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Abstract: A continuing challenge in cartilage tissue engineering for cartilage regeneration is the
creation of a suitable synthetic microenvironment for chondrocytes and tissue regeneration. The
aim of this study was to develop a highly tunable hybrid scaffold based on a silk fibroin matrix
(SM) and a hyaluronic acid (HA) hydrogel. Human articular chondrocytes were embedded in a
porous 3-dimensional SM, before infiltration with tyramine modified HA hydrogel. Scaffolds were
cultured in chondropermissive medium with and without TGF-β1. Cell viability and cell distribution
were assessed using CellTiter-Blue assay and Live/Dead staining. Chondrogenic marker expression
was detected using qPCR. Biosynthesis of matrix compounds was analyzed by dimethylmethylene
blue assay and immuno-histology. Differences in biomaterial stiffness and stress relaxation were
characterized using a one-step unconfined compression test. Cell morphology was investigated by
scanning electron microscopy. Hybrid scaffold revealed superior chondro-inductive and biomechani-
cal properties compared to sole SM. The presence of HA and TGF-β1 increased chondrogenic marker
gene expression and matrix deposition. Hybrid scaffolds offer cytocompatible and highly tunable
properties as cell-carrier systems, as well as favorable biomechanical properties.

Keywords: cartilage; hyaluronic acid; chondrocytes; silk fibroin; autologous chondrocyte implanta-
tion; biomaterials; TGF-β1

1. Introduction

Articular cartilage regeneration is still challenging due to its limited intrinsic self-
regenerative capacity [1,2]. Autologous chondrocyte implantation (ACI), a tissue engi-
neering approach, holds great potential for successful regeneration and has become the
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gold standard for the treatment of large-sized focal cartilage lesions [3]. Since its intro-
duction by Mats Brittberg in 1994, ACI has evolved towards techniques that are based
on different biomaterials being used as cell-carrier systems [4]. Third-generation ACI
products provide a three-dimensional (3D) cell-carrier matrix, which is either composed of
a hydrogel made of natural biopolymers such as agarose–alginate, hyaluronic acid (HA),
type 1 collagen, or macroporous scaffolds made of natural materials such as type 1/3
collagen, HA, HA/fibrin or synthetic polymers (e.g., polyglycolic acid and poly(lactic-co-
glycolic)acid) [5–7]. Although each biomaterial can provide individual advantages for
cell viability and differentiation, biomaterials composed of a sole biomaterial are often
limited in their overall function. In particular, material stiffness and associated resistance
to biomechanical forces, osmotic capacity, degradation behavior and matrix retention have
been proven to significantly guide cell differentiation [8–10].

Hybrid scaffolds consisting of two biomaterials may enhance cartilage-like tissue
properties by recreating its hydro-elastic nature: (i) a fiber network surrounding the en-
capsulated cells similar to lacunas; and (ii) an osmotic phase restricted by this network
resulting in fluid inflow. Attractive biomaterial candidates for this purpose are silk matrices
(SM) and HA-based hydrogels. Due to its versatility and high cytocompatibility, silk has
gained increasing interest, especially in the field of orthopedic surgery aiming to regenerate
ligaments, intervertebral discs, as well as bone [11–13]. Its advancing processing technolo-
gies open the possibility to fabricate individual 3D structures, which makes silk an ideal
biomaterial to design cell-carrier systems [14,15]. Hydrogels were originally developed
for their minimally invasive applicability. Particularly, gels based on naturally derived
biopolymers such as HA are attractive due to their promotion of chondrogenesis and
chondroprotective effects [16,17]. HA can be modified with tyramine (HA-Tyr) to then be
crosslinked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) [18]. By
varying HRP and H2O2 concentration, the polymeric network and the mechanical proper-
ties of the hydrogel can be adjusted. This has recently been introduced for chondral repair,
because it allows TGF-β1 activation and encapsulates medicinal signaling cells (MSC)
producing sulphated glycosaminoglycans (sGAGs) in response to mechanical loading [19].

Therefore, the objective of this study was to combine two highly tunable biomaterials
and investigate their potential additive properties. Crucial aspects such as cell viability,
extracellular matrix (ECM) neo-synthesis, and material stiffness were evaluated.

