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Topological Optimization of 
Phononic Crystal Thin Plate by a 
Genetic Algorithm
X. K. Han & Z. Zhang   

Genetic algorithm (GA) is used for the topological optimization of phononic crystal thin plate composed 
of aluminum and epoxy resin. Plane wave expansion (PWE) method is used for calculations of band 
gaps. Fourier displacement property is used to calculate the structure function in PWE. The crossover 
rate and the mutation rate are calculated according to the adaptive GA method. Results indicate that 
filling rates, symmetry, polymerization degree and material parameters are key factors for design of 
topological configurations. The relations between the key factors and different topologies are studied in 
detail.

As a kind of periodic composite materials, phononic crystal (PC) has been noticed widely and studied by more 
and more scholars due to its rich physical properties in controlling the propagation of elastic waves1–8. The elastic 
wave band gaps (BGs) is a significant feature of PCs. Because of the influence of the PC periodicity, the special 
frequency range between two bands that have no intersection is called the band gap, in which the elastic wave 
cannot propagate through the PC. The band gaps produced by PC is valuable both in theory and in practice for 
sound insulation9–12. According to the formation of BGs, PCs can be divided into two categories, Bragg scattering 
or the local resonance13–15. For the Bragg scattering PC, the wavelength relevant to the band gap and lattice con-
stant are of the same order of magnitude. For the local resonance PC, the wavelength relevant to the band gap is 
much greater than the lattice constant.

The changes of lattice types and material parameters can affect the BGs of PC16–20. How to obtain the new 
configurations with wider BGs is the key factor for design of PC. Topology optimization is a method to show 
how to place material within a prescribed design domain in order to obtain the best structural performance21 and 
can be used to design material distributions in PC. Initial contribution to topological optimization of PC comes 
from Sigmund et al.22. The finite element method with the method of moving asymptotes is adopted to optimize 
the PC. The multiple genetic algorithm method with the adaptive fuzzy fitness granulation23 can be also used 
for topological optimization in PC. The procedure converges much faster than the conventional algorithm. The 
bi-directional evolutionary structural optimization algorithm24 are more efficient due to the sensitivity analysis 
of the double eigenvalues. For one-dimensional PC unit cell25, optimization is mainly focused on the design of 
material thickness. But for two-dimensional case26, material distribution becomes the main factor which needs to 
be designed for optimization. Topological optimization can be further applied to metal matrix composite systems 
and fluid-filled porous media27. The optimization method mentioned above can also be used to design the PC 
for unidirectional acoustic transmission28 by maximizing the minimum imaginary part of the wave vector in a 
specific direction instead of creating the widest BG directly.

The topological methods like the homogenization method29 and evolutionary structure method30 are widely 
used for many useful designs. Compared with the traditional optimization method, genetic algorithm is selected 
due to its self-organization and self-study strategies for optimization31,32. When genetic algorithm runs by use 
of the information obtained in the evolutionary process, the individuals with higher fitness have higher survival 
probability and more adaptive gene structures can be obtained.

The plane wave method is one of the most widely used algorithms in the calculation of the band structure 
or field distribution because of its fast convenience33,34. Elastic constants, density and other parameters can 
be expanded by Fourier series because the PCs are periodic. Combined with Bloch’s theorem, the elastic wave 
equation can be expanded as superposition of plane waves in the reciprocal space. The band structure of PC is 
obtained by solving the eigen-equation transformed from the wave equation.
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The manufacturing issues can affect the final properties of PC. At present, manufacturing methods of metama-
terials mainly includes Fused Deposition Modeling (FDM)35,36, Stereo Lithography Apparatus (SLA)37,38, Selected 
Laser Sintering/Melting (SLS/SLM)39,40, Direct Laser Writing (DLW)41,42 and Polymer Injection Technology 
(PIT)43,44. The manufacturing issues can affect the final properties. However, theoretical test verification and 
functional device applications are fundamental issues for PC design regardless of manufacturing types. So, the 
current research is still focusing on theoretical test verification and functional device applications. Significant 
achievements have been made by combination of topological optimization with PC design. However, the topol-
ogies of PCs can be affected by the given parameters for design, e.g. the filling rates, symmetry, polymerization 
degree and material parameters. So, it is necessary to investigate how the given material parameters affect the 
final topology of PC. In this paper, the optimization design of the PC thin plate is studied when the influence 
factors are considered to obtain the maximum relative band gap based on the plane wave expansion method and 
the genetic algorithm. The unit cell is divided into N × N elements and each element is filled with epoxy resin 
or aluminum randomly. The optimal topological configuration of the PC plate can be obtained. The key factors, 
including filling rates, symmetry, polymerization degree and material parameter for the generation of band gaps, 
are correlated with different optimal topologies. By this design method on key factors including the filling rates, 
symmetry, polymerization degree and material, the optimal PC with much wider band gap features on given 
conditions can be obtained.

