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Abstract
Many studies have highlighted the pathological involvement of iron accumulation and iron-related
oxidative stress (OS) in Alzheimer's disease (AD). Iron was further demonstrated to modulate
expression of the Alzheimer's amyloid precursor holo-protein (APP) by a mechanism similar to that
of regulation of ferritin-L and -H mRNA translation through an iron-responsive element (IRE) in
their 5' untranslated regions (UTRs). Here, we discuss two aspects of the link between iron and
AD, in relation to the recently discovered IRE in the 5'UTR of APP mRNA. The first is the
physiological aspect: a compensatory neuroprotective response of amyloid-β protein (Aβ) in
reducing iron-induced neurotoxicity. Thus, given that Aβ possesses iron chelation sites, it is
hypothesized that OS-induced intracellular iron may stimulate APP holo-protein translation (via the
APP 5'UTR) and subsequently the generation of its cleavage product, Aβ, as a compensatory
response that eventually reduces OS. The second is the pathological aspect: iron chelating
compounds target the APP 5'UTR and possess the capacity to reduce APP translation, and
subsequently Aβ levels, and thus represent molecules with high potential in the development of
drugs for the treatment of AD.

Introduction
There is increasing evidence that iron accumulation in the
brain can cause a vast range of disorders of the central
nervous system. It has become apparent that iron progres-
sively accumulates in the brain with age [1,2], and that
iron-induced oxidative stress (OS) can cause neurodegen-
eration [3]. Free iron induces OS through its interaction
with hydrogen peroxide (Fenton reaction), resulting in

increased formation of hydroxyl free radicals. Free radical-
related OS causes molecular damage that can then lead to
a critical failure of biological functions and ultimately cell
death [4,5].

In Alzheimer's disease (AD) pathology, iron is signifi-
cantly concentrated in and around amyloid senile
plaques, and neurofibrillary tangles (NFTs), leading to
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alterations in the pattern of the interaction between iron
regulatory proteins and their iron responsive elements
(IREs), and disruption in the sequestration and storage of
iron [6,7]. Also, high levels of iron have been reported in
the amyloid plaques of the Tg2576 mouse model for AD,
resembling those seen in the brains of AD patients [8]. In
addition to the accumulation of iron in senile plaques, it
was demonstrated that the amount of iron present in the
AD neuropil is twice that found in the neuropil of non-
demented brains [6]. Further studies have suggested that
accumulated iron supports the AD pathology as a possible
source of OS-dependent reactive oxygen radicals, demon-
strating that neurons in AD brains experience high oxida-
tive load [9-12]. Post mortem analysis of AD patients'
brains have revealed activation of two enzymatic indica-
tors of cellular OS: heme oxygenase-1 [13] and NADPH
oxidase [14]. Also, heme oxygenase-1 was greatly
enhanced in neurons and astrocytes of the hippocampus
and cerebral cortex of AD subjects, co-localizing to senile
plaques and NFTs [15]. A recent study reported that ribos-
omal RNA provided a binding site for redox-active iron
and serves as a redox center within the cytoplasm of vul-
nerable neurons in AD brain, in advance of the appear-
ance of morphological change indicating
neurodegeneration [16]. In addition, other evidence sug-
gests that the metabolism of iron is disrupted in AD. For
example, the location of the iron-transport protein trans-
ferrin in senile plaques, instead of its regular location in
the cytosol of oligodendrocytes, indicated that it becomes
trapped within plaques while transporting iron between
cells [17]. The mediator of iron uptake by cells, melan-
otransferrin, and the iron-storage protein ferritin are
altered in AD and are expressed within reactive microglial
cells that are present both in and around senile plaques
[18,19].

Previous studies assessing the effects of certain genes
encoding proteins involved in iron metabolism, such as
hemochromatosis (HFE) and Transferrin (TF) genes, on
the onset of AD have been contradictory [20,21]. At the
biochemical level, iron was demonstrated to facilitate the
aggregation of β-amyloid peptide (Aβ) and increase its
toxicity [22]. Indeed, the iron chelator deferrioxamine
(DFO) prevented the formation of β-pleated sheets of
Aβ1–42 and dissolved preformed β-pleated sheets of
plaque-like amyloid [23]. Also, iron induced aggregation
of hyperphosphorylated τ (tau), the major constituent of
NFTs [24].