2. Results
2.1. Viscoelastic Properties of HA-Tyr Vary Depending on Cell Content and Crosslinking Agents

To assess the influence of cell encapsulation on the viscoelastic properties of HA-
Tyr hydrogel with different H2O2 and HRP concentrations, rheological measurements
were performed. The results revealed an increase in the storage modulus (G’) with in-
creasing H2O2 concentrations up to 1200 µM (0.5 U/mL HRP and 600 µM H2O2 w/o
cells: 1665 ± 784.89 Pa; 0.5 U/mL HRP and 1200 µM H2O2 w/o cells: 3300 ± 410.12 Pa;
1.0 U/mL HRP and 600 µM H2O2 w/o cells: 2435± 332.34 Pa; 1.0 U/mL HRP and 1200 µM
H2O2 w/o cells: 3110 ± 675.35 Pa; Figure 1). Compared to cell-free HA-Tyr, the cell-laden
hydrogel had a significantly lower storage modulus (1.0 U/mL HRP and 1200 µM H2O2 w/o
cells: 3110 ± 675.35 Pa; 1.0 U/mL HRP and 1200 µM H2O2 with cells: 2266.67 ± 680.69 Pa;
p = 0.0244; Figure 1b). The HRP concentration had a minor influence on the viscoelastic
properties, although higher HRP concentration accelerated gelation (data not shown).



Int. J. Mol. Sci. 2021, 22, 3635 3 of 15

Figure 1. Viscoelastic properties of HA-Tyr depending on cell encapsulation and varying HRP (0.1–1 U/mL) and H2O2

(50–1200 µM) concentrations. Rheological measurements were performed directly after gelation with (a) 1.0 U/mL HRP,
and (b) 0.5 U/mL HRP, and with and without 2.5 × 106 hCh/mL encapsulated in HA-Tyr. Asterisks indicate significant
differences with * p < 0.05. Data are presented as the mean ± SD (n = 6).

2.2. Identification of a Cytocompatibility Range of HA-Tyr Crosslinking Agents

To achieve high primary HA-Tyr stiffness, high concentrations of H2O2 are needed,
as rheological measurements revealed. Subsequently, a cytocompatibility range was eval-
uated, taking into account the impact of varying concentrations of HA-Tyr crosslinking
agents HRP (0.1–1 U/mL) and H2O2 (50–1200 µM) on cell viability, which was investigated
using a CellTiter-Blue assay. Increasing the concentration of H2O2 significantly affected
cell viability of hCh in monolayer, but this effect was mitigated by increasing the HRP
concentration (Figure 2). In particular, in the range of high H2O2 concentration (>1000 µM),
1.0 U/mL HRP led to a distinct increase in cell viability (0.5 U/mL HRP and 1000 µM
H2O2: 12 ± 2.53%; 1.0 U/mL HRP and 1000 µM H2O2: 37 ± 6.32%). In addition, when
exposed to H2O2 > 600 µM, hCh showed a time-dependent recovery of cell activity, as
demonstrated by the results at 96 h. This effect was most significant when using 1.0 U/mL
HRP (0.5 U/mL HRP and 1000 µM H2O2: 49 ± 4.25%; 1.0 U/mL HRP and 1000 µM H2O2:
68 ± 5.78%; Figure 2b). Based on these results as well as rheological data, HA-Tyr for the
hybrid scaffold was prepared using 1000 µM H2O2 and 1.0 U/mL HRP for all the following
experiments.

Figure 2. Viability of human chondrocytes depending on varying HRP (0.1–1 U/mL) and H2O2 (50–1200 µM) concentrations
in monolayer. Viability was determined by CellTiter-Blue Assay in 2D-monolayer conditions after 1 day (a) and 4 days
(b). The viability in % is given after normalization to the untreated control group (=100%) and adaptation of the data to a
2-polynomial functional equation using MATLAB r2014 (adjusted R2 ≥ 0.7) (n = 4).
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2.3. Cell Viability and Morphological Changes in 3D Cultures

Human articular chondrocytes cultivated in a silk fibroin matrix (SM) and SM with
additional hyaluronic acid-based hydrogel (SMHA) showed high viability (SM: >95%
viable cells after 1, 7 and 28 days; SMHA >90% viable cells at day 7 and 28) as quantified
from live/dead (L/D) staining (Figure 3). Cell viability in SMHA was initially reduced to
84.3 ± 3.1% (p = 0.0245) but recovered within seven days to 90 ± 5.3% (Figure 3b). TGF-β1
had no influence on cell viability (data not shown).

