 1. Analysis of proteins under the PPS mutation–selection model. (A–A00) Estimates of x at protein sites. (B–B00) Distribution of selection
coefficients among nonsynonymous substitutions. (C–C00) Relationship between x and average selection ð�SÞ at protein sites. Sites under PPS
(Zk > 0) are indicated in red in A–A00 and C–C00 , and their contribution to the distribution of selection coefficients indicated in red in B–B00 . In C–C0 ,
the solid line is equation (1). The penalty on Zk is k ¼ 0:001.
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How these rapid substitutions affect evolutionary dynamics
within PPS and how they should be accommodated within
the inference model will require further research (Youssef
et al. 2020). Second, the model assumes polymorphism is
absent and new mutations either become fixed or lost instan-
taneously. This assumption appears reasonable for most pop-
ulations of plants and animals because, in these, the scaled
mutation rates, Nl, are much less than one (Lynch and
Conery 2003). Even for influenza, a fast-evolving RNA virus,
estimates of Nl are in the order of 10�3 (Zhao and
Illingworth 2019). However, levels of standing polymorphism
can be substantial in many microorganisms (Lynch and
Conery 2003) or for some loci under certain forms of selection
(e.g., selection in favor heterozygotes, Hughes and Nei 1988).
Incorporating polymorphism within the mutation–selection
inference machinery will be challenging, but recent
polymorphism-aware phylogenetic approaches may provide
a way forward (De Maio et al. 2015).

Perhaps the most important insight from the application
of the PPS model to real data is that the criteria x > 1 to
detect positive selection in proteins is conservative. As we
show here, sites under PPS are also under strong purifying
constraints, and, at equilibrium, produce many deleterious
mutations that are removed by selection. Because xk is the
weighted average over the rate of all possible synonymous
substitutions at a site, it follows xk will be reduced if there are
many deleterious mutations at the site even if the site is
shifting rapidly among a few positively selection amino acids.
We believe this insight should be incorporated into the much
faster codon substitution models used in phylogenomic anal-
yses, such as the branch-site model (Yang and Nielsen 2002),
to improve power in detecting adaptation in proteins.

Materials and Methods

Maximum Penalized Likelihood Estimation and
Likelihood Ratio Test of PPS
The swMutSel model (Tamuri et al. 2012, 2014) is the special
case of swMutSel-PPS when Zk¼ 0. We use swMutSel as a
null model (H0 : Zk ¼ 0) and swMutSel-PPS as the alterna-
tive model (H1 : Zk > 0) in a likelihood-ratio test. The vector

of fitnesses at site k, Fk ¼ ðFi;kÞ and the PPS component, Zk

are estimated by maximizing a penalized likelihood. The pen-
alty on Fk is the Dirichlet-based penalty of Tamuri et al.
(2014), whereas for Zk we use an exponential penalty
PðZkÞ ¼ e�kZk , where the regularization parameter, k, con-
trols the strength of the penalty. When k¼ 0, there is no
penalty while k > 0 leads to increasingly stronger penalties
on the estimation of Zk. During inference, the qij;k (eq. 2) are
scaled in terms of the expected number of neutral substitu-
tions per site (Tamuri et al. 2012). This guarantees all sites are
normalized to the same timescale. To speed up computation,
the mutational parameters, required to construct lij, and the
branch lengths on the phylogeny are estimated under the
FMutSel0 model (Yang and Nielsen 2008) as explained in
Tamuri et al. (2014). We note only the differences among
the Fi;k enter equation (2), thus, the fitness for the most
common amino acid at site k is set to zero. Large negative
Fi;k values are capped to�10 during numerical optimization.
We recommend the optimization routine is repeated three
times using different parameter start values to ensure con-
vergence to the correct estimates.