A direct link between iron metabolism and AD pathogen-
esis was provided recently by Rogers et al. [25], who
described the presence of an IRE in the 5' untranslated
region (5'UTR) of the amyloid precursor protein (APP)
transcript. Thus, APP 5'UTR is selectively responsive to
intracellular iron levels in a pattern that reflects iron-

dependent regulation of intracellular APP synthesis.
Indeed, iron levels were shown to regulate translation of
APP holo-protein mRNA in astrocytes [26] and neuroblas-
toma cells [25] by a mechanism similar to iron control of
the translation of ferritin-L and -H mRNAs via IREs in
their 5'UTRs.

This review will discuss two main aspects of the link
between iron and AD in relation to the recently discovered
IRE in the 5'UTR of APP mRNA. First is the physiological
aspect, which considers the neuroprotective response of
Aβ in reducing iron-induced neurotoxicity. Thus, given
that Aβ possesses iron chelating sites, it may be hypothe-
sized that OS-induced intracellular iron levels stimulate
APP holo-protein translation (via the APP 5'UTR) and the
subsequent generation of its cleavage product, Aβ, as a
compensatory response that eventually reduces OS. Sec-
ond is the pathological aspect, which considers iron che-
lator compounds targeting the APP 5'UTR that possess the
capacity to reduce APP translation, and subsequent Aβ
generation, as molecules with high potential in the devel-
opment of drugs for the treatment of AD (Figure 1).

Aβ generation as a compensatory mechanism
Conflicting results have been reported in recent literature
concerning whether the interaction between Aβ and iron
is neurotoxic or neuroprotective [27]. Thus, while in vitro
studies demonstrate that Aβ can induce OS and neurotox-
icity (at high concentrations of aged Aβ), it is apparent
from other reports that OS promotes Aβ generation (per-
haps as a result of altered metal iron metabolism), pre-
sumably as a protective/compensatory response, leading
to reduced neuronal OS. Consistent with this, amyloid
plaques and NFTs in the cortex were found to be inversely
correlated with OS markers (for example, 8-hydroxygua-
nosine) [28], indicating that oxidative damage is an early
event in AD that decreases with disease progression.
Indeed, in different APP transgenic mouse lines, the subtle
functional deficits occur before the formation of amyloid
plaques [29]. In addition, various sources of OS (for
example, H2O2, UV, and reactive oxygen species (ROS))

Chemical structures of the novel multifunctional iron chela-tors M30, HLA20 and VK28Figure 1
Chemical structures of the novel multifunctional iron chela-
tors M30, HLA20 and VK28.
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have been demonstrated to increase neuronal Aβ produc-
tion [30-32]. Moreover, Aβ has been shown to be upregu-
lated by many forms of stress conditions, including
apoptosis, ischemia, shortage of energy supply, hypoglyc-
emia, and brain injury [33-35]. The levels of β-secretase
were markedly increased by oxidative agents, with conse-
quent augmentation of the levels of carboxy-terminal
fragments of APP [36,37], further suggesting that OS may
be the cause of Aβ production. Taken together, these stud-
ies suggest that Aβ formation may be a response to, rather
than a cause of, neurotoxic oxidative challenge.

Previous studies have reported similarities between APP
holo-protein and ferritin gene expression, both of which
are driven by translational regulatory events [38]. The
expression of the APP gene was up-regulated at the trans-
lational level by iron and interleukin-1, which was paral-
leled by the action of 5'UTR sequences that are similar to
the 5'UTR sequences in the mRNA coding for the L- and
H-subunits of ferritin. Evidently, IRE-dependent pathways
govern the post-transcriptional expression of many pro-
teins involved in iron metabolism, in addition to ferritin
and transferrin receptor.