Figure 3. Live/Dead-staining (a). A–F: Viable chondrocytes and indicated proliferation after 1, 7 and 28 days of culture
in chondropermissive medium. A–C: hCh embedded in SM, D–F: hCh embedded in SMHA. Silk fibers appear red due
autofluorescence. Bar 150 µm. Quantification of cell viability (b). Viable cell quantification in % of total chondrocytes
embedded into SM and SMHA after 1, 7 and 28 days of culture in chondropermissive medium. Asterisks indicate significant
differences with * p < 0.05, ns = not significant. Data are presented as the mean + SD (n = 3).

During culture, hCh seemed to attach to the silk fibroin fibers and adopted a ramified
cell morphology. No significant differences were detected between SM and SMHA. In
SMHA scaffolds, very limited migration into the hydrogel was detected. SEM imaging
revealed a fibroblastic-like morphology adopted by the hCh when embedded in SM. Similar
appearance of cell morphology was seen in L/D-staining in SMHA groups (Figure 4B,C).
By adding HA-Tyr to the silk matrix, the chondrocyte morphology did not significantly
change. L/D imaging also indicated cell proliferation during in vitro cultivation in both
experimental groups (Figure 3a).

The presence of hyaluronic acid did not have a major influence on cell morphology
and proliferation in this experimental design (Figure 4B,C).

2.4. Chondrogenic Gene Expression Profile

Time-dependent increases in CO2A1 and COL2A1/COL1A1 ratios were measured
in cells cultured in all different biomaterial combinations. The most pronounced effect
was detected in experimental groups treated with TGF-β1 (mRNA expression of COL2A1
in SMHA + TGF-β1 day 1 vs. SMHA + TGF-β1 day 28: p = 0.0018; mRNA expression
of COL2A1/COL1A1 in SMHA + TGF-β1 day 1 vs. SMHA + TGF-β1 day 28 p = 0.0414;
Figure 5a,e). During cultivation with TGF-β1, COL2A1 and SOX9 were markedly increased
in SM and SMHA groups (Figure 5a,c). No distinct effect of HA on chondrogenic marker
gene expression was seen after 28 days. For COL1A1, the presence of HA yielded less
COL1A1 expression after 28 days compared to TGF-β1 (Figure 5d). Cells embedded in SM
time-dependently induced COL1A1 mRNA expression, which turned out to be significant
in the presence of TGF-β1 (p = 0.0015).
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Figure 4. SEM of SM and chondrogenic phenotype. (A) Heterogenous and macroporous 3D scaffold architecture. Silk
fibroin fiber diameter is approx. 50–100 µm. Chondrocytes revealed a fibroblastic-like phenotype after 3 days of cultivation.
L/D imaging of chondrocytes embedded in SM (B) and SMHA (C). Chondrocytes revealed a ramified phenotype in SM and
SMHA groups. Bar 25 µm.

Figure 5. qPCR. Transcription levels (mRNA) of chondrogenic markers: (a) COL2A1, (b) ACAN, (c)
SOX9; de-differentiation marker (d) COL1A1 and COL2A1/COL1A1 ratio (e) were measured at 1
and 28 days of culture in chondropermissive and chondrogenic medium after cell embedding into
the biomaterials. Gene expression levels were normalized to those of GAPDH reference gene and
then normalized to non-treated SM group, which had an expression level = 1. Asterisks indicate
significant differences with * p < 0.05, ** p < 0.01. Data are presented as the mean + SD (n = 3).
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2.5. Chondrogenic ECM Neosynthesis

Modified 1,9-dimethylmethylene blue (DMMB)-assay indicated higher total gly-
cosaminoglycan biosynthesis normalized to DNA content in SMHA scaffolds compared to
sole SM without reaching statistical significance (Figure 6a). Supplementation of TGF-β1
led to no distinct changes of total extracellular matrix production compared to non-treated
SM and SMHA (Figure 6a). Cumulative sGAG release over 28 days of culture into the cell
culture supernatant revealed similar results. The combination of SM with HA-Tyr hydrogel
showed a higher sGAG release over 28 days of cultivation, but also higher sGAG retention
within the scaffold. TGF-β showed a minor induction of sGAG release in SMHA groups,
while there was no effect on sole SM. Cumulative sGAG release was significantly higher in
SMHA + TGF-β groups compared to SM+TGF-β (p = 0.0239; Figure 6b).

