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Abstract

Objective.—Advanced robotic lower limb prostheses are mainly controlled autonomously. 

Although the existing control can assist cyclic movements during locomotion of amputee users, 

the function of these modern devices is still limited due to the lack of neuromuscular control 

(i.e. control based on human efferent neural signals from the central nervous system to peripheral 

muscles for movement production). Neuromuscular control signals can be recorded from muscles, 

called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic 

lower limb prostheses control has been an emerging research topic in the field for the past 

decade to address novel prosthesis functionality and adaptability to different environments and 

task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via 

EMG signals recorded from residual muscles in individuals with lower limb amputations.

Approach.—We performed a literature review on surgical techniques for enhanced EMG 

interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb 

prostheses.

Main results.—This review highlights the promise of EMG control for enabling new 

functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge 

gaps, and opportunities on this research topic from human motor control and clinical practice 

perspectives.
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Significance.—This review may guide the future collaborations among researchers in 

neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build 

and translate true bionic lower limbs to individuals with lower limb amputations for improved 

motor function.

Keywords

robotic lower limb protheses; neural–machine interface; EMG; gait and balance; human motor 
control

1. Introduction

A human controlling a prosthetic limb as if it were their own biological limb has fascinated 

biomedical researchers for many decades [1–6]. At the center of this idea is a direct link 

between the human nervous system and the prosthesis actuators, allowing for commands 

from the user to the prosthetic limb. Electromyography (EMG) provides an additional way 

to decode peripheral efferent signals from muscles in the residual limb [7]. EMG signals 

are common control signals for powered upper limb prostheses and have been in use for 

over 50 years [8]. In contrast, EMG control of robotic lower limb prostheses is still in its 

infancy. This is largely because: (a) motorized, robotic lower limb prostheses have only been 

practical as devices in the past decade, and (b) autonomous control of robotic lower limb 

prostheses has been sufficient to support basic locomotive activities in amputee users [9–15].

The time is ripe to develop myoelectric control of lower limb prostheses to maximally 

restore motor function of individuals with lower limb amputations. The mechatronics of 

robotic lower limb prostheses have become more mature, practical, and accessible [15–

17], yet these modern, robotic devices are still limited in function, partly because the 

devices are preprogramed autonomous machines [10, 11, 18–22] unable to directly take 

user input. Current autonomous prosthesis controllers are sufficient to actively assist cyclic 

stepping motions in predictable environments (e.g. a clean floor in clinics), however they are 

inadequate to actively assist versatile daily tasks that require coordination with user intent 

(e.g. anticipatory postural adjustments in standing or walking, performing leisure activities) 

[23, 24]. They also do not provide adaptation to varying, unconstructed environments and 

task contexts (e.g. change of load carriage or walking on uneven terrains) [4, 25]. While 

increasingly complex autonomous control designs are being developed to incrementally 

address these draw-backs, myoelectric control, on the other hand, can be a simple and viable 

solution to resolve these limitations because the human motor control system is highly 

flexible and adaptable to changing tasks and environments.

Publications on EMG control of robotic lower-limb prostheses have started to emerge and 

accumulate in the last decade [4, 5, 26–29]. Decoding algorithms and control frameworks 

have significantly advanced since the early foundational EMG control analysis [1, 30, 

31]. These pioneering studies explored different EMG decoding algorithms and control 

frameworks, brought forth novel functionality in robotic prosthetic legs which cannot be 

easily achieved by autonomous control, and showed feasibility and promise in amputee 

testing. However, none of these existing methods have been adopted by commercial robotic 
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prostheses so far. As myoelectric control of robotic lower-limb prostheses is a growing topic 

of interest in the field, and review of the related literature has been very limited, there is 

a pressing need to summarize existing methods on this topic, understand challenges facing 

translation to the community, and highlight their potential applications and future directions.

Hence, this paper aims to summarize the literature related to EMG control of robotic lower-

limb prostheses and highlight existing challenges, potential solutions, and opportunities 

related to its widespread clinical implementation. One goal of this review is to emphasize 

the need for more fundamental research on the neuromechanics of lower-limb amputees 

using neurally controlled prostheses. A second goal is to highlight the need for innovations 

in neural–machine interfacing technologies in lower-limb prostheses. Lastly, we hope 

to inspire more collaborations across disciplines to further our understanding on the 

potential and limitations of EMG control of robotic lower-limb prostheses, compared to 

current autonomous control. To address our goals, we first review the different surgical 

approaches/muscle nerve configurations and how they could influence EMG control. 

We then summarize the current methods for measuring EMG and the existing EMG 

control paradigms. Finally, we address current opportunities for EMG control to improve 

autonomous Prosthesis control. The resulting knowledge may provide a novel control 

framework for robotic lower-limb prostheses, shared by both autonomy and humans, to 

maximize the mobility of individuals with lower-limb amputations in the future.

2. Literature review

Considerations of the biological configuration of residual muscles, existing sensor 

technology and current control strategies will be needed to advance the field of EMG 

prosthesis control. This section reviews the current state of each of those areas to provide 

a full perspective of the state of EMG control in lower-limb prosthetics. We start with 

residual muscle configurations to summarize existing amputation procedures and how they 

could impact EMG residual muscle signal quality. Section 2.2 reviews current methods 

for measuring residual muscle EMG inside the prosthetic socket. Section 2.3 summarizes 

current EMG control paradigms, in which we focus on supervisory control (i.e. hierarchical 

combination of an EMG decoder for locomotion mode recognition with state-machine-based 

autonomous control) and direct control (i.e. continuous EMG control of prosthetic joint 

mechanics). Within each control paradigm, we layout considerations/approaches as well as 

evaluation methods and reported results. Tables 1 and 2 in the appendix provide additional 

information about study methods and controller information for the reviewed studies.

2.1. Amputated muscle/nerve configuration

The configuration of the muscle–nerve attachment (i.e. to bone or tendon) in the residual 

limb determines how existing biological signaling pathways can be used for prosthetic 

feedback and neuromuscular control [32–34]. Many factors, such as the cause of amputation 

(e.g. traumatic or dysvascular), residual limb length and shape, and subsequent muscle 

atrophy, can influence existing number of motor units, proprioceptors, and afferent neurons, 

which alter muscle fiber function and quality [35–38]. The type of surgical technique 

used for limb amputation is crucial for preservation of muscle tone and length, motor unit 
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recruitment, and proprioception. For example, residual muscles must be stabilized to either 

muscle or bone at appropriate tensions [39, 40] because insufficient or too high tension can 

lead to atrophy, contractures, and/or pain. These resulting issues can affect residual muscle 

activity [39–41] and the quality of EMG signals in prosthesis control.

Traditional surgical techniques for lower limb amputations have had little evolution and do 

not consider the neural interface for prosthesis control [42]. The most common surgery for 

transtibial and transfemoral amputees discards distal tissue around the amputation site and 

fixes isolated muscle bellies through a combination of myodesis and myoplasty [39, 43, 44]. 

Myoplasty sews opposing muscle groups together while myodesis attaches muscles directly 

to bone [39]. The nerves are transected and positioned in soft tissue away from scar tissue, 

the incision, or areas subject to prosthetic socket irritation, with the goal of minimizing 

painful neuromas [39]. Residual muscles after traditional amputation surgery can still be 

activated by the brain and spinal cord, but the EMG patterns during walking are often 

different from the patterns in physically intact humans [45–47].

Recently, novel surgical techniques have been developed that consider the human–machine 

interface of a powered lower limb prosthesis. The goal of the surgical techniques is not 

just to reshape the residual limb, but to improve the neural interface for adaptable, reliable 

neuromuscular control of lower limb prostheses in dynamic real-world environments.

One surgical technique, the agonist–antagonist myoneural interface (AMI), attempts to use 

the body’s natural mechanisms for proprioceptive feedback to enhance prosthetic control 

and embodiment. In the AMI, surgeons reconnect agonist–antagonist residual muscle pairs 

to restore reciprocal muscle function [48]. When the agonist contracts, the mechanical 

linkage stretches the antagonist and vice versa. Such reciprocal contractions engage length 

and force receptors in both muscle-tendon units, resulting in a more natural sensation 

of position and velocity for improved motor control of residual muscles [32, 48, 49]. 

