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Retinal Degeneration (RD) is an inherited retinal disease characterized by degeneration of
rods and cones photoreceptor cells and degeneration of retinal pigment epithelial cells.
The age of onset and disease progression of RD are related to genes and environment. At
present, research has discovered five genes closely related to RD. They are RHO, PDE6B,
MERTK, RLBP1, RPGR, and researchers have developed corresponding gene therapy
methods. Gene therapy uses vectors to transfer therapeutic genes, genetically modify
target cells, and correct or replace disease-causing RD genes. Therefore, identifying the
pathogenic genes of RD will play an important role in the development of treatment
methods for the disease. However, the traditional methods of identifying RD-related genes
are mostly based on animal experiments, and currently only a small number of RD-related
genes have been identified. With the increase of biological data, Xgboost is purposed in
this article to identify RP-related genes. Xgboost adds a regular term to control the
complexity of the model, hence using Xgboost to find out true RD-related genes from
complex andmassive genes is suitable. The problem of overfitting can be avoided to some
extent. To verify the power of Xgboost to identify RD-related genes, we did 10-cross
validation and compared with three traditional methods: Random Forest, Back
Propagation network, Support Vector Machine. The accuracy of Xgboost is 99.13%
and AUC is much higher than other three methods. Therefore, this article can provide
technical support for efficient identification of RD-related genes and help researchers have
a deeper the understanding of the genetic characteristics of RD.
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INTRODUCTION

Hereditary eye diseases include syndromes and non-syndromic forms of retinal degeneration,
hereditary glaucoma, corneal dystrophy and eye movement disorders. Retinal degeneration (RD) is a
group of single-gene hereditary blindness caused by loss of function of photoreceptor cells or retinal
pigment epithelium (RPE). The incidence of RDs worldwide is 1/3,000–1/2,000 (Berger et al., 2010).
According to whether they are accompanied by systemic symptoms, they are divided into simple and
systemic RDs (Wennström et al., 2003).The former mainly includes retinitis pigmentosa (RP), Rod
cell dystrophy (cone-rod dystrophies, CORD), Leber congenital amaurosis (Leber congenital
amaurosis, LCA), etc. The latter mainly includes Usher syndrome and Bardet-Biedl syndrome
(Muller et al., 2010).Up to now, more than 300 pathogenic genes have been reported for RD, which
suggests that RD has a high degree of clinical and genetic heterogeneity, the diagnosis of this type of
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disease is extremely difficult (Benayoun et al., 2009). Research on
the pathogenic genes of RDs and the development and
application of related molecular diagnostic techniques are the
prerequisites for the diagnosis, prevention and treatment of RDs.
Both single-gene Mendelian or complex hereditary eye diseases
require genetic testing to determine the underlying cause. There
are nearly 1,200 genes related to eye diseases in the human
online Mendelian genetic database (on-line Mendelian
inheritancein man, oMIM) (http://www.omim.org)(Amberger
et al., 2015). RD is a type of disease with obvious clinical
phenotypic heterogeneity and genetic heterogeneity, and it is
also the main type of ophthalmic genetic diseases and rare and
difficult ophthalmic diseases. At present, the vast majority of RD
is still incurable in ophthalmology, and research on its diagnosis
and treatment has always been a hot spot. Diagnosing RD at the
genetic level is helpful for a deep understanding of the disease
mechanism (Boycott et al., 2017). Distinguishing what kind of
gene mutation causes the disease can more accurately
understand the occurrence, development and outcome of the
disease. This is especially important for RD with obvious
heterogeneity. The genetic heterogeneity of RD requires a
new disease naming and definition system. The system
should include at least two main factors, namely the disease-
causing gene and the name of the disease related to it. For
example, EYS-related retinitis pigmentosa is more accurate than
retinitis pigmentosa alone, and it is easier to explain the
condition to the patient.

Because of the large number of pathogenic genes of retinal
degeneration and the different mutation genes and loci in
different families, it is very difficult to selectively screen
candidate pathogenic genes. At present, the research on
molecular genetics of hereditary eye disease is mainly family
single gene research, which leads to controversy and deficiency in
the genetic research of RD gene (Fan et al., 2006). A
comprehensive and systematic analysis of known gene
variation data may be helpful for the further study of such
problems. Genes and mutations associated with retinal
degeneration are controversial. Some genes were first reported
to be disease-related, and then no mutations were reported.
Although a large number of mutations in retinal degeneration
are concentrated in a few genes, and the mutations of many genes
only explain the causes of a very small number of patients, it is
possible that only a very small number of patients with this gene
carry mutations, but it cannot be ruled out that the previous
research only found changes in a single gene and mistakenly
believed that it was the cause of the disease. The controversial and
questionable problems such as mutation penetrance and related
risk factors reported in single gene research also bring confusion
to researchers. In addition, because there was no public database
containing a large number of variation data and a large number of
control validation, some high-frequency SNPs were found in
patients and were regarded as pathogenic mutations. These
mutations are listed in the human gene mutation database
(HGMD) as pathogenic mutations (Stenson et al., 2020),
which mislead the follow-up molecular genetics research. At
present, the reported variation analysis doubts and corrects the
pathogenicity of individual Retnet genes and mutations (Pozo