Figure 6. Quantification of sulphated glycosaminoglycan (sGAG) biosynthesis. sGAG content
and release normalized to the DNA content in SM and SMHA groups after 28 days of culture
in chondropermissive and chondrogenic medium (a). Cumulative sGAG release into cell culture
supernatant over 28 days of cultivation (b). Asterisks indicate significant differences with * p < 0.05.
Data are presented as the mean + SD (n = 3).

Results of sGAG quantification were paralleled by toluidine blue staining. The stain-
ing is based on an acidophilic metachromatic dye which selectively stains acidic tissue
components such as sGAG, which results in a color change from blue to purple. Samples
containing HA-Tyr showed stronger purple staining after four weeks (Figure 7). This effect
was enhanced in groups treated with TGF-β (Figure 7(D2)).

Immunohistochemistry revealed a similar pattern for type 2 collagen staining. SMHA
groups showed improved type 2 collagen staining compared to SM with and without
TGF-β (Figure 8). HA-Tyr and TGF-β tended to have a synergistic effect on type 2 colla-
gen accumulation, because SMHA+TGF-β samples showed the most pronounced effects
(Figure 8(D2)).
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Figure 7. Histological analysis. Toluidine blue staining of sGAGs in cellularized SM (A,C) and SMHA (B,D) with or without
TGF-β1 supplementation. Representative images of each treatment group after 28 days of culture. Bar 100 µm (A1–D1,
50 µm; A2–D2, 25 µm).

Figure 8. Immunohistochemistry. Type 2 collagen biosynthesis in cellularized SM (A,C) and SMHA (B,D) with or without
TGF-β1 supplementation. Representative images of immunohistochemical type 2 collagen staining after 28 days of culture.
Negative control (E) shows unspecific binding of type 2 collagen to agarose and hematoxylin–eosin staining to HA-Tyr. Bar
100 µm (A1–D1, 50 µm; A2–D2, 25 µm).
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2.6. Biomechanical Analysis

A one-step unconfined compression test revealed a significant increase in scaffold
stiffness by adding HA-Tyr to the SM (Figure 9a). Primary stiffness of SMHA was signif-
icantly higher compared to sole SM (p = 0.0003). The presence of hCh did not influence
biomaterial stiffness after one day. After 28 days, the Young’s modulus of cell-laden SMHA
was significantly higher compared to all SM groups and cell-free SMHA. Treatment with
TGF-β1 resulted in an increase in sample stiffness without reaching statistical significance
compared to non-treated SMHA groups. Stress relaxation times (t1/2) of cell-laden SM and
SMHA after 28 days were significantly increased by adding HA-Tyr to SM (SM 26.38 ±
1.77 s vs. SMHA 39.12 ± 4.76 s; p = 0.0075; Figure 9b).

Figure 9. Biomechanical analysis. Young’s modulus (a) of SM and SMHA with and without embed-
ded hCh at day 1 and day 28 of culture in chondropermissive and chondrogenic medium (n = 6).
Stress relaxation time (s) t(1/2) of cellularized SM and SMHA after 28 days of culture (b). One
representative sample is plotted of n = 3 measurements. Asterisks indicate significant differences
with ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Data are presented as the mean + SD.

3. Discussion

In this study, we introduced a hybrid scaffold for cartilage regeneration by utilizing an
HA-Tyr hydrogel and SM. Cellularized SM in which HA-Tyr was passively immobilized
showed superior chondrogenic potential compared to sole fiber-based scaffolds. The pres-
ence of HA resulted in better cartilage-specific ECM retention. This effect was accompanied
by increased initial and maturing biomechanical properties, making it predisposed to
mechanical loading.

Similarly to cellularized HA-Tyr using MSCs, the presence of chondrocytes impaired
the hydrogel viscoelastic properties as assessed by storage modulus changes (G’) [19]. This
effect can be counteracted by increasing H2O2, although H2O2 causes dose-dependent
cell cytotoxicity of articular chondrocytes. Initial cytotoxicity was marginally mitigated
by a simultaneous increase in HRP activity, and when using high HRP concentrations of
1 U/mL, further chondroprotective effects could be established over four days. Therefore,
1 U/mL HRP was chosen for further experiments. In order not to affect hydrogel stiffness
and to circumvent cytotoxic effects, we decided to primarily embed cells into SM followed
by casting the HA secondarily around the cellularized fibers. An increased stiffness could
be reached by exploiting the tunability of HA-Tyr. Nevertheless, we detected a significant
decrease in cell viability in SMHA hybrid scaffolds during the first week of cultivation,
which was most likely due to direct cytotoxic effects of H2O2 during in situ crosslinking.
However, hCh in SMHA recovered after the first week of cultivation and full scaffold
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colonization was observed in both experimental groups after 28 days. In this regard,
Frauchiger et al. also examined SM supporting cell attachment and viability [13].