One individual who received the AMI procedure produced more isolated contractions of 

antagonist residual muscles and improved stability in gait-related tasks when using an EMG 

controlled two-degree-of-freedom prosthetic ankle compared to amputees without the AMI 

[32]. The individual also exhibited reflexive prosthesis motions indicating a higher level of 

embodiment. In order to produce this antagonist mechanical linkage for individuals who 

have already received a ‘traditional’ amputation surgery, a regenerative neural interface has 

been proposed to implement AMI through the use of targeted muscle reinnervation (TMR) 

and muscle grafts [50, 51].

TMR is a surgical technique that aims to restore neuromuscular control sources in amputees 

by transferring residual nerves to muscles that are no longer biomechanically functional [33, 

34, 52]. The reinnervated muscles act as a biological amplifier to restore EMG recording 

sites for the missing joint control [33, 34]. For example, the tibial nerve branch for 

transfemoral amputees can be connected to the semitendinosis and the common peroneal 

nerve branch can be inserted into the long head of the biceps femoris [53]. The EMG 

signals from these reinnervated thigh muscles can convey neuromuscular control signals 

for the prosthetic ankle joint. Combining peripheral nerve surgery with EMG based control 

strategies for prosthetics has led to more coordinated control of multi-jointed prosthetic 
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devices. The majority of studies using TMR have been on individuals with upper-limb 

amputations [33, 54, 55], but there is increasing focus on shifting to individuals with 

lower-limb amputations [53].

2.2. Neural interfaces

One of the most critical aspects of neural prosthesis control is the accurate and robust 

sensing of neuromuscular activity (i.e. the control input). The limb–socket interface of 

lower-limb prostheses, which are subject to weight bearing forces, sweat accumulation, 

changes in limb volume, make EMG sensing challenging (discussed more in section 

3). A majority of existing studies on myoelectric control of lower limb prostheses have 

used bipolar surface EMG electrodes to record neuromuscular control signals. One major 

challenge with this approach is the attachment of EMG electrodes within the prosthetic 

socket or liner for reliable EMG recordings without compromising socket suspension or user 

comfort. One study developed several socket-EMG interfaces that integrated commercial 

EMG electrodes on the prosthesis socket directly [56]. Additionally, fluctuations in residual 

limb volume over time can compromise reliable skin contact with the sensor inside the 

socket. Recent studies have used low profile, neonatal EMG sensors within the prosthetic 

socket for successful myoelectric prosthesis ankle control [57, 58]. A novel prosthetic liner 

with embedded dome electrodes and conductive textile fibers [59] can ease the sensor 

placement and wire management and yield reliable skin-electrode contact. Furthermore, new 

flexible, low-profile EMG sensors [60] have the potential to be fabricated directly within the 

prosthetic liner, ensuring comfort and reducing skin contact problems that arise from limb 

volume fluctuations.

Another challenge with myoelectric control of lower limb prostheses can be the placement 

of bipolar EMG electrodes to target specific residual muscles. Although the volume of 

lower-limb muscles is relatively large compared to those in the upper limbs, identifying 

specific muscles is often challenged by atrophy of residual musculature and lack of 

knowledge on amputation procedure. Fite et al used principal component analysis of 

surface EMG to reduce the effect of variation in measured residual muscle activity caused 

by differences in sensor placement across days [27]. This provided some success at 

standardizing the myoelectric signals for prosthetic control.

Implantable EMG sensor interfaces can mitigate limitations accompanying bipolar surface 

electrodes. Wireless intramuscular EMG sensors have been developed recently to transmit 

muscle activity signals from residual muscles to the prosthesis without any transcutaneous 

leads [61–66]. This interface has significant potential to target specific residual muscles 

not reachable with surface EMG and could be surgically implanted in parallel with other 

surgical procedures such as osseointegration or nerve reinnervation. These invasive neural 

interfaces have been, however, primarily tested in upper limb amputees to date. We are 

aware of only one study that implanted wireless intramuscular EMG sensors in lower-limb 

amputees for prosthesis control [64]. Another promising technology is high-density, flexible 

surface EMG. It may provide more information and greater resolution of residual muscle 

activations for prosthesis control. High-density EMG was first used with amputees to 

confirm reinnervation of residual muscles [67, 68]. Other studies have used high-density 
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EMG to remove motion artifacts [69, 70] in walking and measure muscular activity from 

ankle flexors/extensors and invertors/evertors for prosthetic control [71]. High-density EMG 

shows significant potential for future prosthesis control development through integration of 

individual motor unit activations with prosthetic control, targeting specific muscle locations 

easily, and removing artifacts caused by movement.

2.3. EMG control paradigms

Current commercialized robotic prosthetic legs (e.g. PowerKnee™, Össur, Iceland; 

EmPower, Otto bock, Germany) do not rely on active neuromuscular human input for 

control but instead use onboard kinetic/kinematic sensing to drive autonomous controllers 

for pre-programmed activities [72]. These commercial devices employ finite-state machines 

to adjust knee and/or ankle joint impedance or position the joints based on predefined 

states such as the gait phase (e.g. swing and stance) and locomotion mode (e.g. stair ascent 

and level-ground walking) [10, 11, 18]. Transitions between gait phases can be triggered 

by measurements of intrinsic sensors (e.g. a load cell or motion sensor) in the prosthesis, 

while transitions between locomotion modes often requires input from the human user 

(e.g. specific body motions measured by sensors) [14, 73–75]. Existing autonomous control 

approaches are sufficient to assist amputees walking in well-defined environments, but they 

are inadequate for unconstrained tasks that require dynamic user intent and/or adaptation 

with varying environments (e.g. trail hiking, jumping, catching objects). These limitations 

have sparked interest in the research community to develop neural/EMG control that might 

improve adaptability and versatility of robotic lower-limb prostheses. There have been two 

prominent approaches to integrate amputee users’ efferent neural signals (i.e. EMG signals) 

for lower-limb prosthesis control in the current literature: supervisory EMG control and 

direct EMG control (figures 1 and 2).

2.3.1. Supervisory EMG control—In current commercial robotic lower limb 

prostheses, transitions between locomotion modes are achieved manually, which is 

cumbersome. Instead, supervisory EMG control automatically recognizes the user’s 

locomotion mode by EMG pattern recognition (figure 1). By monitoring EMG patterns, 

prostheses can hierarchically adjust low-level autonomous control (e.g. finite state machine) 

to switch control based on recognized locomotion modes [2, 4, 29, 76, 77]. Essentially, 

supervisory EMG controllers are built upon autonomous locomotion-mode-dependent 

prosthesis control, where the joint mechanics in each mode are dominated by the low-level 

autonomous control. In this manner, the supervisory EMG controller acts as a part of a 

finite-state machine and it adjusts the mechanics of prosthesis joints only at the locomotion 

mode transitions.

2.3.1.1. Input signals: In past studies, researchers used EMG signals recorded from 

residual limb muscles as neural inputs for locomotion mode recognition [4, 29, 78–81]. 

EMG electrodes are typically placed on the residual limb based on intact muscle anatomical 

location, palpation, and visual inspection of EMG signals [11, 29, 82]. Because EMG 

pattern recognition classified the locomotion mode based on multi-channel signal pattern, 

cross-talk in EMG recordings did not significantly influence classification performance. 

Within the existing studies, as many as nine EMG electrodes on a residual thigh [4] 
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or four electrodes on a residual shank [80] were used. Groups also experimented with 

augmenting classifier inputs with muscles above the amputation level (e.g. the gluteus 

maximus on transfemoral amputees or the thigh muscles of transtibial amputees) [4, 83, 84]. 