Let the maximum penalized log-likelihood for site k be ‘0;k

and ‘1;k, under the H0 and H1 hypotheses respectively. The test
statistic is the difference in log-likelihoods dk ¼ ‘1;k � ‘0;k. If
the test statistic is significantly different from zero, this is ev-
idence site k is evolving under PPS. The distribution of the 2dk

statistic, when the null hypothesis is true, does not follow a v2

distribution. There are two reasons for this. First, because
Zk¼ 0 is at the boundary of parameter space, the test statistic
would be, asymptotically, distributed as a 50:50 mixture of a v2

distribution and a 0.5 point probability mass at 0 (Self and
Liang 1987; Goldman and Whelan 2000). The second reason is
that the penalty on Zk affects the 50:50 proportion because the
penalty forces the estimates of Zk toward zero.

Because we do not know what the asymptotic distribution
of dk should be, we use Cox’s (1962) Monte Carlo simulation
to obtain the null distribution of dk. For a given site k in the
alignment, we simulate N replicate sites on the phylogeny
using the maximum penalized likelihood estimates (MPLEs)
of Fk under H0. The distribution, Dk, is determined by the

FIG. 3. Pattern of amino acid substitution in PPS sites of human influenza (H1N1) HA protein between 1918 and 2009. The penalty on Zk is
k ¼ 0:001. Each colored dot represents a particular amino acid as indicated in the legend.
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difference in log-likelihood between the two models for each
simulated site: Dk ¼ ðdð1Þk ; dð2Þk ; . . . ; dðNÞk Þ where dðiÞk ¼ ‘

ðiÞ
1;k

�‘ðiÞ0;k is the log-likelihood difference for the i-th simulation. If
the test statistic from the real data (dk) is larger than, say, 95%
of Dk, we reject the null hypothesis H0 (no PPS) and accept
the alternative hypothesis H1 (PPS) at the a ¼ 0:05 signifi-
cance level. Cox’s approach has been shown to work well in
phylogenetic data sets (Goldman 1993). When analyzing an
ensemble of sites in a multiple sequence alignment, we cor-
rect for multiple testing using a FDR procedure to select
candidate PPS sites (Benjamini and Hochberg 1995).

Pad�e Approximation to Calculate the Matrix
Exponential
Calculation of the likelihood along a branch of length t in the
phylogeny requires calculation of PkðtÞ ¼ exp tQk, where Qk

¼ ðqij;kÞ is the substitution matrix (eq. 2). However, because
the PPS model is irreversible, the usual Eigen decomposition
algorithm used to calculate PkðtÞ is not stable (Yang 2014).
Here, we use the Pad�e approximation (Moler and Van Loan
2003):

exp A 	 RqqðAÞ ¼ ½DqqðAÞ
�1NqqðAÞ;

where NqqðAÞ ¼
Pq
i¼0

cqðiÞAi; DqqðAÞ ¼
Pq
i¼0

cqðiÞð�1ÞiAi,

and cqðiÞ ¼ ð2q� iÞ!q!=ð2qÞ!i!ðq� iÞ!. Note

exp A ¼ ðexp A=mÞm, with m ¼ 2j for some integer j.
Accuracy is improved considerably by choosing a suitable j
such that the Pad�e approximation works well for exp A=m.
Then,

exp A 	 ½RqqðA=2jÞ
2
j

:

Appropriate values for q and j are chosen according to the
size of A and the desired accuracy in the calculation of exp A
(Moler and Van Loan 2003: table 1).

In our model, the calculation of the likelihood at a site
involves multiple computations of exp tQ for every branch in
the phylogeny. We choose q and j according to the largest
branch length t. Because ðtQ=mÞi ¼ ðt=mÞiQ i, we calculate
all necessary cqðiÞ and Q i once and cache these in memory
throughout the likelihood calculation. Calculating Q i once is
more efficient than setting A ¼ Qt and applying the Pad�e
approximation directly. Instead, we compute
Bi ¼ ðt=mÞiQ i; RqqðBÞ, and finally ½RqqðBÞ
2

j

for each value
of t. We found this matrix exponentiation algorithm is ap-
proximately 1.5 times faster than the Taylor series approxi-
mation suggested in phylogenetics (Yang 2014), albeit using
more memory to store the precalculated matrix powers.