Another potential advantage of primary cell seeding onto silk fibroin fibers might
be immediate cell matrix interactions. Interestingly, there was no cell migration from silk
fibers into HA-Tyr, most likely due to fewer extracellular binding motifs. Cell proliferation
and migration only occurred along silk fibers, as observed by confocal microscopy. A
different degree of binding affinity of hCh may play a decisive role in this. Cell surface
interactions with HA through CD44 might be less determining for cell migration, although
it is known that focal adhesion factors are modulated by CD44 binding [20]. Cell–fiber
interactions hold high potential in guiding cell differentiation, but fiber diameter seems
crucial in this regard [21]. In hydrogels, crosslinking density, chemoattractant cofactors,
as well as chemical modifications enable cell migration in HA-based hydrogels. However,
to the best of the authors’ knowledge, it is not yet known whether early cell migration is
beneficial in cartilage defects [22].

In contrast, direct cell–fiber interactions might also be unfavorable in our study. While
spherical morphology indicates differentiated chondrocytes, cells attached to SM displayed
a rather ramified phenotype. In addition, the presence of HA-Tyr did not alter chondrocyte
morphology, although it is known that cells encapsulated in hydrogels adopt a spherical
cell shape [23,24]. As highlighted by Mohan et al. and Ziadlou et al., an increasing density
of fibers in composite hydrogels influences cell morphology to change from spherical to
fibroblast-like [25,26]. On the other hand, Nürnberger et al. postulated that fiber diameters
<10 µm in fiber-based scaffolds result in spherical cell shapes [21]. Thus, a fiber diameter of
about 100 µm as used in our study may contribute to cell spreading due to a relatively large
outer surface. For this reason, thinner fibers might be advantageous in further scaffold
optimization.

Although no effect of HA on cell morphology was detected, gene expression patterns
and ECM deposition changed significantly. This is particularly important because cell
expansion causes chondrocyte dedifferentiation. Re-differentiation and neo-synthesis of
ECM is essential for functional graft maturation in vivo. Phenotype loss in monolayers
is often characterized by gene expression shifts from COL2A1 towards COL1A1 [27,28].
We observed that TGF-β1 mainly supported COL2A1 induction. Without the presence
of the HA, chondrocytes tended to induce COL1A1 expression, which emphasizes the
positive effect of hydrogel addition on phenotype stabilization. Furthermore, histology
studies revealed that the presence of HA had distinct effects on sGAG and type 2 collagen
deposition as well. While the chondro-inductive effects of TGF-β1 are well accepted in the
literature, these results support the application of HA in composite scaffolds.

Moreover, besides a support of cellular behavior, HA addition significantly increased
the initial scaffold stiffness, which is likely to be due to chemical interconnection of silk
fibers by HA-Tyr crosslinking in situ. Silk hydrogels and silk fibroin can be chemically
crosslinked with the H2O2–HRP system through the covalent binding of tyrosine residues,
which is similar to the chemical crosslinking reaction of HA-Tyr [29,30]. Deposition of ECM
seen in the histology results was paralleled by increased scaffold stiffness in the course
of cultivation, while HA and TGF-β1 synergistically enhanced this effect. Mechanically
resilient HA-Tyr has been demonstrated to promote differentiation of MSCs towards
chondrocyte-like cells by multiaxial mechanical loading through endogenous TGF-β1
activation [19]. Therefore, initial mechanical scaffold strength is highly desirable in order to
allow mechano-induced chondrogenic maturation. This is particularly important because
the most distinct chondrogenic effect on cell differentiation was observed by TGF-β1
supplementation. Together with further fiber diameter modifications as mentioned above,
covalently bonded growth factors could be a potential solution to further improve cell and
graft maturation. In addition to scaffold stiffness, a stress relaxation time <63 s for SM and
SMHA can be interpreted as favorable biomechanical properties, which has recently been
introduced as a meaningful parameter for chondrogenesis [31].
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4. Materials and Methods
4.1. Articular Chondrocyte Isolation and Culture