However, adding sensors to intact muscles requires additional sensors outside the prosthetic 

socket, increasing the complexity for daily use and sensor setup. Another group found 

TMR surgery on a transfemoral amputee enhanced myoelectric control information recorded 

from reinnervated residual muscles, improving prosthesis control [29, 85]. The participants 

with TMR surgery had around a 40% error reduction rate during virtual movements 

compared to the amputee participants without TMR [29]. Furthermore, pattern recognition 

that combined EMG signals with intrinsic mechanical measures (neuromuscular–mechanical 

fusion) further improved the accuracy and reliability of locomotion mode recognition [26, 

73, 85]. This fusion-based approach outperformed the algorithm that solely used EMG or 

only used mechanical measurements as system inputs [26]. With this, a source selection 

study showed EMG signals were essential for accurate prediction of user locomotion mode 

transitions compared to mechanical measurements alone [78].

2.3.1.2. EMG feature extraction and phase-dependent EMG pattern 
classification: EMG pattern recognition has been widely used for upper limb prosthesis 

control [3, 8, 86–89], but adjustments are necessary for lower-limb prosthesis control. For 

control of upper-limb prosthesis movements (e.g. hand open), the human user must attempt 

the hand motion and hold the posture of the phantom hand. During this period, the EMG 

signals are considered to be stationary, i.e. the distribution of the stochastic signals does not 

change, and therefore the EMG activation pattern is consistent for the classifier to identify 

the user intended motion for continuous prosthesis control. In contrast, EMG signals in the 

lower limbs during walking are non-stationary over a full gait cycle. As a result, a different 

EMG pattern recognition strategy is necessary for lower limb prosthesis control compared 

to upper limb prosthesis control. If we assume that: (a) gait EMG is quasi-stationary within 

a gait phase, and (b) EMG patterns recorded from residual muscles are different between 

locomotion modes, but consistent within the same mode, then a phase-dependent EMG 

pattern recognition strategy can be implemented. This approach has been enacted with a 

system consisting of multiple pattern classifiers, each corresponding to a gait phase [4] 

(figure 1).

In each phase, the pattern recognition includes feature extraction, dimension reduction 

(optional), pattern classification, and post processing of classification decisions (optional). 

Feature extraction is an important step for accurate pattern classification. Selected features 

from the input data sources should maximally extract information that can distinguish 

between locomotion modes (classes). Focusing on EMG features, time domain (e.g. number 

of zero crossings, mean absolute value, and slope sign change) [26, 29, 80, 90] and 

frequency domain (e.g. medium frequency [76], bi-spectrum [77]) features have been used 

previously. Additionally, adding autoregression coefficients for EMG features can account 

for potential signal degradation, fatigue, and motion artifacts [29, 73, 91–93]. Groups 

have also used dimension reduction techniques, such as principal component analysis, to 

reduce the dimension of feature vectors and prevent model overfitting [79, 83, 92, 94]. 

Other feature/source reduction methods explored in lower-limb prosthesis control include 
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sequential forward and backward selection and minimum-redundancy-maximum-relevance 

algorithms [78]. The extracted features were fed to a pattern classifier for locomotion mode 

recognition. A variety of commonly used classifiers have been used, e.g. artificial neural 

networks, support vector machine (SVM), linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), and dynamic Bayesian networks (DBNs). DBN can be 

combined with LDA to provide time history and feed forward information to the classifier 

[92]. The DBN model predicts the future locomotion model, while LDA labels the previous 

stride. This structure is especially helpful with EMG inputs because the classifier can re-

learn EMG patterns over time or across multiple training sessions. Finally, a post-processing 

method, such as majority vote [26], has been considered to further reduce classification 

errors, but increased the system delay for real-time applications.

2.3.1.3. EMG pattern recognition based prosthesis control: In practice, EMG or data 

fusion-based decoders require model training before applying them to real-time prosthesis 

control. Model training requires collection of labeled training data (i.e. input data with class 

labels), followed by establishing the parameters in the classifiers. Collecting enough training 

data for multiple conditions, such as sit-to-stand, ramps, stairs, and level-ground walking 

across multiple speeds could take hours, on top of time needed for tuning/customizing 

prosthesis control parameters for each user [29]. In addition, daily recollection of EMG 

training data for each individual user is required for reliable performance [29, 78]. A means 

for efficient and automatic training data collection could minimize users’ time and effort to 

calibrate the system [95].

During real-time operation, the trained EMG classifier estimates the locomotion mode, 

which triggers task state transitions in the finite-state machine for robotic leg control (figure 

1). One challenge is EMG pattern recognition approaches are sensitive to EMG signal 

variability caused by disturbances (like motion artifacts and electrode location shifts over 

time/multiple sessions) or physiological changes (such as muscle fatigue) [80, 93, 96–99], 

which threatens the reliability of the supervisory EMG control system and user safety. 

Beyond re-training the pattern classifier, other solutions have been proposed to improve the 

robustness of locomotion mode recognition system. For example, classifiers with redundant 

EMG sensors can detect abnormal signals, reject corrupted EMG channels, and only select 

viable EMG signals and mechanical sensor inputs for robust performance [96]. Adaptive 

pattern recognition, which can update the parameters in the classifier while using it in 

real-time, can be another promising solution to allow for robust classifiers better equipped 

to handle real-world settings [92, 100]. Another challenge for supervisory EMG control 

is the definition of timing to trigger the switch for low-level prosthesis control mode 

[101]. Although EMG pattern recognition provides real-time decisions regarding the user’s 

locomotion mode, the low-level controller parameter only updates at one critical timing that 

is defined for each type of task transition. For example, Huang et al defined the critical 

timing for transitions from level-ground walking to stair ascent at the prosthesis foot toe-off 

before stepping on the staircase to ensure a smooth and safe switch of walking terrain 

in amputee users [26]. Table 1 in the appendix summarizes existing literature related to 

EMG-based locomotion mode recognition and supervisory control with detailed approaches 
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used in each study. Note we only included the studies that tested the system on individuals 

with lower-limb amputations in this table.

2.3.1.4. Performance/evaluation metrics: The performance of supervisory EMG control 

systems is typically evaluated by classification error/accuracy rate, the confusion matrix 

during steady state activity, and/or prediction accuracy of task transition and prediction 

time. The reported accuracy rate ranges from 75% to 99%. Usually task transition can be 

predicted accurately before the defined critical timings [26, 77, 92, 93]. The most common 

classification error is between ramps and level-ground walking [29, 92, 102]. However, 

how these engineering performance metrics influence the amputee user’s locomotion 

performance is unclear. Zhang et al systematically studied the influence of errors and delays 

in supervisory EMG control of robotic knee prostheses on human walking stability [101, 

103]. The research found that not all errors disturb measured dynamic stability and the 

user’s perceived walking stability; it depends on the timing and cumulated mechanical work 

change around the prosthesis knee joint. The group also suggested a range of timing for 

switching prosthesis control mode that ensures user safety during terrain transitions [101].

Supervisory EMG controllers are inherently autonomous finite-state-machine-based 

controllers where the low-level autonomous control law dominates the joint mechanics. 

Even though the EMG signals are included in the control algorithm, the EMG control only 

functions during locomotion mode (i.e. state) transitions and the approach is inadequate to 

enable the prosthesis to assist tasks that have not been preprogramed in the low-level control. 

This approach is also problematic for tasks that do not readily conform to the autonomous 

finite-state-based controller (e.g. dancing, sports activities).

2.3.2. Direct EMG control—While most lower-limb prosthesis controllers measure 

prosthesis activity or human muscle activity to inform a state prediction for autonomous 

control, direct EMG control uses active and continuous input from the human user muscle 

activity to determine prosthesis dynamics. Thus, direct EMG control mimics the biological 

neural control pathway in an intact musculoskeletal system. The efferent neural signals 

(EMG) of the residual agonist–antagonist muscle pairs are used to directly modulate 

prosthesis joint mechanics (i.e. impedance, angle, and/or torque) (figure 2). The prosthesis 

joint mechanics can be determined by the human feedforward neural output. This method 

has shown increasing success in improving various activity performance and postural control 

in a recent study [58]. Note that direct EMG control here is defined as a myoeletric 

control method for powered prostheses, which follows antagonistic muscle function around 

a joint for movement control. Therefore, non-biomimicry mappings of EMG signals to joint 

mechanics, such as neural networks, are not discussed in this section.