Aβ has been characterized as a metalloprotein that binds
transition metal ions via three histidines and a tyrosine
residue located in the hydrophilic amino-terminal part of
the peptide. Thus, given that Aβ is a metalloprotein that
possesses strong chelating properties for transition metal
ions [27], it is proposed that Aβ generation under oxida-
tive conditions may be aimed at sequestering metal ions
in order to prevent further potentional oxidative damage.
Consistent with this, previous studies demonstrated that
the injection of Aβ-iron complexes into rat cerebral cortex
was less toxic than iron alone [39]. Additionally, Aβ1–40
at 5 μM was found to protect primary neuronal cultures
from the neurotoxicity of iron [40,41]. Recent findings
demonstrated that three histidine residues in Aβ control
the redox activity of iron, indicating that Aβ is likely to be
an important antioxidant. Thus, it was shown that Fe3+-
catalyzed ascorbate oxidation and hydroxyl radical gener-
ation were inhibited in the presence of Aβ1–40 or Aβ1–42
[42].

Here, we analyzed the capacity of Aβ to reduce iron-
induced cell death in Chinese hamster ovary (CHO) cells
stably transfected with the APP 'Swedish' mutation
(CHO/ΔNL), which express elevated levels of holo-APP in
cell lysate and Aβ1–40 and Aβ1–42 peptides in the
medium compared to controls (Figure 2). Indeed, as dem-
onstrated in Figure 3, CHO/ΔNL cells provided significant
increased protection against iron-mediated cell toxicity
compared to control CHO cells, further suggesting that Aβ
significantly reduced the neurotoxicity of iron. Based on
these findings, we hypothesize that the IRE of the 5'UTR

of the APP transcript may be linked to the compensatory
response of Aβ that helps neurons cope with altered iron
homeostasis. Figure 4 illustrates the main physiological
iron homeostatic mechanisms, including the IRE in the
5'UTR of the APP mRNA as a potential target involved in
the compensatory response of Aβ. First, following moder-
ate OS conditions and abnormal iron metabolism, APP
synthesis is enhanced via the APP-5'UTR; second, as Aβ is
a cleavage product of APP, the increase in APP level will be
accompanied by elevation of Aβ generation; and third, Aβ
peptides may have compensatory/neuroprotective prop-
erties as a result of their ability to trap free iron [27]. In
addition to known iron regulation targets (for example,
transferrin receptor, ferritin), the formation of Aβ pep-
tides may be considered a novel compensatory response
that reduces moderate OS damage.

Iron chelation for the treatment of AD
Under extreme pathological conditions – that is, at some
threshold level of ROS generation – it appears that the
main role of Aβ switches from neuroprotective to dys-
homeostatic in terms of cerebral biometals and APP/Aβ/
metal-redox complexes, leading to a vicious cycle of
increased ROS production and Aβ generation. Chelation
has the potential to prevent iron-induced ROS, OS, and
Aβ aggregation and, therefore, chelation therapy may be
considered a valuable therapeutic strategy for AD. In fact,
intramuscular administration of DFO, a potent iron che-
lator, slowed the clinical progression of AD dementia [43]

APP expression in CHO cellsFigure 2
APP expression in CHO cells. (A) A representative western 
blot analysis of cellular holo-APP in CHO cells and CHO 
cells stably transfected with the APP 'Swedish' mutation 
(CHO/ΔNL). Cellular holo-APP was detected in cell lysates 
with 22C11 antibody (directed to the APP amino terminus). 
The loading of the lanes was normalized to levels of β-tubu-
lin. (B) Aβ was detected in the medium of CHO and CHO/
ΔNL cells by immunoprecipitation and western blotting with 
monoclonal antibody 6E10 (which recognizes an epitope 
within residues 1–17 of Aβ domain). (C) Aβ1–40 and Aβ1–
42 levels were measured using standard sandwich ELISA 
(BioSource, Camarillo, California, USA).
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and some success has also been achieved with clioquinol,
another metal-complexion agent [44,45]. However, clio-
quinol is highly toxic and DFO has poor blood-brain bar-
rier penetration.