et al., 2015), such as the previously reported pathogenic genes
fscn2 (MIM: 607643) and or2w3 of retinitis pigmentosa and
hmcn1 (MIM: 608548) of macular degeneration (Fisher et al.,
2007; Zhang et al., 2007; Sharon et al., 2016), and the subsequent
research reports are questionable, but due to the lack of clinical
phenotype analysis of patients with the same mutation, It is still
impossible to completely deny its possibility as a pathogenic gene.
In addition, single-gene research cannot comprehensively and
systematically understand the genetic mutation spectrum of the
people with hereditary retinal degeneration of this ethnic group.
Different races have different gene mutation spectrums.
Common disease-causing gene mutations in European and
American populations are not common in Asian
populations; based on common gene mutations in Asian
populations, they may be very rare in European and
American populations. For example, the pathogenic gene
CNGA3 (MIM: 600053) of pyramidal cell dystrophy is the
most frequently mutated gene in Chinese patients (Huang
et al., 2016), and the most common recessive genetic mutation
in foreign reports is ABCA4 (MIM: 601691) (Maugeri et al.,
2000), CNGA3 only explains a small part of the cause of the
disease (Wissinger et al., 2001). Even the Asian population has
a different mutation spectrum. The highest mutation
frequency in the Japanese retinitis pigmentosa population is
EYS (MIM: 612424)(Oishi et al., 2014; Arai et al., 2015), and
this gene mutation is very rare in Chinese patients (Xu et al.,
2014; Chen et al., 2015). It is very important and necessary to
conduct a comprehensive multi-gene systematic analysis of all
retinal degeneration genes, and to understand the clinical
characteristics, gene mutation frequency spectrum and
discover the main pathogenic genes of the people with
retinal degeneration of this nation. At the same time, it also
provides important clinical evidence for the clinical diagnosis,
genetic counseling, and prevention of hereditary eye diseases.

Although researchers have made great achievement in
identifying RD-related genes, identifying the huge and
complex acid sequences needs an algorithm which has high
computational efficiency and high recognition accuracy. The
generation of multi-omics data allows us to combine different
data from a large number of samples to explore RD-related
genes at a comprehensive level (Zhao et al., 2021a). Integrating
multiple omics data to discover biological knowledge on a large
scale has become a universal method. An endless stream of
methods have been developed to apply to different research
problems, such as identification of disease-related gene (Zhao
et al., 2020; Antonarakis, 2021), identification of disease-related
protein (Katako et al., 2018; Zhao et al., 2021b), identification of
disease-related metabolite (Lei and Tie, 2019; Zhao et al.,
2021c), disease-related drug target identification (Agamah
et al., 2020; Zhao et al., 2021d), etc. Chen (Chen and
Guestrin, 2016) purposed a novel method named Extreme
Gradient Boosting (Xgboost) in 2004. He improved the
boosting algorithm. Its multi-threaded parallel and
regularization term not only improve the accuracy of the
algorithm but also reduce the running time. Therefore,
Xgboost is a suitable algorithm to solve the problem of
identifying RD-related genes.
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METHODS AND MATERIALS

Data Description
We searched RD-related genes from DisGeNET (Piñero et al.,
2020) by the key word “Retinal Degeneration.” There are 207
genes which are known to be related to RD in this database. We
downloaded the sequences of these genes corresponding proteins
from Uniprot (Consortium, 2019).

We also obtained 5,000 genes as genes potentially associated
with RD from Genecard (Safran et al., 2010). Our aim is to
identify RD-related genes from these 5,000 genes.

Feature Extraction
Compositional Analysis
Since the real constitution of RD-related genes encoded proteins
is quite different from the non-related genes’, the frequency of the
occurrence of the all 20 amino acids in these proteins could be
quite different.

We totally calculated the average amino acid composition of
207 RD-related genes encoded proteins. These proteins are
richest in “L,” and the composition of “G,” “A,” “V,” “E,” “S”
is very high.

Dissociation Constant
The protein structure is significantly related to the chemical
characteristic of amino acid, especially hydrophobic and
hydrophilic (Aftabuddin and Kundu, 2007). Aftabuddin et al.
divided 20 amino acids into six groups based on the ranges of the
hydropathy. The reason why the gene is related to RD is
significantly related to the function of the protein it encodes.
Therefore, the hydrophilicity and hydrophobicity of amino acids
in protein are the key to judging whether the gene is related to RD.
Table 1 shows the six groups of the 20 amino acids.