2.3.2.1. EMG decoding methods and control: The inputs of the decoder for direct 

EMG control are the EMG signals recorded from residual antagonistic muscles. Most 

commonly, the magnitude of the EMG signals proportionally increases a prosthetic joint 

parameter [5, 104]. One challenge of this approach is that the antagonist residual muscle 

sometimes inadvertently contracts as the amputee intends to activate the agonist muscle 

only, causing a certain level of involuntary co-activation [27, 45]. Involuntary co-activation 

limits the ability of amputees to access portions of the control input space like isolated 
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joint flexion or extension. To avoid this problem, one approach incorporates an EMG 

classifier in the direct EMG control scheme to identify the isolated intended joint motion 

(e.g. flexion vs extension) first [94]. This approach has been evaluated on individuals 

with amputations in the sitting position, but not during walking. Another solution first 

transforms the multiple-channel EMG inputs via principal component analysis [27] or non-

negative matrix factorization [71] to obtain the isolated ‘motor primitive’ representing the 

voluntary control for each studied motion. These decoding algorithms may help amputees 

with involuntary co-activation [45]. However, it remains to be seen whether amputees are 

capable of generating more isolated residual muscle contractions given sufficient training.

A large portion of work has used impedance control laws, where neuromuscular activity 

modulate one or multiple joint impedance parameters (i.e. set stiffness, equilibrium position, 

etc). Initial efforts with impedance control used residual muscle activity to proportionally 

modulate equilibrium velocity (i.e. rate of change of the equilibrium point) [27, 94]. 

Subsequent studies incorporated relative co-activity from residual muscles to additionally 

modulate the set stiffness value in the impedance control law [27, 28, 48, 71]. These studies 

have shown the ability for amputees to volitionally modulate both stiffness and position 

of the prosthesis, showing promise for its commercial use. Another common output of the 

decoder is joint torque. While using the impedance control law described above, Fite et 
al also incorporated additional torque gain terms for the residual thigh flexors/extensors to 

proportionally generate control torque for a prosthetic knee [104]. This allowed the direct 

torque terms to be weighted depending on phase of gait (stance vs. swing) and for the 

impedance control to be more responsible for limb kinematics during the swing. Using a 

pneumatically actuated prosthetic ankle, Huang et al used EMG magnitude of the residual 

gastrocnemius (GAS) to proportionally modulate plantar-flexor torque [5, 105], and this 

control method has been extended to two agonist–antagonistic residual muscles to control 

both dorsi- and plantar-flexor torques [57, 58].

Musculoskeletal models are another possible means of EMG decoding method for direct 

EMG control (figure 2). The EMG magnitude, extracted from EMG signals of residual 

agonist–antagonist muscles, activates a virtual musculoskeletal model (similar to a human 

biological joint) to estimate the missing joint mechanics. However, this type of control has 

only been tested with a virtual ankle joint for transtibial amputees in a sitting position [81] 

and with able-bodied individuals walking with a bent-knee adapter [106].

2.3.2.2. Activity evaluation: The gold-standard task to evaluate direct EMG control 

paradigms in the literature has been locomotion. For transfemoral amputees, direct EMG 

control has been tested for over-ground walking [27, 107] and stair ascent [104]. These 

preliminary studies with an individual amputee showed potential for amputees to adapt 

residual thigh muscles to control prosthetic knee torque during cyclic movements like 

walking. For transtibial amputees, direct EMG control has been tested in over-ground 

walking using the residual GAS [5, 105]. Amputees successfully adapted their residual 

muscle activation once given feedback of the prosthetic ankle state. Clites et al incorporated 

multiple residual muscles into prosthesis control for stair ascent and descent for transtibial 

amputees [48]. Direct EMG control was also tested in stair ascent/descent and over-ground 

walking on a transtibial amputee after receiving an AMI surgery [48]. The AMI recipient 
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demonstrated restored reflexive muscle activity and improved prosthesis embodiment, 

compared to amputees without AMI procedures using direct EMG control.

One of the benefits for direct EMG control is that it is not constrained to rhythmic locomotor 

tasks. Instead, direct EMG enables prosthesis assistance for a variety of activities in daily 

living. Unfortunately, there has been limited work to understand amputees’ ability to use 

direct EMG control for other daily activities. Rogers et al demonstrated the ability for 

EMG control of a novel powered ankle prosthesis to augment rock climbing in a person 

with transtibial amputation [108]. One preliminary study investigated direct EMG control 

use during situations with expected perturbations [57]. This study showed a transtibial 

amputee could produce anticipatory postural adjustments on an EMG-controlled prosthetic 

ankle to significantly improve stability after a perturbation. They also studied the ability 

for a transtibial amputee to control a variety of standing postural control tasks like quiet 

standing on firm and compliant surfaces as well as load transfer tasks [58]. The results 

demonstrated the ability for an amputee to significantly improve bilateral EMG activation 

synchronization and standing postural control with direct EMG control of a prosthesis ankle 

after extended, guided training with a physical therapist. These aforementioned activities 

have never been demonstrated by autonomous or EMG supervisory prosthesis control. The 

existing designs of direct EMG control discussed in this section are summarized in table 2 

in the appendix along with critical study components (i.e. measured muscle activity, EMG 

decoding methods, control parameters, level of amputation, and activity used for evaluation).

3. Current challenges and opportunities

3.1. Questions from motor control perspective and future research directions

The existing literature has shown scattered ideas for using EMG signals to control the 

robotic lower limb prostheses, from using EMG to switch the prosthesis control mode 

(supervisory control) to using EMG for continuous control of joint torque (direct control). 

Despite promising pilot results, the future design of EMG control, in our opinion, should be 

guided by a systematic framework, built upon theory or mechanistic approaches. We argue 

that if the goal of EMG control of robotic prostheses is to enable intuitive prosthesis use and 

bionic function, human motor control theory is a necessary framework to consider.

Internal models have been one of the established theoretical frameworks to interpret 

human motor control, although the detailed interpretations of the motor representations 

and applied computational models vary across groups [109–113]. Here, we adopted the 

framework reported by Frith et al (figure 3), which we use to examine the abnormalities 

of motor control in different patient populations, including amputees. The key to proficient 

motor performance is the establishment of a relationship between motor commands and 

actual system state (i.e. internal models). Note the state hereafter means the human motor 

control system state as distinguished from the state in a finite-state machine. Awareness 

of discrepancies among the desired state (related to the goal of the system), actual state, 

and predicted state enables the update of internal models for improved motor performance 

via repetitive practice. When biological muscles and skeletons are placed with artificial 

actuators and machines, the original internal models are disrupted and need to be updated 

(re-learned) to capture the new relationship between motor commands (including EMG 
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signals of residual muscles) and system state (including state of prosthesis) (figure 3). 

Hence, we use this framework of human motor control to guide our discussion on open 

questions and future research opportunities in EMG-based lower limb prosthesis control.

3.1.1. Are lower limb amputees capable of producing needed muscle activity 
(motor commands in figure 3) sufficiently to learn appropriate internal models 
for prosthesis control?—In order to apply this motor control framework in figure 3, 

we must begin by characterizing the possible control inputs that can be used to learn 

new internal models, post-amputation, for prosthesis control. Because EMG signals are the 

source of control, answering this question is the key to the success of neural prosthesis 

control. Many existing studies assume activity of residual muscles is similar to activity of 

intact muscles. However, this assumption is not necessarily true, evidenced by studies that 

found abnormalities in residual muscle activation patterns during walking [46, 47]. When 

asked to voluntarily coordinate the activation of residual antagonistic ankle muscles (i.e. 

the residual tibialis anterior (TA) and GAS), transtibial amputees showed large variation in 

their capability to reach certain levels of coactivation [45]. One amputee demonstrated an 

extensive capability in co-activation of the residual TA and GAS, while some amputees 

could only activate one muscle at a time. In the latter case, designing a direct EMG 

prosthesis controller requiring flexible coactivation of antagonistic muscles to function is 

probably not suitable for these individuals. Similarly, limited co-activation patterns among 

residual muscles may constrain the number of movement classes distinguishable by an EMG 

pattern recognition-based decoder.