Model and Method
Analysis of the thin PC plate.  A 2D PC thin plate is discussed. The lattice constant is a = 0.02 m. As we can 
see in Fig. 1(a), the unit cell is a square lattice which is divided into 10 × 10 elements. Epoxy resin and aluminum 
are chosen as the material of the substrate and the scatterer respectively. The material parameters of the epoxy and 
aluminum are given as follows: the density ρe = 1180 kg/m3, the elasticity modulus Ee = 0.435 × 1010 Pa and the 
Poisson’s ratio ve = 0.159 for epoxy resin; the density ρa = 2730 kg/m3, the elasticity modulus Ea = 7.76 × 1010 Pa 
and the Possion’s ratio va = 2.87 for aluminum.

For each element in unit cell, the material parameters are defined as:

ρ ρ ρ= − +x x x( ) (1 ) (1a)i i ia e

E x x E x E( ) (1 ) (1b)i i ia e= − +

ν ν ν= − +x x x( ) (1 ) (1c)i i ia e

where i ∈[1, 2, 3, …100], xi = 0 or 1.
The study of the thin plate can be regarded as the plane stress state because the thickness of the plate is much 

less than the lattice constant. When the elastic wave propagates in the thin plate, the stress-strain relation can be 
expressed as45:
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Figure 1.  The unit cell. (a) 10 × 10 cell structure (b) displacement characteristic.
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The longitudinal wave equation is45:
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Bring the stress-strain relation into the wave equation:
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where E/(1 )2α ν= − , β ν ν= −E /(1 )2 , E/(2(1 ))μ ν= − .
By the plane wave expansion, the characteristic equations are obtained:
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For the center element P0 in Fig. 1(b), the Fourier expansion coefficient of the parameters is 0 when it is filled 
with the epoxy resin. When P0 is filled with the aluminum, the Fourier expansion coefficient of the parameters 
can be expressed as:
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where g represents the parameters ρ, α, β, μ
According to the Fourier displacement property, the Fourier expansion coefficient of the parameters of the 

element Pr (Pr ∈ Pa, Pa: the set of the elements including the aluminum) in Fig. 1(b):
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For the unit cell:
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At the same time, the method combined with PWE and GA can be extended to multi-material PC structure. The 
computational costs can be increased according to46 for optimization in multi-material case. When this method is 
extended to three-material, the stress-strain relation and wave equation remain unchanged. However, the material 
expression Eq. (1) need to be the linear combination of the material parameters and xi in Eq. (1) should changes to 
be 0 or 1 or 2. At the same time, Eq. (8), the Fourier expansion coefficient of the parameters which can influence 
the calculation of the characteristic equation Eq. (5), should change to be the combination of two other materials:
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The algorithm can also be extended to 3D PC optimization. When this method is extended to 3D PC, the gov-
erning equation Eq. (4) should be changed to add the vibration along z-direction according to47. So, the calculation 
of the band gap includes two conditions: in-plane and out-plane models. The calculation of the Fourier expansion 
coefficient of the parameters, Eq. (6) is also changed according to48 in the plane wave expansion method. For opti-
mization, the computational costs are obviously increased when PC changes from 2D to 3D structure according to49.