So, the sequence of every protein could be diverted to a 6-
dimension sequence. Each dimension is the average composition
of one of these six groups.

PEST Regions
In 1986, Rechsteiner M and Rogers SW (Rechsteiner et al., 1996)
made the assumption that the amino acids of “P,” “E,” “S” and “T”
can serve as proteolytic signals. Nowmore and more reports have
verified that the sequence which contains PEST regions can cause
the rapid degradation of proteins.

The Epestfind program can be used to identify all poor and
potential PEST protein sequences. (Espreafico et al., 1992) http://
emboss.bioinformatics.nl/cgi-bin/emboss/epestfind.

We only included potential PEST protein region as a feature to
identify the RD-related genes. We counted the number of
potential pest regions in each sequence.

In conclusion, we totally extracted three kinds of features (Figure 1).
So, we used these 27-dimensions to identify the RD-related.

Methods and Framework
Extreme Gradient Boosting
The Extreme Gradient Boosting (Xgboost) is the improvement of
traditional Gradient Boosting Decision Tree (GBDT). Xgboost
implements the first and the two order derivatives from the loss
function by applying two order Taylor expansion. However, the
traditional GBDT algorithm only implements first derivative
information during optimizing. Xgboost runs significantly
faster than GBDT. Because it has two advantages. On the one
hand, Xgboost supports automatic multi-core parallel computing
through open MP. On the other hand, Xgboost proposes a new
data format Dmatrix, which can be preprocessed first and then
trained. This improves the efficiency of each iteration of the
training process and reduces the model training time. In addition,
we can input the sparse matrix into xgboost.

First, we need to obtain our train set {xi, yi}N, yi ∈ {−1, 1} and
set the number of leaf nodes as J. Then, we need to initialize the
final function.

F0(x) � 1
2
log

1 + �y

1 − �y
(1)

Then, the gradient of training samples can be obtained by:

y
�
i � −zL(yi, F(xi))

zF(xi) (2)

Then, the CART regression tree {Rjm}J can be constructed.
Rjm is the jth feature space.

Then, each leaf node’s regression value can be obtained by:

rjm � ∑xi∈Rjm
y
�
i

∑xi∈Rjm

∣∣∣∣∣y�i

∣∣∣∣∣(2 −
∣∣∣∣∣y�i

∣∣∣∣∣)
(3)

Finally, the final model is as following:

TABLE 1 | The six groups of the 20 amino acids.

Groups Amino acids

Strongly hydrophilic R,D,E,N,Q,K,H
Strongly hydrophobic L,I,V,A,M,F
Weakly hydrophilic or Weakly hydrophobic S,T,Y,W
Proline P
Glycine G
Cysteine C

FIGURE 1 | Flow chart of Feature extraction.
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Fm(x) � Fm−1(x) +∑
J

j�1
rjmI(x ∈ Rjm) (4)

The objective function is consisted by loss function and
regularization term, which can be used to show the quality of
our method.

Obj(Θ) � L(θ) +Ω(Θ) (5)
L(θ) represents loss function. Algorithms such as artificial neural
networks only use loss function to evaluate the quality of training,
which is easy to cause over fitting. The regularization parameters
Ω(Θ) are introduced into methods such as support vector
machine, which can effectively reduce over fitting. However,
the introduction of regularization parameters will increase the
complexity of the model.

CART is the basic unit of Xgboost. Therefore, the
objective function in formula (5) can also be represented
as following:

Obj(Θ) � ∑
n

i

l(yi, y
�
i) +∑

T

t�1
Ω(ft) (6)

Each tree is obtained based on the last tree we constructed.

y
�0

i � 0,

y
�1

i � f1(xi) � y
�0

i + f1(xi),
y
�2

i � f1(xi) + f2(xi) � y
�1

i + f2(xi),
..
.

y
�2

i � ∑
t

k�1
fk(xi) � y

�t−1
i + ft(xi),

(7)

Finally, we can obtained the first and the two order derivatives
from the loss function.