One fundamental unanswered question is what causes the abnormality and large inter-

individual variations in activation and coordination of residual muscles in individuals with 

limb loss. As previously discussed, surgical techniques and altered peripheral nerve/muscle 

configurations due to limb amputations can be contributors. In addition, the lack of sensory 

feedback and discontinued use of the amputated limb causes changes in the motor control 

system and motor representations, which may modify the feedforward motor commands 

over time. Evidence providing greater insight into these possibilities has been limited. 

Further research efforts in understanding the alteration of physiology in residual muscles 

and the peripheral and central nervous system after limb amputation may unveil the cause 

of abnormality and variations in coactivation of residual muscles. The results would help 

find solutions (e.g. a new combination of surgical techniques, implants [114], efferent and 

afferent neural interfaces) to further improve EMG control (enriched neural information, 

improved reliability, and voluntary controllability) and determine appropriate and practical 

EMG decoding designs.

3.1.2. Can lower limb amputees adapt and learn how to produce appropriate 
EMG activation for prosthesis control (i.e. updates of internal models in figure 
3)?—EMG decoding methods might influence the capability of amputees to adapt and 

reliably use EMG controlled robotic prostheses. Previously, there have been two basic 

concepts in designing EMG decoders. One uses humans’ adaptability to learn how to use an 

EMG decoder with a biomimetic and straightforward mapping, such as proportional EMG 

control [5]. In this case, when errors between desired and actual prosthesis states occur (see 
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figure 3), amputees can learn to adjust the activation level of residual muscles to achieve 

an intended motion. Another design is based on machine learning algorithms with the hope 

that artificial intelligence can adapt to the human’s existing EMG activation pattern without 

requirement of human adaptation, such as EMG pattern recognition [4, 26, 80, 84, 91]. 

However, such a design might limit human adaptation and learning. For example, in the 

supervised EMG control, when EMG pattern recognition error happens, users may not even 

sense the error between desired and actual state of the prosthesis as observed in our previous 

study [103]. Even if the users can sense the error, how to modify residual muscles’ activity 

to correct errors is not straightforward to the users because the mapping from residual 

muscle pattern to movement classes is a black box. Determining appropriate characteristics 

in EMG decoder design (e.g. continuous vs discrete, black box vs white box mapping) that 

enable human adaptation will be important for future prosthesis technology. It may even lead 

to the merging of the two design concepts, leveraging both machine adaptation and human 

adaptation for faster and more robust EMG prosthesis control.

To our knowledge, in-depth studies examining the systematic training of lower limb 

amputees in using EMG controlled lower limb prostheses are missing from the literature. 

These types of studies are needed to understand the potential and limits of EMG control 

for restoring the motor function of individuals with lower-limb amputations. Collaborations 

between researchers in physical therapy and engineering are needed to develop effective 

training methods and protocols that enhance human adaptation in using EMG controlled 

prostheses for activities of daily living. This line of research could also open many exciting 

opportunities to address questions related to amputee motor control and learning in gait 

and posture. For example, exploring adaptations in muscle activation patterns after training 

in using EMG prosthesis control may reveal neuroplasticity of motor control mechanisms 

in amputees. Human motor control models [110, 113, 115–117] may explain variations 

of training effects across individuals and identify potential factors (such as physiological 

constraints or peripheral nerve injuries) that limit adaptability in using EMG controlled 

lower limb prostheses. These factors can be also used to predict an individual amputee’s 

capability for using an EMG controlled prosthesis for improved motor function in the future.

3.1.3. Does EMG control of robotic prosthetic legs increase mental load?—
Walking, the most common daily activity involving lower limbs, requires little cognitive 

effort in able-bodied adults [118]. The question often facing researchers, when designing 

EMG controlled robotic prosthetic legs, is whether the amputee user has to ‘think’ about 

how to activate residual muscles and ‘pay attention’ to prosthesis joint motion at all times, 

which is undesirable because it increases the user’s cognitive load. Additional mental load 

could be detrimental to postural stability and balance confidence in walking [119, 120], 

especially for individuals with lower limb amputations since they have already reported the 

need to ‘concentrate on every step’ [119] without neuromuscular control.

Though cognitive load has been quantified for the lower limb amputee population [121], 

we are unaware of any research quantifying effects of lower-limb prosthesis control 

approaches (particularly EMG control approaches) on cognitive load. Supervisory EMG 

control avoids the need for continuous neuromuscular control [4, 26, 29] and may have 

advantages in reducing cognitive load. The EMG decoder is discrete and only acts during 
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task mode transitions. Therefore, it does not impose additional mental load to amputees in 

using neuromuscular control most of the time in walking. For direct EMG control, extra 

mental processes while learning how to use EMG to operate a prosthesis joint during 

task performance are initially needed [5, 58, 107]. However, mental load may reduce after 

training. In addition, as direct EMG prosthesis control mimics human neuromuscular control 

mechanisms for the biological limb, we postulate that long-term use of direct EMG control 

may restore original motor pathways for missing limb control and normalize the mental 

workload needed in lower limb amputees in walking. Testing this hypothesis would enhance 

our understanding of how training alters human–machine performance in the long run. To 

achieve this aim, future research needs to identify methodologies and novel technologies 

(e.g. mobile EEG [122, 123]) that can quantify human cognitive load in locomotion beyond 

traditional dual task paradigms [124] or questionnaires [125].

3.1.4. Does restoration of haptics and proprioception of prosthetic limbs 
further assist feedforward neuromuscular control of robotic legs?—This 

question is motivated by the human motor control framework in figure 3, in which the 

feedback of actual limb state is necessary but is missing in individuals with lower-limb 

amputations. In general, the actual lower-limb state is fed back via haptics sensation in 

the foot and proprioception in lower limbs. Therefore, we discuss these sensory modality 

individually.

Haptic sensation is important for humans to interact with environments, such as object 

manipulation via hands [126], identifying terrain type [127], and proper foot placement 

[128]. For individuals with lower-limb amputations, haptic sensation is reduced with current 

prosthesis technology. Although haptic sensation of prosthesis foot contact can be received 

via the residual limb within the socket interface or residual bones via osseointegration [129], 

the sensation lacks spatial resolution to directly map plantar foot contact areas with the 

ground. Recent technologies in afferent nerve stimulation [130–132] aim to evoke haptic 

sensation of the missing feet in individuals with lower limb amputations. A case study has 

shown promising preliminary results in improving gait stability, energetic efficiency, and 

cognitive load even with a passive prosthesis [131]. Coupling novel afferent interfaces with 

feedforward neuromuscular control for closed-loop prosthesis operation has not been fully 

demonstrated yet. Understanding the effects of haptic sensation of a prosthetic foot on the 

ability of amputees to coordinate residual muscle activity for EMG prosthesis control is an 

exciting area for future work.

Proprioception (feedback of joint position, muscle force, and movement) also plays a 

critical role in human movement control. Artificial afferent nerve stimulations or targeted 

sensory reinnervation [133] seldomly evoke proprioceptive sensations. The innovative AMI 

procedure (discussed previously) combined with muscle stimulation has been the most 

promising method to evoke proprioception so far [48]. A patient case study has shown 

more normative activity (reduced coactivation and tonic activation) of residual muscles in a 

transtibial amputee with AMI surgery, partially due to increased proprioception.

For individuals who have no access to the AMI procedure, can they be aware of and predict 

prosthesis motion? Based on the human motor control framework (figure 3), training of 
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amputees in direct EMG control of a prosthesis itself may aid the sense of prosthesis motion. 

This is because estimation of the actual motor system state (such as limb movement and 

position) depends not only on the afferent feedback, but also from the stream of efferent 

movement commands (efference copy) to the residual muscles (figure 3) [109, 112]. This 

may explain why amputees can still sense the ‘movement’ the missing limb, even though 

the peripheral receptors no longer exist. The perception of missing joint movement gradually 

diminishes due to internal model updates. When the function of efferent motor commands 

(EMG signals) is restored for prosthetic joint control, through practice, the internal models 

could be re-built. Therefore, we postulate that through direct EMG prosthesis control 

and sufficient training of amputees in learning internal models (relationship between 

EMG commands and action of prosthesis), perhaps amputees could regain awareness 

and prediction of prosthetic limb movement/position, even without artificial proprioceptive 

feedback or visual feedback of the prosthetic limb. Additional research is needed to test this 

hypothesis.