The genetic algorithm.  The genetic algorithm starts with initializing a population of Np = 20 chromo-
somes randomly. The chromosomes are then evaluated by the plane wave expansion method. The objective func-
tion is the relative band gap (RBG) width and the optimization can be simplified as:

To find ρ(xi)
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where X is the chromosome of the topological configuration, k is the wave vector, j is the number of band, f is the 
filling rate of the unit cell.

GA operation includes selection, crossover and mutation after population initiation. The roulette wheel selec-
tion algorithm, called proportional selection algorithm, is mainly used in the optimization algorithm50. The prob-
ability of being selected for each individual is proportional to its fitness. In this paper, we use this method to select 
individuals with larger fitness as the parents for next generation in the selection operation. The algorithm of the 
roulette is as follows:

	(1)	 Calculate the fitness fi (i = 1, 2 …, M) for each individual xi, M is the population size.
	(2)	 Calculate the corresponding individual selection probability:

=
∑ =
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	(3)	 Calculate individual cumulative probability:

∑=
=
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	(4)	 Generate a uniformly distributed random pseudorandom number t, t ∈ [0, 1].
	(5)	 If t ≤ q1, then the individual x1 is chosen; else, the individual xk is chosen if qk−1 < t ≤ qk (2 ≤ k ≤ M)
	(6)	 Repeat the steps (4) and (5) M times.
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The multi-point crossover is adopted according to the characteristics of the thin PC plate chromosome to 
make the population keep high diversity and avoid trapping the local optimum. Generation with new individuals 
can be produced by altering the values of some genes of the chromosome in the mutation operation. The muta-
tion and the crossover parameter can directly affect the convergence of the algorithm. If the crossover rate Pc 
and the mutation rate Pm are fixed values, there are a lot of disadvantages like the destruction of the diversity of 
the population and the individuals with high fitness and the stagnant process. So the adaptive genetic algorithm 
proposed by Srinvivas51 is adopted. The crossover rate Pc and the mutation rate Pm can change with the fitness. 
The Pc and Pm increases when the population traps in local optimum. For the individual with large fitness, the Pc 

Figure 2.  The genetic algorithm evolution flow chart.

Figure 3.  Convergence curves of the best fitness and the average fitness of evolution generation for the RBG 
optimization of thin PC plate.
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and Pm becomes small to make the individual move to the next generation. So the current mutation scheme from 
Srinvivas ensures the convergence of genetic algorithm while maintaining the diversity of population. The Pc and 
the Pm are defined as51:
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Figure 4.  The topological optimization results. (a) The optimal configuration. (b) The corresponding band 
structure by GA (c) band structure by Comsol.

Figure 5.  The topological optimization results for different N. N = 8: (a) the optimal configuration (b) the 
corresponding band structure. N = 12: (c) the optimal configuration (d) the corresponding band structure.
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Figure 6.  The opmization results for different filling rate. the topological configuration: (a) f = 0.2 (d) f = 0.32 
(g) f = 0.44 (j) f = 0.56; the 3 × 3 unit cells: (b) f = 0.2 (e) f = 0.32 (h) f = 0.44 (k) f = 0.56; the corresponding 
band structure: (c) f = 0.2 (f) f = 0.32 (i) f = 0.44 (l)f = 0.56.
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where fmax is the maximum fitness of the population, favg is the average fitness of the population, f ′ is the bigger fit-
ness of the two individuals in crossover operation, f is the fitness of the individual in mutation operation, Pc1 = 0.9, 
Pc2 = 0.6, Pm1 = 0.1, Pm2 = 0.001.

The genetic algorithm evolution flow chart is shown in Fig. 2.