Obj(t) � ∑
n

i

(l(yi, y
�t−1
i ) + gift(xi) + 1

2
hif

2
t(xi)) + Ω(ft)

+ constant (8)
The next part is to obtain regularization term. Firstly, we

define the decision tree as:

ft(x) � wq(x), w ∈ RM, q: Rd → {1, 2,/,M} (9)
w represents leaf node’s score. q(x) is used to determine the
position of the input sample in the tree. The regularization term
can be represented as following:

Ω(f) � γM + 1
2
λ∑

M

j�1
w2

j (10)

We need to set γ and λ to balance the complexity of the model.
So tth tree’s objective function is as following:

Obj(t) ≈ ∑
n

i�1
(giwq(xi) + 1

2
hiw

2
q(xi)) + γM + 1

2
λ∑

M

j�1
w2
j

� ∑
M

j�1
((∑gi)wj + 1

2
(∑ hi + λ)w2

j) + γM

(11)

We could define Gj � ∑gi and Hj � ∑ hi, then we get:

Obj(t) � ∑
M

j�1
(Gjwj + 1

2
(Hj + λ)w2

j) + γM (12)

RESULTS

Experiment Description
We totally got 207 true RD-related genes and we randomly
selected 5,000 genes as the negative samples. To verify the
effectiveness of Xgboost on identifying RD-related genes, we
did ten-cross validation.

We randomly divided these 5,207 sequences into ten
groups. For every group, we choose 520 sequences as the
test set and the rest 4,687 sequences as the train set. So, we
did ten experiments in total. Besides, every sequence has
become a training set and a test set. We set the parameters
of Xgboost as the Table 2.

Evaluation Criteria
We use four evaluation ways to evaluate the performance of
Xgboost on identifying RD-related genes.

We put the results of the ten experiments in the Table 2. A
total of 5,207 sequences were tested. As showed in Table 3, we
could calculate the Accuracy = 99.13%, Precision = 99.04%, Recall
= 99.23%, Specificity = 99.04%.

Experiments Result
In this study, the label of randomly selected genes is 0, and the
label of RD-related genes are 1.

The Figure 2 shows the curves of the ten times experiments’
accuracy. As we can see, the experiment with the lowest accuracy
is also more than 98%.

To verify the superiority of the Xgboost, we also use the same
data to do the ten-cross validation by other methods.We use Back

TABLE 2 | The parameters of the Xgboost.

Setting items The value set

Booster gbtree
Silent 0
Learning rate 0.3
Maximum depth of a tree 6
Minimum sum of instance weight 1
Subsample ratio 1
Experimental parameter 1

TABLE 3 | The results of the ten experiments.

Prediction

1 0 Total
True Label 1 205 (TP) 2(FN) 207

0 20(FP) 4,980 (TN) 5,000
Total 225 4,982 5,207
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Propagation network (BP), Random Forest (RF), Support Vector
Machine (SVM) respectively. The error statistics of the average
results of 10 experiments are shown in the following table.

As we can see in the Table 4, we could see the performance of
Xgboost is the best, and the performance of BP is the worst.
Although RF is better than the Xgboost in the evaluations of

‘Precision’ and “Specificity,” the accuracy of the Xgboost is the
best. Besides, Xgboost uses the least time to build up the model.

Figure 3 is the ROC curve of four methods. The red line is the
curve of Xgboost. The green line is the curve of RF. The blue and
black one is the SVM and BP respectively. As we can see in the
figure, Xgboost is the best among these four methods. Then we
draw a figure of AUC in the Figure 4.

As we can see in the Figure 4, the AUC of Xgboost is very close
to 1. It shows the high accuracy of the Xgboost.

CONCLUSION

Typical clinical features of RD include early night blindness,
subsequent progressive vision loss and narrowing of the visual
field, fundus showing osteocytic pigmentation, waxy pale atrophy
of the optic disc, and electroretinogram (ERG) cone and rod Cell
function decline, etc., the early rod cell response amplitude
decline is more serious than the cone cell response amplitude.
Due to the high degree of heterogeneity of the RP phenotype,
many retinopathy have similar symptoms with RP, which is very
easy to confuse.

Therefore, exploring RD from a genetic perspective is very
helpful for clinical diagnosis, treatment and research on the
pathogenic mechanism of diseases. With the popularization
of high-throughput sequencing technology, a large amount
of genome and proteomic data has been released.
However, no method has been proposed to specifically
identify RD-related genes. In this article, we propose a
method based on XGboost to identify RD-related genes.
We extracted three features of the corresponding proteins
of 207 genes known to be related to RD. Each gene has 27-
dimensional features, and we input these features into
Xgboost for training. Through 10-fold cross-validation, we
confirmed the accuracy of our method to identify RD-related
genes with AUC as 0.99.

FIGURE 2 | The accuracy of ten experiments.

TABLE 4 | Comparison of the Xgboost with alternative models.

Algorithm ACC (%) Precision (%) Recall (%) Specificity (%)

Xgboost 99.13 99.04 99.23 99.04
BP 82.50 78.13 90.25 74.76
Random Forest 97.99 99.64 96.34 99.65
SVM 94.16 94.62 93.64 94.68

FIGURE 3 | ROC curve of four methods.

FIGURE 4 | AUC of four methods.
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In summary, we propose a method for large-scale identification
of RD-related genes. This type of machine learning method can
prioritize genes that are potentially related to RD to save
researchers the cost of conducting biological experiments.
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