Human chondrocytes (hCh) (n = 6) were isolated from the femoral heads of patients
(age 63 ± 5.8 years old) undergoing hip replacement surgery (Ethic votum was obtained
from local committee of the University Kiel, Code: D558/19, Date: 5 December 2019). The
cartilage tissue was dissected into small pieces and washed twice with phosphate buffer
saline (PBS; Sigma-Aldrich, Buchs, Switzerland) for 15 min. Cartilage pieces were first
digested with 0.1% pronase (Roche, Mannheim, Germany) for 2 h and then with type
2 collagenase (Worthington, Lakewood, NJ, USA) with an enzyme activity of 600 U/mL
for 14 h. Digestion solutions were prepared in Dulbecco’s modified Eagle’s medium
(DMEM; Biochrom, Berlin, Germany) and the digestions were carried out at 37 ◦C in an
atmosphere of 5% CO2. The digested tissue was filtered through a 40 µm cell strainer
and then centrifuged at 565× g for 7 min. The obtained cell pellet was washed twice in
DMEM supplemented with 10% Sera Plus (PAN-Biotech, Aidenbach, Germany). Isolated
chondrocytes were cultured at a density of 10,000 cell/cm2 in high-glucose DMEM (HG-
DMEM) supplemented with 10% Sera Plus, 10,000 units/mL Penicillin G, 10 mg/mL of
streptomycin (PAA Laboratories, Pasching, Germany), 0.1 mM nonessential amino acids
(Sigma-Aldrich, St. Louis, MO, USA), 1% L- ascorbic acid (Sigma-Aldrich, St. Louis, MO,
USA) and 2 ng/mL fibroblastic growth factor-2 (FGF-2; R&D Systems, Minneapolis, MN,
USA), with medium (25 mL/T175 flask) changed twice per week. Cells were harvested at
passage 2 by trypsin-EDTA (Lonza; Cologne, Germany) treatment and used for biomaterial
colonization.

4.2. Embedding of Cells in 3-Dimensional Silk Matrices

Monolayer expanded chondrocytes (cell passage 2) were seeded into a 3D SM (diame-
ter: 6 mm, height: 3 mm) with a final concentration of 2.5 × 106 cells/cm2 and incubated
for 45 min. The source of silk fibroin was larvae of the silkworm Bombyx mori. Larvae
were dissected and native silk was extracted from silk glands, as described by Rheinnecker
et al. [32]. Then, native silk fibroin solution was utilized to spin fibers directly. Finally,
1.5 g silk short fibers for 200 cm2 non-woven fibers were needle-punched, and the resulting
non-woven scaffold was subsequently folded in the middle and punched again. For cell
culture assays, the needle-punched non-woven scaffolds were then cut into the required
diameters. Half of the cellularized scaffolds were then soaked in HA hydrogel for 5 min.
HA-based hydrogel (280 kDa) and 6% tyramin substitution (molar degree of substitution)
were provided by AO Research Institute Davos and used for all the experiments. For hydro-
gel preparation, 3.5% (weight/volume) HA-Tyr was hydrated in PBS containing 1.0 U/mL
HRP overnight at 4 ◦C under agitation. Hydrogel gelation was initiated by adding H2O2
with a final concentration of 0.6 mM [19]. SM and SMHA scaffolds were cultivated in chon-
dropermissive medium in a 24-well plate coated with 2% agarose (Sigma-Aldrich, St. Louis,
MO, USA). Medium consisted of HG-DMEM supplemented with 1% ITS (Sigma-Aldrich,
St. Louis, MO, USA), 0.1 mM nonessential amino acids (Sigma-Aldrich, St. Louis, MO,
USA), 1% L-ascorbic acid, 10,000 units/mL Penicillin G, 10 mg/mL of streptomycin and
was renewed every 3 days. The two different scaffolds (SM and SMHA) were cultured in
sole chondropermissive medium or chondrogenic medium, which contained additional
human TGF-β1 [10 ng/mL] (R&D Systems, Minneapolis, MN, USA).

