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Abstract: A three-dimensional vertical-aligned graphene-polydopamine electrode (PDA@3DVAG)
composite with vertical channels and conductive network is prepared by a method of unidirectional
freezing and subsequent self-polymerization. When the prepared PDA@3DVAG is constructed as the
positive electrode of zinc-ion hybrid supercapacitors (ZHSCs), excellent electrochemical performances
are obtained. Compared with the conventional electrolyte, PDA@3DVAG composite electrode in
highly concentrated salt electrolyte exhibits better multiplicity performance (48.92% at a current
density of 3 A g−1), wider voltage window (−0.8~0.8 V), better cycle performance with specific
capacitance from 96.7 to 59.8 F g−1, and higher energy density (46.14 Wh kg−1).

Keywords: zinc-ion supercapacitor; three-dimensional vertically aligned graphene; polydopamine;
highly concentrated salt electrolyte

1. Introduction

The construction and manufacture of electrochemical energy storage systems with high
power and energy density, fast charge and discharge rates, and excellent cycle performance
are of great importance to the rational use of energy [1–3]. Traditional energy storage
devices mainly include batteries and supercapacitors, which are widely used in high energy
density and high power ranges, respectively [4]. As energy storage components, batteries
have the advantages of high energy density and facilitate long-term storage of electrical
energy [5]; however, the disadvantages of low power density, low charge and discharge
efficiency, poor cycle performance limit their applications [6–8]. Supercapacitors have the
advantages of high capacity, high specific power density, fas t charge and discharge rates
and excellent cycle performance, but the low energy density limits their application [9,10].
The electrochemical hybrid supercapacitors combine the advantages of capacitive cathode
and battery type anode material and have high energy and power density together with
excellent cycle performance [11].

A few organic materials are being studied as electrode materials for supercapacitors, such
as polyaniline (PANI) [12,13], polypyrrole (PPy) [14,15], poly(3,4-ethylenedioxythiophene)
(PEDOT) [16], and quinone-based organics [3,17]. In recent years, the quinone-based
organic of polydopamine (PDA), which contains a large amount of catechol and nitrogenous
amino groups, has been widely studied as electrocatalysts and electrode materials for energy
conversion and storage. Wang et al. [18] constructed a fibrous aqueous zinc-ion battery with
PDA, which has a large specific capacity (372.3 mAh g−1 at 50 mA g−1) and long-term cycle
performance (80% capacity retention after 1700 cycles at 1 A g−1). While for the organic
cathode, two factors hinder its development and application. Firstly, organic molecules are
easily soluble in the electrolyte, resulting in low cycle performance. Secondly, most organics
have poor electrical conductivity, which limits their multiplicative performance [19]. To
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solve the solubilization of quinone-based organic materials, many methods have been
developed, such as separation modification, polymerization, mesoporous matrix constraint,
and so on [20,21]. As for the problem of poor conductivity, studies have found that the
ion/electron conductivity is closely related to the pore curvature of the electrode and the
composite electrode, based on a highly conductive three-dimensional graphene structure,
which can effectively improve the multiplicative performance [22]. In particular, three-
dimensional vertically oriented graphene (3DVAG) has a special structure with vertically
open channels and low pore curvature, which contributes to fast ion/electron transfer and,
therefore, excellent performance.

In this work, unidirectional freezing and thermal reduction are used to prepare
3DVAG with a 3D long-range ordered structure. Three-dimensional vertically aligned
graphene-polydopamine (PDA@3DVAG) composite electrodes were prepared by loading
PDA particles on the as-prepared 3DVAG substrates via oxidative self-polymerization. By
constructing PDA@3DVAG as the positive electrode of zinc-ion hybrid supercapacitors
(ZHSCs), excellent electrochemical performances are obtained in highly concentrated salt
electrolytes for both three and two electrode systems.

2. Experimental

Figure 1 illustrates the preparation process of PDA@3DVAG electrode material. In
brief, 3DVAG aerogel was prepared by directional freezing and subsequent thermal reduc-
tion. Firstly, LGO suspension (2 mL, 5 mg mL−1) was mixed with ascorbic acid (VC, 20 mg),
which was subsequently heated in an oil bath for the first hydrothermal reduction to obtain
partially reduced graphene oxide (PrGO) hydrogels. Then, PrGO was further heated in a
water bath, and impurities were removed by deionized water. Finally, after freeze-drying
and reduction, 3DVAG was obtained. Subsequently, PDA@3DVAG was prepared by the
liquid-phase graphene reduction and oxidative self-polymerization process. Finally, it was
assembled into a buckled supercapacitor for electrode testing.
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2.1. Preparation of 3DVAG

Preparation of PDA@3DVAG 3D vertically oriented graphene was prepared by
hydrothermal-assisted unidirectional freezing and subsequent thermal reduction. Firstly,
2 mL solution of graphene oxides suspension (5 mg mL−1) and 20 mg of ascorbic acid were
mixed and heated in an oil bath for the first hydrothermal reduction to obtain partially
reduced graphene oxide (PrGO) hydrogel. Then, the PrGO was placed on the surface of a
copper ingot impregnated with liquid nitrogen for 5 min of unidirectional freezing. After
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thawing at room temperature, PrGO was reduced in a water bath for 6 h. The obtained gel
was washed with deionized water to remove soluble impurities. After being chemically
reduced by 20 µL 80 wt.% of hydrazine hydrate and subsequently washing, 3DVAG was
finally formed.