Results and Discussions
The influence of the filling rate.  The optimization of the relative band gap is performed when the filling 
rate is not fixed. The convergence criterion is the continuous equality of the best fitness and the average fitness. 
In fact, we have tested to calculate 500 generations. But after 150 generations, the best fitness converges a stable 
value of 0.56. So only 200 generations are given in Fig. 3. For each time for our calculation, the generated different 
random state leads to the same optimal configurations. The convergence speed is rapid in the earlier stage of the 
evolution and it becomes slower in the following stage. The average fitness of the first generation is 0.02 so that 
the BG is very small or even did not exist for the most initial individuals produced randomly in the earlier stage 
of the evolution. But the best fitness of the first generation is 0.1 so that the band gap of the thin PC plate opens 
and can be found easily.

The unit cell obtained from topological optimization is shown in Fig. 4(a). It can be seen that the unit cell is 
a simple lattice structure with square scatterer. The corresponding filling rate of the scatterer is 0.64. The corre-
sponding band structure is plotted in Fig. 4(b). The absolute BG is ranged from 63.9 kHz to 113.9 kHz between 
the third and fourth bands. The optimal RBG is 0.56. To verify the current algorithm, the band structures of PC 
thin plate is recalculated by the finite element software Comsol when the filling rate is 0.64 in Fig. 4(c). Because of 
the periodicity of the structure, only one unit cell is calculated. Stress-free boundary conditions are imposed on 

Figure 7.  Variation of the RBG with the filling rate.

Figure 8.  The first Brillouin zone.

https://doi.org/10.1038/s41598-019-44850-8
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the free surfaces and the periodic boundary conditions on the two opposite boundaries of the unit cell according 
to the Bloch theorem. By sweeping the wave vectors in the first irreducible Brillouin zone, the Bloch calculation 
gives the eigen-frequencies. Then the band structure is obtained. The RBG is 0.58. The error is smaller than 0.05%.

The optimization above is studied when N = 10. For different N, the optimization results are calculated. As 
we can see in Fig. 5(a), the optimal unit cell for N = 8 is also a simple lattice structure with square scatterer. The 
corresponding filling rate of the scatterer is 0.56. The optimal RBG is 0.55 in Fig. 5(b). When N = 12, the optimal 
unit cell changes and the corresponding filling rate is 0.64. The optimal RBG is 0.51. With the calculations of band 
gap based on the obtained configurations with different element numbers, the wider band gap can be obtained 
when the element number is 10 × 10. So, we selected 10 × 10 as fixed mesh for optimization in current work. 
Fixed mesh strategy is widely used in shape and topology optimization, as shown in52,53.

When the material of the substrate or the scatterer is limited, it is necessary to obtain wider BG by PC plate 
with adaptive configuration. The optimization including the optimal configurations, the corresponding 3 × 3 unit 
cells and the corresponding band structures of the thin PC plates for different filling rate are studied and given in 
Fig. 6. The filling rate f is selected at regular intervals. When f = 0.2, the optimal configuration of the scatterer is a 
square with corners along the diagonal in Fig. 6(a,b). The band gap is ranged from 35.9 kHz to 40.9 kHz and the 
RBG = 0.13 in Fig. 6(c). When f = 0.32, the band gap is ranged from 36.5 kHz to 50.2 kHz and the RBG = 0.32 in 

Figure 9.  Variation of the RBG with the symmetry. The topological configuration: (a) four-axis symmetry (b) 
biaxial symmetry (c) uniaxial symmetry; The corresponding band structure: (d) four-axis symmetry (e) biaxial 
symmetry (f) uniaxial symmetry.

Figure 10.  Variation of RBG with dispersion coefficient.
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Figure 11.  Effect of the material parameters on optimization results. (a) The relative Young’s modulus (b) the 
relative density.

Figure 12.  The optimization results for different relative density. ρ2/ρ1 = 3.2: (a) 3 × 3 optimal unit cells (b) the 
optimal band structure; ρ2/ρ1 = 4.0: (c) 3 × 3 optimal unit cells. (d) the optimal band structure.
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Fig. 6(f). When f = 0.44, the band gap is ranged from 56.3 kHz to 87.5 kHz and the RBG = 0.43 in Fig. 6(i). When 
f = 0.56, the band gap is from 62.5 kHz to 104.1 kHz and the RBG = 0.49 in Fig. 6(l).