3.2. Current challenges from a clinical practice perspective and potential solutions

Since prostheses are assistive devices for daily use, we also want to highlight the research 

and technology development needed towards making EMG control clinically viable.

3.2.1. Are EMG signals too noisy for daily practice?—Physical disturbances 

within the prosthetic socket can affect the interface between the skin and the surface 

EMG electrodes (such as humidity, shift of electrode contact, motions and collision). 

These disturbances elicit variations in time and frequency components of EMG recordings, 

interfering with EMG control [134, 135]. One study reported that socket pressure was 

highly associated with EMG activity of residual muscles [136]. Unfortunately, systematic 

investigation of the key factors of socket design and fit that affect EMG signals of residual 

limb muscles is lacking. Maintenance of the EMG interface is critical for successful 

application of EMG-based prosthesis control in everyday settings. Implantable EMG sensors 

[61, 63, 137], flexible and stretchable EMG sensors and sensor arrays [69, 138], and new 

prosthesis attachment methods (e.g. osseointegration [129]), provide potential to eliminate 

complications caused by physical disturbances of EMG interfaces within a socket and 

promote EMG-based prosthetic control for daily use. In fact, some exciting feasibility study 

of implantable EMG sensors for lower limb prosthesis control has already been carried out 

on a lower limb amputee [64], which shows improve robustness in EMG recordings for 

real-time prosthesis control compared to surface EMG recordings.

EMG signals are random processes often deemed noisy and unreliable for prosthesis control. 

We argue that the reliability of EMG decoders depends on what and how information 

in the EMG signals is extracted. As reviewed, information of EMG signals used for 

prosthesis control has been extracted by various features (e.g. mean absolute value, number 

of zero crossings, median frequency of the power spectrum density), estimated from the 

signals in a time window. Some features are sensitive to the aforementioned physical or 

physiological disturbances, while other features can be more resilient to these disturbances 

[99]. Identifying reliable EMG features more responsive to user movement intent and less 

sensitive to noise and disturbances can further improve the robustness of EMG decoders. 
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One promising feature is the firing rate of motor units captured by high-density surface 

EMG recordings [139, 140]. This feature counts the number of motor unit action potentials 

per time bin, which is less influenced by signal noises or magnitude and frequency drift. 

It is a promising method to address the reliability of EMG decoding methods. It is not 

hard to imagine that a soft, high-density EMG grid could be built into the prosthesis liner 

for prosthesis control in the future. Another potential method is deep learning, which can 

automatically learn features for accurate and reliable classification. This method has been 

explored in EMG pattern recognition for upper limb motion classification recently [141], 

and can be extended into EMG signals in lower limbs. In addition, various random signal 

processing techniques and fault-tolerance mechanisms [134] can be explored in the future to 

address the robustness of EMG control of robotic prostheses.

3.2.2. Are EMG controlled prostheses safe to use?—The failure of lower-limb 

prosthesis control might lead to falls and injuries in lower-limb amputees. Understanding the 

amputee user’s safety when relying on an EMG controlled prosthesis is essential to evaluate 

the device’s practical value. Previous studies have investigated effects of EMG pattern 

recognition errors selecting locomotion mode [101, 103] and identified a set of critical 

pattern recognition decision errors that disturb the user’s walking stability and perceived 

stability. Future work should focus on how to eliminate these critical errors to ensure 

the user’s balance and safety. For continuous, direct EMG control, the error correction 

and tolerance become the responsibility of the human motor control system [142]. Future 

research may focus on how to train individuals with lower-limb amputations to calibrate 

the forward model (figure 3) for error tolerance and correction when performing tasks with 

direct EMG control of a robotic prosthetic leg.

3.2.3. What are the benefits and limitations of EMG prosthesis control, 
compared to existing autonomous prosthesis control, for daily prosthesis 
use?—Understanding the benefits and limitations of EMG prosthesis control, compared 

to the existing autonomous approach, is necessary for future clinical translation. In terms 

of function, robotic machines are good at tasks in known contexts with precision and 

fast feedback control rates but lack adaptability and flexibility. On the other hand, human 

motor control systems are slow and have large variation in movement output but are highly 

adaptable to deal with varied environments and versatile activities. This view is applicable 

to autonomous control versus EMG-based control of robotic lower limb prostheses. Existing 

autonomous controllers are very reliable for biomechanically well-established, stereotypical 

tasks (such as walking). However, they are inadequate to handle unstructured daily 

environments and activities that cannot be easily predicted or pre-programmed. On the 

other hand, EMG control of lower-limb prostheses enables versatile prosthesis function 

adaptive to various contexts, but control can be limited by the lack of accuracy and 

capability of amputees to produce needed EMG control signals. One way to explore the 

benefits and limits of the two approaches in the future is via task allocation [143]. We 

can classify whether a task can be achieved by only one method or both autonomous and 

human neuromuscular control; in the latter case, additional research should compare the 

two methods on system design complexity and the user’s task performance. The gained 
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knowledge could guide future design of robotic lower-limb prosthesis control, shared by 

both autonomous and human motor controllers.

In terms of utility and user acceptance, we should also consider evaluating both autonomous 

and EMG control methods by measuring the user’s learning rate, cognitive workload, trust 

in the robotic prosthesis, satisfaction, and sense of embodiment. To our knowledge, these 

user-centered evaluations have not been systematically quantified and reported, even on 

existing autonomous prosthesis control schemes. Collaboration with researchers in cognitive 

ergonomics and clinical outcome measurements are needed to evaluate the user’s acceptance 

and utility of various controllers for robotic lower limb prostheses.

While the challenges and opportunities we have discussed here are important, this is not an 

exhaustive list. Several factors, such as device cost, limited prosthesis reimbursement, and 

power requirements stand as challenges in the path translating new prosthesis technology 

to end users. The introduction of EMG control will likely face these challenges as well. 

However, the benefits of EMG control to prosthesis function, reviewed here, demonstrates 

the value of continued investment in its development. Further, these challenges likely do not 

all need to be addressed before this control can begin to be introduced in new lower-limb 

prosthetic technology.
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Appendix

Table 1.

Supervisory EMG control review summary.

Author
a Muscles 

recorded
b Classifier 

type
c

EMG features

Windowing/
prediction 
time Training

Control 
type

Amputation 
type Activity

Au et al 
[81]

TA, GAS, 
SOL

Neural 
network

Pre-processed 
EMG

Predictions 
at 0.5 Hz

Back 
propagation 
method with 
pre-
processed 
EMG as 
input

None; 
offline 
classification 
only

Transtibial Trajectory tracking 
sitting

Jin et al 
[76]

ADDL, 
TFL, RF, 
VL, VM, 
BF, SM, ST

Distribution 
of different 
muscle 
features

Mean absolute 
value, 
waveform 
length, mean 
square value, 
zero tangent 
number, 
median power 
frequency

Entire gait 
cycle

3–5 times 
along 
walkway for 
each 
condition

None Transfemoral Level-ground 
walking at varying 
speeds, stairs, and 
ramps
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Author
a Muscles 

recorded
b Classifier 

type
c

EMG features

Windowing/
prediction 
time Training

Control 
type

Amputation 
type Activity

Huang et 
al [4]

GME , 
GMA , 
SAR, RF, 
VL, VM, 
GRA, BFL, 
BFS, SEM, 
ADM

LDA and 
neural 
network

3rd order 
autoregression 
coefficients, 
mean absolute 
value, zero 
crossings, 
waveform 
length, number 
of slope sign 
changes and 
root mean 
square

Range from 
50 to 150 ms 
EMG 
window, 200 
ms phase 
window

Ten walking 
trials of all 
activities 
with own 
prosthesis

None; 
offline 
classification 
only

Transfemoral Level-ground 
walking, stepping 
over and obstacle, 
stairs, ipsilateral and 
contralateral turning, 
and standing

Au et al 
[11]

GASL, 
GASM, TA

Neural 
network

Variance of 
EMG signals

100 ms 
EMG 
window

Matching 
imagined 
ankle 
position to 
virtual ankle

Impedance 
control

Transtibial 
(bilateral)