4.3. Viscoelastic Properties in Dependency on Cell Encapsulation and Varying H2O2 and HRP
Concentrations

Rheological measurements were performed using an Anton Paar MCR 302 rheome-
ter equipped with a 25 mm parallel plate measuring system (CP-25-1, Anton Paar, Graz,
Austria). All measurements were performed at 20 ◦C, controlled by a Peltier temperature
control unit and with a gap size of 0.2 mm. Oscillatory tests (amplitude and time sweep)
were performed for each sample. The storage modulus (G’) was measured at a strain of 1%,
which was determined to be within the linear viscoelastic region. To examine the influence
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of cells on the visco-elastic properties of the HA-Tyr, cell-free and cell-laden hydrogels
(n = 6; each running with 3 technical replicates) with different H2O2 (50–1200 µmol) and
HRP (0.5, 1 U/mL) concentrations were prepared as described above. Each sample was
then prepared using a total volume of 0.5 mL. For the preparation of cell-laden hydro-
gels, hCh was harvested using trypsin-EDTA as described above. A final concentration
of 2.5 × 106 cells/mL were resuspended in 50 µL PBS which was subtracted from the
hydrated HA-Tyr solution. After overnight agitation, the cell suspension was spirally
injected in the hydrated HA-Tyr solution to ensure the homogenous distribution of cells.
Hydrogel gelation of cell-free and cell-laden gels was then initiated by adding varying
H2O2 concentrations (50–1200 µmol). Each sample was prepared directly on the measuring
plate of the rheometer. To ensure the homogenous distribution of crosslinking agents,
samples were briefly vortexed and then measured.

4.4. Cytocompatibility Range of HA-Tyr and Cell Viability

A cytocompatibility range of HA-Tyr under varying H2O2 (50–1200 µmol) and HRP
(0.1–1 U/mL) concentrations was identified with monolayer chondrocytes using a CellTiter-
Blue assay. After 24 h and 96 h of incubation in chondropermissive medium, a CellTiter-Blue
assay was performed according to the manufacturer’s instructions. After 1 h incubation in
an atmosphere of 5% CO2 and 37 ◦C, fluorescence was measured using a TECAN plate
reader (Tecan, Männedorf, Switzerland).

To visualize the cell viability, live/dead-staining was performed after 1, 7 and 28 days
of culture in chondropermissive medium. SM and SMHA were washed with PBS and
stained with 10 µM calcein (Sigma-Aldrich, St. Louis, MO, USA) and 5 µM ethidium
homodimer-1 (Sigma-Aldrich, Buchs, Switzerland). After 1 h of incubation at 37 ◦C in a
humidified atmosphere of 5% CO2, samples were imaged using laser scanning microscopy
(LSM 510, Carl Zeiss, Germany). To quantify the number of live and dead cells, three
images were taken from three different fields of view and a minimum of 100 cells were
counted using image J software (Wayne Rasband, NIH, USA).

4.5. Scaffold Architecture and Cell Morphology

For scanning electron microscopy, after 3 days of culture-cell-free and cell-laden SM,
samples were fixed overnight at 4 ◦C in 3% glutaraldehyde (Sigma-Aldrich, Darmstadt,
Germany)/PBS, additionally fixed for 60 min with 2% osmium at room temperature
(OSO4; Pasel und Lorei GmbH, Frankfurt, Germany), and subsequently dehydrated in
ethanol. The samples were dried via critical point drying (Balzers, Critical point dryer 030,
Schalksmühle, Germany), mounted, sputter-coated with gold (Ion Tech LTD, Teddington,
UK), and digitally recorded in a top-down view of the surface using a JSM-IT 200 (JEOL
GmbH, Freising, Germany).

4.6. Gene Expression Analyses by Quantitative Real-Time qPCR

Gene expression was analyzed after 1 day and 28 days of culture. Samples were snap-
frozen in liquid nitrogen and pulverized. Afterwards cells, were lysed by the addition of
300 µL RLT-buffer (Qiagen, Hilden, Germany) and 1% 2-mercaptoethanol (Qiagen, Hilden,
Germany). Cell lysate was then separated from pulverized scaffold debris by centrifugation
using a Qiashredder (Qiagen, Hilden, Germany) column. Total RNA was extracted using
the RNeasy mini kit with additional DNase I digestion according to the manufacturer’s
instructions (Qiagen, Hilden, Germany). Complementary DNA (cDNA) was obtained by
reverse transcription (RT) using Revert Aid H Minus Reverse Transcriptase (Thermofisher
Scientific, Waltham, MA, USA). Quantitative real-time PCR (qPCR) was performed us-
ing a QuantiTect SYBR® Green RT-PCR Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions with a 7500 Fast Real-Time PCR System (Applied Biosystems,
Darmstadt, Germany). Human primers (Table 1) for aggrecan (ACAN), type 2 collagen
(COL2A1), transcription factor SOX-9 (SOX9), type 1 collagen (COL1A1) and glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) (all from Biomers, Ulm, Germany) were used
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at a concentration of 0.3 µM. Data analysis was performed using a comparative quantifica-
tion (∆∆CT-method). With this method, the n-fold RNA expression for the gene of interest
was calculated using GAPDH as reference gene and the SM group as calibrator.