The variation of the widest RBG for different filling rate is discussed. As shown in Fig. 7, the RBG increases 
firstly when the filling rate increases to 0.64. In the case where filling rate is less than 0.64, the reflection and 
refraction becomes stronger because of the increasing contact area between the aluminium and the epoxy resign 
when the filling rate increase. However, when the filling rate increases, the interaction between the adjacent 
scatterers becomes stronger so that the pass band becomes wider and the band gap becomes narrower in the case 
where filling rate is greater than 0.64.

The influences of the symmetry and material parameters.  The variation of the RBG is discussed 
when the symmetry is changed. In initial optimization, filling rate is a parameter being selected to be state varia-
ble in topological optimization. Now, it is selected to be 0.36 randomly to study the effect of symmetry parameters 
on RBG. The first Brillouin zone is shown in Fig. 8. Three kinds of PCs with different symmetries are shown in 
Fig. 9 when filling rate is 0.36. For the four-axis symmetry PC in Fig. 9(a), the RBG is 0.33. The RBG of the biaxial 
symmetry PC in Fig. 9(b) is 0.27. For the uniaxial symmetry PC in Fig. 9(c), the RBG is 0.24. When the topolog-
ical configuration of the filling material is highly symmetrical, wider band gap can be obtained. The width of the 
band gap decreases when it is symmetrical only along one or two axes.

Define the coefficient of the dispersion as the quantity of the blank elements in the scatterer to represent the 
extent of polymerization of the PC. As shown in Fig. 10, when the coefficient increases, the relative band gap 
decrease. It has no band gap when coefficient of the dispersion increase to 40. The structure has good band gap 
only when the filling material is highly concentrated. When the coefficient of the dispersion increases, the dis-
tance between the adjust scatterers decreases. The interaction between the adjacent scatterers becomes stronger 
so that the pass band becomes wider and the band gap becomes narrower. At the same time, the scatterer effective 
density becomes smaller when the dispersion coefficient is increased in constant filling rate. BG width decreases 
when the density ratio between the scatterer and the substrate decreases.

The influences of the material parameters including Young’s modulus and density on the optimization results 
are considered when the filling rate is ignored. In Fig. 11(a), the optimal configuration which includes a square 
scatterer remains unchanged when the relative Yong’s modulus increases. The optimized relative band gap 
becomes wider because of the high contrast Young’s modulus. As shown in Fig. 11(b), the optimized relative BG 
increases when the relative density ρ2/ρ1 increases. The corresponding optimal configurations are different.

When ρ2/ρ1 = 3.2, the scatterer is a square with missing corners as shown in Fig. 12(a). As we can see in 
Fig. 12(b), the band gap is located between the third and the fourth bands. As for the ρ2/ρ1 = 4.0, the optimal 
configuration consists a complete graph in center and quarters of the complete graph in four corners of the unit 
cell as shown in Fig. 12(c). The corresponding band gap is located between the seventh and the eighth bands in 
Fig. 12(d).

Conclusions
In this paper, the PC thin plate with maximum RBG is designed by the genetic algorithm in combination with 
plane wave expansion method. Filling rates, symmetry, polymerization degree and material parameters are key 
factors for design of topological configurations and can lead to different topologies of phononic crystals. When 
the filling rate is ignored, the optimal configuration is a unit cell with a square scatterer that the filling rate is 0.64. 
For given filling rate, the optimization is also considered. The topological relative band gap increases first and 
then decreases when the filling rate increases. The optimal configurations are also different for different filling 
rate. The structure has good band gap only when the filling material is highly concentrated. The effects of the 
material parameters on the optimization are also considered. The discussions can provide an effective tool for the 
design of the PC thin plate with desired band gap.
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