Level-ground 
walking, stair 
descents

Ha et al 
[94]

Quadriceps, 
hamstring

LDA, QDA Not provided Not 
provided

100 s of knee 
flexion/
extension 
visualizations

Online 
impedance 
control 
(prosthesis 
next to 
participant)

Transfemoral Virtual tracking 
tasks (sitting)

Huang et 
al [26]

GME, 
GMA, 
SAR, RF, 
VL, VM, 
ST, GRA, 
BFL, BFS, 
ADM

SVM, LDA Zero 
crossings, 
signal 
direction 
change, mean 
absolute value, 
waveform 
length

150 ms 
sliding EMG 
window 
prediction

15 times each 
activity

None; online 
classification

Transfemoral Walking, stair/ramp 
ascent and descent, 
stepping over 
obstacles (and 
transitions)

Simon et 
al [144]

SM, SAR, 
TFL, ADM, 
GRA, RF, 
VL, BFL

Two LDA 
classifiers

Mean absolute 
value, zero 
crossings, 
waveform 
length, slope 
sign change 
number, five-
count majority 
vote

250 ms 
overlapping

Ten sit-to-
stand trials

Impedance 
control

Transfemoral Sitting down, 
walking and 
transition between 
them, repositioning 
prosthesis while 
sitting

Hargrove 
et al [29]

Two 
reinnervated 
muscle 
segments, 
proximal 
BF, RF, VL, 
VM, SAR, 
GRA, 
ADM, TFL

DBN Not provided Not 
provided

Offline, 20 
reps of 
locomotor 
circuit

Impedance 
control

Transfemoral Level-ground 
walking, ramps, 
stairs and outside 
stairs

Young et 
al [145]

ST, BF, 
TFL, VM, 
SAR, 
ADM, GRA

Two LDA 
models

Mean absolute 
value, 
waveform 
length, zero 
crossings, 
slope sign 
change, 1st 
two 
coefficients of 
3rd order 
autoregressive 
model

300 ms 
before heel 
contact and 
toe off

Offline, 20 
reps of two 
locomotor 
circuits, train 
classifier on 
three subjects 
test 1 as 
novel user. 
Then add 5–
10 min of 
level-ground 
walking for 
novel user to 
train 
classifier.

None; 
offline 
classification

Transfemoral Level-ground 
walking, ramps, 
stairs

Zhang et 
al [78]

RF, VL, 
VM, TFL, 

SVM Zero 
crossings, 

EMG 
window 150 

Offline 
training, at 

None; online 
classification

Transfemoral Ramp/stair ascent, 
descent, level-
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Author
a Muscles 

recorded
b Classifier 

type
c

EMG features

Windowing/
prediction 
time Training

Control 
type

Amputation 
type Activity

BFL, BFS, 
ST, ADM

slope change 
number, mean 
absolute value, 
waveform 
length

ms decision 
time 
between 45 
and 28 ms

least five reps 
of 30 s of 
data per 
condition

ground walking, 
sitting, standing

Tkach et 
al [91]

TA, PL, 
GASL, 
GASM

LDA Mean absolute 
value, zero 
crossings, 
slope sign 
change, and 
waveform 
length

250 ms 
window

12 trials of 
each 
ambulation 
mode (stairs 
and ramps), 
and 12 trials 
of level-
ground 
walking

None; 
offline 
classification 
only

Transtibial Level-ground 
walking, stairs, 
ramps, and 
transitions

Tkach et 
al [84]

TA, PL, 
GASL, 
GASM, 
VM, VL, 
RF, BF

LDA Six 
coefficients 
from 6th order 
autoregressive 
model, mean 
absolute value, 
zero crossings, 
slope sign 
change, 
waveform 
length

250 ms 
prediction 
window 50 
ms overlap

18 s for data 
for each 
movement 
class (one-
DOF up to 
three-DOF, 
including no 
movement 
flexion, 
rotation, in/
eversion)

None; 
Offline 
classification 
only

Transtibial Virtual tasks for 
varying DOF 
ankle movements 
(rotation, flexion, in/
eversion)

Hargrove 
et al 
[146]

ST, SAR, 
TFL, ADM, 
GRA, VM, 
RF, VL, 
BFL

LDA Mean absolute 
value, zero 
crossings, 
slope sign 
change, 
waveform 
length

250 ms 
window, 
decisions 
every 50 ms

EMG for 
virtual cases, 
four reps of 3 
s for each 
movement, 
no feedback 
provided

Online 
impedance 
control and 
virtual 
avatar 
feedback

Transfemoral Knee flexion/
extension, ankle 
plantar flexion/
dorsiflexion,internal/
external tibial/
femoral rotation, 
relaxation

Miller et 
al [80]

TA, GASM, 
VL, BF

LDA and 
SVM

Mean absolute 
value, 
variance, 
wavelength, 
number slope 
sign changes, 
zero crossings

Three 
subwindows 
with varying 
times based 
on heel 
strike and 
toe off

Six trials 
each activity, 
additional 
trials for 
different 
walking 
speeds

None; 
offline 
classification 
only

Transtibial Level-ground 
walking three 
speeds, ramp/stair 
ascent/descent

Du et al 
[97]

SAR, RF, 
VL, VM, 
GRA, BFL, 
ST, BFS,

Adaptive 
algorithm: 
EBA and 
learning 
from test 
data

Absolute 
value, slope 
sign changes, 
waveform 
length, zero 
crossings

160ms 
sliding 
window

15–10 trials 
of each 
activity

None; 
offline 
classification 
only

Transfemoral Level-ground 
walking, ramps, 
stairs and their 
transitions

Zhang et 
al [147]

RF, VL, 
VM, BFL, 
SAR, ST, 
ADM

Not 
provided

Not provided Not 
provided

Offline 
training with 
ten reps of 
walking 
level-ground 
and ramp 
course

Impedance 
control

Transfemoral Standing, level-
ground walking 
ramp ascent/descent

Young et 
al [148]

ST, BF, 
TFL, RF, 
VL, VM, 
SAR, 
ADM, GRA

DBN Mean absolute 
value, 
waveform 
length, zero 
crossings, 
slope sign 
change, two 
autoregressive 
coefficients

Tested 0–
450 ms 
windows 
with 20 ms 
sliding 
window

Offline 
training with 
20 reps of 
locomotor 
circuit

None; 
offline 
classification

Transfemoral Level-ground 
walking, ramps, 
stairs

Hargrove 
et al [85]

ST, BF, 
TFL, RF, 
VL, VM, 
SAR, 
ADM, GRA

LDA + 
DBN

Not provided Not 
provided

Offline 
training, 20 
reps of 
locomotor 
circuit, level-

Impedance 
control

Transfemoral Walking, stairs, 
ramps
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Author
a Muscles 

recorded
b Classifier 

type
c

EMG features

Windowing/
prediction 
time Training

Control 
type

Amputation 
type Activity

ground 
walking at 
variable 
speeds, 
stopping/
starting/
turning

Spanias 
et al 
[149]

ST, ADM, 
TFL, RF

DBN Mean absolute 
value, 
waveform 
length, zero 
crossings, 
slope sign 
changes, six 
autoregressive 
coefficients

300 ms 
window

20 reps of 
locomotion 
circuit

None; 
offline 
classification 
only

Transfemoral Level-ground 
walking, ramp/
straight ascent/
descent, turn around

Spanias 
et al 
[102]

ST, BF, 
TFL, RF, 
VL, VM, 
SAR, 
ADM, GRA

LDA with 
log-
likelihood

Mean absolute 
value, 
waveform 
length, zero 
crossings, 
slope sign 
change, 1st 
two 
coefficients of 
3rd order 
autoregressive 
model

300 ms 
before toe 
off and heel 
strike

Offline 
training with 
20 reps of 
locomotor 
circuit

Impedance 
control

Transfemoral Level-ground 
walking, ramps, 
stairs

Liu et al 
[100]

RF, VL, 
VM, BFL, 
SM, TFL, 
BFS

EBA, 
TSVM

Absolute 
value, signal 
length, slope 
sign changes, 
zero crossings

160 ms 
window avg 
processing 
time 45 ms

Four 1 min 
trials of each 
locomotion 
mode 
collected in 
separate 
training 
session

EBA online 
impedance 
control

Transfemoral Level-ground 
walking, ramps, 
stairs, and their 
transitions

Spanias 
et al [92]

Pairs of 
electrodes 
over RF, 
TFL, ST, 
ADM

Eight DBN 
classifiers + 
LDA

Mean absolute 
value, 
waveform 
length, zero 
crossings, 
slope sign 
changes, six 
autoregressive 
coefficients 
from 6th order 
model PCA 
and ULDA to 
features totals

Transition 
modes 300 
ms (210 ms 
before gait 
event and 90 
ms after gait 
event)

Offline 
training with 
1st session 
data across 
locomotor 
modes. 
Online 
training 2nd 
session 
through 
forward 
prediction.