Simulated Data
To test the specificity and sensitivity of the LRT for PPS, we
simulated sites on a balanced 512-taxa tree with branch
lengths equal to 0.0125 neutral substitutions per site
(Tamuri et al. 2014). We simulated sites under a null model
with no PPS (H0 : Zk ¼ 0), and under the alternative model
with PPS (H1 : Zk > 0) with three strengths of selection

Zk ¼ f2; 5; 10g, and with 1,000 sites simulated under each
model setup. Following Tamuri et al. (2014), amino acid fit-
nesses for each site were sampled from a bimodal normal
distribution with ten randomly selected amino acids chosen
to have F � Nð0; 1Þ and the remaining amino acids to have
F � Nð�10; 1Þ. This simulation setup was chosen because it
leads to simulated data that captures two important features
seen in real data: 1) A bimodal distribution of selection coef-
ficients among mutations, and 2) a sharp distribution of
amino acid preferences among sites (Tamuri et al. 2012,
2014).

Simulated data were then analyzed with the swMutSel
software to estimate model parameters. The branch lengths
and mutation parameters were fixed to their true values
(k¼ 2, p� ¼ 0:25) throughout the analysis and only the site-
wise fitnesses ðFkÞ and diversifying selection ðZkÞ parameters
were estimated. For each simulation setup, we calculated the
MPLE and the LRT as described above, using N¼ 100 repli-
cates in Cox’s procedure. In all analyses, the Dirichlet penalty
on Fk has a ¼ 0:01, and three strengths of penalty on Zk were
tested, k ¼f0.01, 0.5, 1.0g.

Using the LRT results, we determined the false-positive and
false-negative rates. The false-positive rate is calculated by
determining the number of tests that incorrectly rejected
the null hypothesis (Zk¼ 0). The true-positive rate is calcu-
lated from the number of tests that correctly rejected the null
hypothesis (Zk > 0).

Real Sequence Data
We downloaded 3,120 HA protein-coding sequences of hu-
man influenza H1 viruses (excluding 2009 pandemic-H1N1
and partial sequences) from the NIAID Influenza Research
Database (Squires et al. 2012); we downloaded 3,490
RuBisCO eudicotyledon sequences from a previous study
(Stamatakis et al. 2010); and we downloaded CYTB genes
of placental mammals from NCBI RefSeq (O’Leary et al.
2016) mitochondria genomes. We reduced the HA and
RuBisCO data sets to 466 and 478 sequences respectively
by using CD-HIT (Fu et al. 2012) with clustering thresholds
of 99.3% and 96% of amino acid sequence identity. The CYTB
data were reduced to 418 sequences by keeping one sequence
per mammal genus. Sequences were aligned using PRANK
(Loytynoja and Goldman 2005), and the alignments used to
estimate tree topologies with RAxML under the GTRCAT
model (Stamatakis 2014). Because the swMutSel-PPS model
is irreversible, trees must be rooted. Thus, outgroups were
used to root the trees: avian influenza (HA), monocotyledons
(RuBisCO), and monotremes (CYTB). Outgroups were re-
moved and analyses carried out on the rooted ingroup tree
(for the PPS model), and the unrooted ingroup tree (for the
no PPS model). Sites with residues in fewer than 50 taxa were
not analyzed. This corresponds to 31, 23, and 27 sites in the
rbcL, HA, and CYTB alignments respectively. We note Zk is
not identifiable if a site is conserved for a single amino acid.
Such conserved sites have the same likelihood under the H0

and H1 hypotheses. MPLE and LRT were carried out as de-
scribed above using a ¼ 0:01 in the Dirichlet penalty. We
note estimates of Fi;k are different between the two models
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(Zk¼ 0 vs. Zk > 0, supplementary fig. S1, Supplementary
Material online). Before carrying out the FDR correction to
select candidate sites under PPS, we verify the distribution of
P values is uniform (supplementary fig. S2, Supplementary
Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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