Table 1. Primer sequences.

Human Target Sequence (5′–3′) Sense Sequence (5′–3′) Antisense

ACAN GAGGCCAGCAGAGAAGATTCTG GACGCCTCGCCTTCTTGAA
COL2A1 CAACACTGCCAACGTCCAGAT CTGCTTCGTCCAGATAGGCAAT

SOX9 CTCGGAGACTTCTGAACGAGAG CGTTCTTCACCGACTTCCTCC
COL1A1 AATTCCAAGGCCAAGAAGCATG GGTAGCCATTTCCTTGGTGGTT
GAPDH GCCTCAAGATCATCAGCAATGC TGGTCATGAGTCCTTCCACGAT

4.7. DNA Quantification and Glycosaminoglycan Synthesis

Cell culture supernatant of every medium change was collected and stored frozen
(−20 ◦C) until use. After 28 days in culture, SM and SMHA samples were collected and
snap-frozen in liquid nitrogen following pulverization. Afterwards, 1 mL deionized water
was added and incubated for 30 min at room temperature. Sulphated glycosaminoglycan
(sGAG) content in the SM, SMHA and the culture supernatant was detected with DMMB
assay (Sigma-Aldrich, Darmstadt, Germany) as previously described [33]. The DNA con-
tent of the samples was quantified using the DNA Quantification Kit (Promega, Mannheim,
Germany) according to the manufacturer’s protocol. Total sGAG content and cumulative
sGAG release was normalized to DNA content of the corresponding sample.

4.8. Histological and Immunohistochemical Analysis

After 28 days in culture, samples were fixed for 10 min in 4% paraformaldehyde in
PBS at room temperature, embedded in 2% agarose first and then processed for embedding
in Paraplast (Sigma-Aldrich, Darmstadt, Germany). Serial sections of 50 µm were cut
sagittally through the entire thickness of the samples (top-to-bottom) and then placed
on glass slides followed by toluidine blue staining. In addition, immunohistochemistry
of type 2 collagen (mouse anti-type-II-collagen antibody; CIIC1, DSHB, Iowa, USA) was
performed as described elsewhere [34,35].

4.9. Biomaterial Stiffness and Stress Relaxation

Biomechanical 1-step unconfined compression tests were carried out in a standard
material-testing machine (Zwick/Roell BZ2.5/TN1S, Ulm, Germany) equipped with a 10 N
load cell. The initial sample height (h0) was measured after 24 h equilibration with a caliber,
and samples were placed in a cell culture dish filled with HG-DMEM. A compression test
was performed by loading the sample with a flat-ended indenter (0.02 N preload) at a
strain rate of 0.5 mm/min until 30% h0 strain was reached. The Young’s modulus was then
calculated at the initial linear part of the stress–strain-curve (n = 6). To measure the stress
relaxation of SM and SMHA, a constant strain of 20% was applied to each sample, while
measuring stress over time (n = 3). The stress relaxation time (t1/2) was quantified as the
length of time for which the initial stress of the gel was relaxed to half of its original value.

4.10. Statistics

All data were tested for normality using the Kolmogorov–Smirnov test. Statistical
analysis was performed using Graph Pad prism 5 program (Graph Pad Software Inc.,
San Diego, CA, USA). One-way ANOVA analysis with Bonferroni’s multiple comparison
was used to compare means among the independent experimental groups. Differences
were considered significant if p ≤ 0.05. Quantitative data in the text are presented as the
mean and standard deviation (SD).
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5. Conclusions

In this study, we introduced a highly tunable hybrid scaffold with chondro-inductive
properties that enabled the encapsulation of long-term viable human chondrocytes. The
presence of HA improved cartilage-like marker expression as well as initial mechanical
strength, making it accessible for biomechanical loading. Future research should deepen
the knowledge in cell matrix interactions, taking smaller fiber diameters into account. A
multiphasic approach to mimic cartilage fiber architecture and the possible influence of a
superficial zone to shear forces might be an interesting follow-up investigation.
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