The identification of an IRE in the 5'UTR of the APP tran-
script led to a novel therapeutic approach aimed at reduc-
ing amyloidosis by FDA pre-approved drugs targeted to
the IRE in the APP mRNA 5'UTR [38]. For example, the
APP 5'UTR-directed drugs DFO (Fe3+ chelator), tetrathio-
molybdate (Cu2+ chelator), and dimercaptopropanol
(Pb2+ and Hg2+ chelator) were found to suppress APP
holo-protein expression and lower Aβ secretion
[38,46,47]. In addition, the bi-functional molecule XH-1,
which contains both amyloid-binding and metal-chelat-
ing moieties, was shown to reduce APP expression in SH-
SY5Y cells and attenuate cerebral Aβ in PS1/APP trans-
genic mice [48]. Additional drug classes were also
reported to suppress the APP 5'UTR and limit APP expres-
sion, including antibiotics, selective serotonin reuptake
inhibitors, and other selective receptor antagonists and
agonists [47].

The concept of metal chelators for clinical use in neuro-
logical disorders that could remove excess iron in the
brain recently led our group to develop non-toxic,
lipophilic, and brain permeable iron chelators for neuro-
degenerative diseases. The novel iron chelator VK28 (var-
inel) [49] and the multi-functional drugs HLA20 and M30
(Figure 1) [50], which possess the potent iron chelating
activities and neuroprotective properties of N-propar-
gylamine, were recently shown to induce a significant
down-regulation of membrane-associated holo-APP lev-
els in the mouse hippocampus and in human SH-SY5Y
neuroblastoma cells, presumably by chelating intracellu-
lar iron pools [51]. Indeed, the iron chelator drugs VK28,
HLA20, and M30 (Figure 1) were found to suppress trans-
lation of a luciferase reporter mRNA via the APP 5'UTR
sequence (Table 1) [51]. Furthermore, M30 markedly
reduced the levels of the amyloidogenic Aβ in the medium
of CHO cells stably transfected with the APP 'Swedish'
mutation (CHO/ΔNL) [51]. In addition, naturally occur-
ring polyphenols – for example, EGCG ((-)-epigallocate-
chin-3-gallate)and curcumin – might be used as another
novel and promising therapeutic approach for treating
AD. Both compounds have well characterized antioxidant

Table 1: Effect of M30 and HLA20 on APP 5'UTR- conferred 
translation of a luciferase reporter mRNA

Drug Inhibition (% of control)

M30 (20 μM) 7.1 ± 1.07 *
M30 (100 μM) 33.7 ± 8.3†

HLA20 (20 μM) 16.2 ± 2.4†

HLA20 (100 μM) 27.3 ± 2.9 *
VK28 (20 μM) 26.6 ± 7.7†

VK28 (100 μM) 40.2 ± 7.5†

Since there is a functional IRE in the 5'UTR of APP mRNA, we further 
investigated the efficacy of the iron chelator drugs M30, HLA20 and 
VK28 to modulate the translation of a luciferase reporter gene driven 
by APP 5'UTR sequences. The assay was performed essentially as 
described in Reznichenko et al. [56]. The pGALA construct was 
generously provided by JT Rogers (Massachusetts General Hospital, 
Boston, MA, USA). Human U-87-MG glioma cells, selectively chosen 
for their high transfection efficiency, were grown in flasks (100 mm2) 
and transfected with 7 μg of DNA from the parental vector pGL-3 or 
pGALA constructs and co-transfected with 3 μg of DNA from a 
construct that expresses green fluorescent protein (GFP) to 
standardize for transfection efficiency. The pGALA consists of a pGL-
3 backbone to which the APP 5'UTR sequences (containing the IRE) 
were inserted in front of the luciferase gene start codon and the 
complete APP 3'UTR sequences immediately downstream of the 
luciferase, to provide the natural arrangement of the APP gene 5' and 
3'. After 12 h, the cells were split equally into 96-well plates and 
grown without (control) or with the iron chelator drugs M30, HLA20 
or VK28 for 48 h. Cell viability was established by a fluorescent 
microscopic examination of each well, quantified for GFP activity at 
480/509 nm wavelength (using an automatic Wallac-1420 multilabel 
counter) and then lysed to determine luciferase activity. For statistical 
analysis one-way ANOVA followed by Student's t-test was 
performed. Quantitative values are mean ± standard error of the 
mean (n = 3). †P < 0.05, *P < 0.01 versus control was considered 
significant.