Impedance 
control

Transfemoral Level-ground 
walking, ramps, 
stairs over multiple 
days

Hussain 
et al [77]

GM, GASL, 
GASM, 
TFL, RF, 
VL, VM, 
BFL, SOL, 
TA

SVM and 
LDA

Bispectrum for 
high order 
frequency 
spectrum/non-
Gaussian info, 
RMS, zero 
crossings, 
histogram, 
integrated 
EMG, sum of 
square 
integral, 
waveform 
length, mean/
median 
frequency, 
autoregression, 
and reduced 
with PCA

Non-
overlapping 
150 ms-300 
ms windows

Offline 
training five 
trials for each 
walking 
mode

None; 
offline 
classification 
only

Transtibial 
and 
transfemoral

Slow, steady state, 
and fast walking, 
ramps
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a
Authors are listed in order of year published.

b
Muscle abbreviations: adductor magnus (ADM), adductor longus (ADDL), biceps femoris (BF), biceps femoris long head 

(BFL), biceps femoris short head (BFS), extensor digitorum brevis (EDB), gastrocnemius (GAS), gastrocnemius medialis 
(GASM), gastrocnemius lateralis (GASL), gluteus maximus (GMA), gluteus medius (GME), gracilis (GRA), peroneus 
longus (PL), rectus femoris (RF), sartorius (SAR), semimembranosus (SM), semitendinosus (ST), soleus (SOL), tensor 
fasciae latae (TFL), tibialis anterior (TA), vastus lateralis (VL), vastus medialis (VM).
c
Classifier abbreviations: support vector machine (SVM), neural network (NN), linear discriminant analysis (LDA), 

quadratic descriminant analysis (QDA), dynamic Bayesian network (DBN), entropy-based adaption (EBA), transductive 
support vector machine (TSVM).

Table 2.

Direct EMG control review summary.

Author
a

Muscle
b EMG decoding 

method

Modulated 
control 
parameters

Amputation 
type Activity

Ha et al [94] Quadriceps, 
hamstring 
(unspecified)

Envelope (2 Hz 
cutoff), 20% MVC 
threshold QDA

Reference 
angular velocity

Transfemoral Virtual tracking 
task (sitting)

Hoover et al 
[107]

VL, VM, RF, BF Envelope (5–10 Hz 
cutoff).

Flexion/
extension torque

Transfemoral Level-ground 
walking

Hoover et al 
[104]

BF, RF, ST, VL, 
VM

Envelope (2.5 Hz 
cutoff)

Flexion/
extension torque

Transfemoral Stair ascent

Dawley et al 
[27]

Quadriceps, 
hamstring, 
(unspecified)

Initial processing 
not described, 
principal component 
analysis (flexion/
extension)

Reference 
angular velocity, 
joint stiffness

Transfemoral Level-ground 
walking

Wang et al [28] GAS 
(unspecified 
head)

Low-pass filtered 
(15 Hz), rectified 
envelope (200 ms 
moving average 
window)

Plantar flexor 
torque gain 
(push-off only)

Transtibial Level-ground 
walking

Alcaide-
Aguirre et al 
[150]

TA Envelope (10 Hz 
cutoff)

Virtual object 
acceleration

Transtibial Virtual tracking 
task (sitting)

Chen et al 
[151]

TA, GAS 
(unspecified 
head)

Envelope (2.5 
Hz cutoff), PCA 
(flexion/extension)

Reference 
angular velocity, 
joint stiffness

Transtibial Virtual target 
hitting (sitting)

Huang et al 
[105]

GASL Envelope (2 Hz 
cutoff)

Pneumatic 
artificial muscle 
force

Transtibial Level-ground 
walking

Huang et al [5] GASM or GASL Envelope (2 Hz 
cutoff)

Pneumatic 
artificial muscle 
force

Transtibial Level-ground 
walking

Huang et al 
[152]

TA, GASM or 
GASL

Envelope (2 Hz 
cutoff)

Virtual object 
position

Transtibial Virtual ballistic 
target hitting 
(sitting)

Clites et al [48] TA, GASL, TP, 
PL

Envelope (100 ms 
moving average 
window)

Flexion/
extension torque

Transtibial Virtual target 
hitting, stair 
ascent/descent, 
obstacle walking

Fleming et al 
[23]

TA, GASL Envelope (2 Hz 
cutoff)

Virtual spring 
stiffness

Transtibial Virtual balancing 
inverted 
pendulum 
(sitting)

Huang et al 
[45]

TA, GASL Envelope (2 Hz 
cutoff)

Virtual cursor 
position

Transtibial Virtual control 
input space 
filling (sitting)

Dimitrov et al 
[71]

TA, GASM, 
GASL

Envelope (5 Hz 
cutoff), non-negative 

Equilibrium 
angle, joint 
stiffness

Transtibial Target hitting 
(standing), 
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Author
a

Muscle
b EMG decoding 

method

Modulated 
control 
parameters

Amputation 
type Activity

matrix factorization 
(125 ms windows)

walking (with 
passive device)

Fleming et al 
[58]

TA, GASL Envelope (2 Hz 
cutoff)

Pneumatic 
artificial muscle 
force

Transtibial Quiet standing 
(vision, no 
vision, foam and 
firm surfaces), 
Sit-to-stand, load 
transfer.

a
Authors are listed in order of year published.

b
Muscle abbreviations: biceps femoris (BF), gastrocnemius (GAS), gastrocnemius medialis (GASM), gastrocnemius 

lateralis (GASL), peroneus longus (PL), rectus femoris (RF), semitendinosus (ST), soleus (SOL), tibialis anterior (TA), 
vastus lateralis (VL), vastus medialis (VM), tibialis posterior (TP).
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Figure 1. 
Supervisory EMG control paradigm for robotic lower-limb prosthesis. In supervisory EMG 

control, EMG signals and gait events are used to classify the user’s locomotion mode (such 

as level-ground walking, stair ascent/descent, ramp ascent/descent). The classifier’s decision 

determines transitions between the predefined finite-states and thus the specified low-level 

control (e.g. impedance control) for prosthesis operation associated with the identified 

locomotion mode.
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Figure 2. 
Direct EMG control paradigm for robotic lower-limb prosthesis. In direct EMG control, 

the magnitude of of EMG signals recorded from antagonistic residual muscles directly and 

continuously modulate the prosthesis joint dynamics. Various control laws can be used to 

continuously map EMG activity to ankle control torque to drive prosthesis dynamics. For 

example, EMG magnitude of residual ankle antagonistic muscles (u1 and u2) can activate an 

EMG-driven musculoskeletal model to estimate intended ankle control torque.
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Figure 3. 
A human motor control framework (adopted from the framework reported in [109] to guide 

future research in myoelectric control of robotic lower limb prostheses. The actual state of 

the distal limb is disrupted after limb amputation (red dashed lines). When motor commands 

(EMG signals of residual muscles) are used to drive a robotic prosthetic limb, humans 

need to adapt internal model control parameters (the inverse model and forward model) via 

repetitive motor practice to minimize errors between the desired state and the predicted state, 

between the desired state and the actual state, and between the predicted state and actual 

state. This review presents the framework as a means to facilitate future research improving 

Fleming et al. Page 32

J Neural Eng. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an amputee’s capability to produce appropriate motor commands (residual muscle EMG 

activity) and control the robotic prosthesis.
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