Comparison of viability between CHO and CHO/ΔNL cells following FeSO4 treatmentFigure 3
Comparison of viability between CHO and CHO/ΔNL cells 
following FeSO4 treatment. CHO and CHO/ΔNL cells were 
incubated in the absence (Control) or presence of different 
concentrations of FeSO4 (5–20 μM) for 24 h. Viability of the 
cell cultures was determined by the MTT (3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyl tetrazolium bromide) method. The 
data are expressed as percent of Control. Representative 
curves from four independent experiments are shown. *P < 
0.05; **P < 0.01 versus CHO cells.
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and metal-chelating (iron and copper) activities [52-54]
and have been demonstrated to exert neuroprotective
activity against a variety of neurotoxic insults, as well as to
regulate APP processing and Aβ burden in cell culture and
in vivo [55]. EGCG treatment led to a reduction of Aβ lev-
els in CHO/ΔNL [56], murine neuron-like cells (N2a)
transfected with the APP 'Swedish' mutation and primary
neurons derived from 'Swedish' mutant APP-over-express-
ing mice [57]. In vivo, EGCG significantly reduced cerebral
Aβ levels concomitant with reduced Aβ amyloid plaques
in TgAPPsw transgenic mice overproducing Aβ [57].

Our recent studies have shown that prolonged adminis-
tration of EGCG to mice induced a reduction in holo-APP
levels in the hippocampus [58]. In SH-SY5Y cells, EGCG
significantly reduced both the mature and full-length cel-
lular holo-APP without altering APP mRNA levels, as

shown by two-dimensional gel electrophoresis, suggest-
ing a post-transcriptional action [56]. Indeed, we demon-
strated that EGCG reduced the translation of a luciferase
reporter gene fused to the APP mRNA 5'UTR, which
includes the APP IRE [56,58]. The observation that the
alteration in APP following treatment with EGCG was
blocked by exogenous iron provides further support to the
implication of the metal-chelating property of EGCG in
the regulation of iron homeostasis-associated proteins. A
recent study reported the development of a high-through-
put screen (library of 110,000 compounds from the Lab-
oratory for Drug Discovery on Neurodegeneration) to
identify APP mRNA 5'UTR-directed compounds that may
be developed into therapeutic agents for AD [59]. Table 2
summarizes the effects of various compounds (1–50 μM)
that were demonstrated to limit APP 5'UTR-conferred
translation on holo-APP and Aβ levels.

Schematic representation of physiological iron homeostasis mechanisms, including Aβ generation as a compensatory process that reduces OS damage and the pathological mechanisms of iron-induced neurodegeneration in AD and its prevention by iron chelatorsFigure 4
Schematic representation of physiological iron homeostasis mechanisms, including Aβ generation as a compensatory process 
that reduces OS damage and the pathological mechanisms of iron-induced neurodegeneration in AD and its prevention by iron 
chelators.
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Finally, a new, additional aspect of iron chelator com-
pounds in the etiology of AD therapy is related to their
ability to abort anomalous cell cycle re-activation in post-
mitotic degenerating neurons. Indeed, during the last few
years accumulating evidence for an activated cell cycle in
the vulnerable neuronal population in AD has suggested
a crucial role for cell cycle abnormalities in AD pathogen-
esis. Therefore, therapeutic interventions targeted towards
ameliorating mitotic changes would be predicted to have
a positive impact on AD progression. Previous studies
have shown that the re-activation of the cell cycle is an
obligatory component of the apoptotic pathway evoked
by Aβ [60-62]. Recently, we have found that M30 (0.1
μM) significantly reduced the percentage of neurons in S
phase (approximately 50%), while increasing their rela-
tive cell number again in G0/G1 phase (approximately 1.4-
fold) and lowered apoptotic levels after exposure to
Aβ25–35 (25 μM) in primary cultures of rat cortical neu-
rons. In support, the novel iron chelator drugs were previ-
ously shown to induce cell cycle arrest; M30 and HLA20
increased the number of PC12 cells in G0/G1, and
decreased the cell number in S phase, as well as the pro-
portion of cells in the G2 phase, further indicating that
both compounds inhibited cell progress beyond the G0/
G1 phase.

We recently presented a novel neuroprotective target for
iron chelators with regard to the aberrant cell cycle reentry
of postmitotic neurons in AD. Accordingly, similar to can-
cer drug therapy, a newly therapeutic strategy for neurode-
generative diseases is currently directed at interfering with
mitogenic signaling and cell cycle progression to amelio-
rate cell death. Because iron chelators have been shown to
affect critical regulatory molecules involved in cell cycle
arrest and proliferation [55], a therapeutic intervention
with these compounds is assumed to have a profound

impact on neuron preservation and AD progression.
Indeed, our studies revealed that the multi-functional iron
chelators M30 and HLA20 [51], as well as EGCG [63],
induced differentiation features in neuroblastoma and
PC12 cells, including cell body elongation, stimulation of
neurite outgrowth, and up-regulation of the growth asso-
ciated protein-43 (GAP-43). Taken together, the data sug-
gest that iron chelators may be considered potential
therapeutic agents in AD, targeting early cell cycle anoma-
lies, and re-establishing the lost synaptic connection in
the injured neuronal cells.

Conclusion
The presence of an IRE stem-loop in the APP transcript
suggests that this ubiquitous membrane-associated pro-
tein, as well as its cleavage product, Aβ, may have a signif-
icant role in iron homeostasis, as already exemplified by
other iron-associated proteins. Thus, regarding the physi-
ological pathway, Aβ production may be considered a
compensatory or neuroprotective response that reduces
OS damage. In the pathological aspect, novel therapeutic
strategies may comprise iron chelating agents targeted to
the IRE in the 5'UTR of the APP mRNA, specifically pre-
venting iron-induced toxicity and over-production of Aβ.
We have recently designed and synthesized several novel
antioxidant/iron chelators with an 8-hydroxyquinoline
moiety, and demonstrated their capacity to lower the
expression of APP and the generation of Aβ. These latest
findings implicate the therapeutic potential of our drugs
as iron-chelator candidates targeting the regulation of
APP/Aβ in AD.

In addition, considering a recent report describing a puta-
tive IRE in the 5'UTR of Parkinson's disease related α-
synuclein mRNA [64], a parallel can be drawn between
APP and α-synuclein both in the physiological and path-

Table 2: Summary of the effect of various drugs/compounds targeted to the IRE in the APP mRNA 5'UTR on holo-APP and Aβ levels

Drug/compound Mechanism of action Holo-APP levels Aβ levels Reference

M30 Novel multifunctional iron chelator ↓ ↓ [51]
VK28 Novel multifunctional iron chelator ↓ ↓ Unpublished data
HLA20 Novel multifunctional iron chelator ↓ ↓ Unpublished data
EGCG Main polyphenol constituent of green tea ↓ ↓ [56]

FDA approved drugs ↓ ↓
DFO Prototype iron chelator ↓ ↓ [25]
Paroxetine SSRI and chelator ↓ ↓ [47,65]
Dimercapropanol Hg2+ and Pb2+ chelator ↓ ↓ [47]
Phenserine Anticholinesterase ↓ ↓ [66]
Tetrathiomolybdate Cu2+ chelator ↓ ↓ [38]
Azithromycin Macrolide antibiotic ↓ ↓ [38]
Erythromycin Macrolide antibiotic ↓ ↓ [65]
N-acetyl cysteine Antioxidant ↓ ↓ [65]
XH-1 Bi-functional metal chelator ↓ ↓ [48]

Arrows indicate decreased levels. SSRI, selective serotonin reuptake inhibitor.
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ological aspects with respect to iron regulation. Indeed, it
can be predicted that this RNA structure may have the
potential to function as a post-transcriptional regulator of
α-synuclein protein synthesis by age-related iron and
redox pathophysiology upstream of neurodegeneration.
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