2.2. Preparation of PDA@3DVAG

PDA@3DVAG composite electrode material was prepared by liquid-phase graphene
reduction and one-step oxidative self-polymerization. Firstly, 0.15 g dopamine hydrochlo-
ride was dissolved in 75 mL water, then the pH of the dopamine hydrochloride solution
was adjusted to 8.5 by adding trimethyl methylamine. Subsequently, 3DVAG hydrogel
was impregnated into the solution to self-polymerize for 24 h. Finally, PDA@3DVAG was
obtained after washing and freeze-drying.

2.3. Materials and Electrochemical Characterization

The morphologies of the samples were characterized using field emission scanning
electron microscopy (SEM, Dutch FEI) and energy dispersive spectrometer (EDS, Dutch FEI)
mapping scanning. The structure of PDA@3DVAG was characterized by Fourier transform
infrared (FTIR, Perkin Elmer Spectrum 100) spectroscopy spectra and X-ray diffraction
(XRD, Bruker D8-Advanced diffractometer). UV–vis spectroscopy was performed on
electrolyte solutions with a Perkin Elmer LAMBDA 750.

The cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) of the as-
prepared PDA@3DVAG composite electrode materials were measured via a three-electrode
system in this work. In 2M ZnSO4 aqueous electrolyte, the electrochemical performances
were tested with PDA@3DVAG composite electrode as working electrode, platinum sheet
as counter electrode and Ag/AgCl electrode as reference electrode under the voltage
window of 0~0.7 V. PDA@3DVAG composites were assembled into buckle supercapacitor
for two-electrode testing. Porous activated carbon (AC) was used as the anode electrode,
and CV tests were performed under the voltage window of −0.8~0 V.

The CV was performed by applying a linear voltage between the upper and lower
limits of the two voltages for the working electrodes to perform a cyclic scan. The GCD
examined the electrochemical response to controlled current, which is the response voltage
versus time curve obtained by controlling a constant current.

The mass specific capacitance (Cm, F g−1) was calculated as follows:

Cm =
I × ∆t

∆U × m
(1)

where I was the constant discharge current (A), ∆t was the discharge time (s), ∆U was the
discharge voltage window (V), and m was the mass of active substance (g).

The mass energy density (Em, Wh kg−1) was calculated as follows:

Em =
1
2
× Cm × (∆U)2

3.6
(2)

The mass power density (Pm, W kg−1) was calculated as follows:

Pm = 3600 × Em

∆t
(3)

3. Results and Discussion
3.1. Morphology and Structure of PDA@3DVAG

Figure 2 shows the SEM images and EDS analysis of PDA@3DVAG. The ordered
porous structure can be observed in Figure 2a, where the channels show vertical orientation
with a pore size of about 20–30 µm. Figure 2b,c shows the partial enlargement, where
self-polymerized PDA particles are uniformly loaded on graphene substrates. As shown in
Figure 2d, the EDS spectrum of PDA@3DVAG shows the main elements are C, N, and O.
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The mass fraction of C element occupies 91.43%, while N and O elements occupy 3.2% and
5.37%, respectively. Figure 2c,d indicate the loading amount of PDA is small and a thin
layer is coated on the surface of graphene, which ensures a good contact between PDA
particles and graphene surfaces.
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Figure 2. SEM images (a,b) and EDS analysis (c,d) of PDA@3DVAG.

Figure 3a illustrates the FTIR spectra of 3DVAG and PDA@3DVAG. Compared with
3DVAG, more functional group spectral peaks can be observed in the spectrum of
PDA@3DVAG. The absorption peaks located at 3394, 3227, and 1721 cm−1 are found
existing in the spectrum of PDA@3DVAG, which are induced by the stretching vibrations
of the C−OH, N−H, and C=O group, respectively. The broad absorption peaks located at
1000~1800 cm−1 are induced by the vibrations of the indole group. The peaks located at
1609 and 1517 cm−1 are induced by the stretching vibrations of C=C on the benzene ring
and C=N in the carbon−nitrogen five−membered ring, respectively [18,23]. The above
results indicate that PDA is obtained by situ polymerization on the surface of graphene to
form a PDA@3DVAG composite. As shown in Figure 3b, the XRD pattern of PDA@3DVAG
reveals the characteristic peak of graphene structure (2θ = 26.1◦), indicating a composite of
graphene, which is consistent with FTIR.
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3.2. Electrochemical Performance

Figure 4a shows the CV curve of the composite electrode at the scan rates as 2~100 mV s−1,
from which a pair of redox peaks can be clearly observed. The forward CV scan shows a
broad oxidation peak with a peak potential of ~0.46 V vs. Ag/AgCl. In this experiment,
Ag/AgCl is used as the reference electrode, and its potential is 0.2 V. The coordination
potential of the quinone group with Zn ion is 0.46 V vs. Ag/AgCl by conversion. It is
consistent with the potential of the oxidation peak in the CV curve, which is the current
response of coordination reaction between the quinone group in PDA and Zn ion. A
reduction peak appearing at ~0.26 V vs. Ag/AgCl has a potential difference of 0.2 V from
the oxidation peak, which is consistent with the literature (the reduction potential is ~3.1 V
vs. Li) [19]. The reduction peak reflects the reduction in the benzoquinone to a catechol
group, resulting in the loss of electrochemical activity and the occurrence of Zn2+ ligand
detachment. The above analysis shows PDA has a reversible Faradaic reaction process of
Zn2+ embedding and de−embedding. Figure 4b shows the GCD curves of the composite
electrode at current densities of 0.5~2 A g−1. As the current density increases, the mass
specific capacitance decreases. The highest specific capacitance is 142.4 F g−1 at the current
density of 0.5 A g−1.
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As shown in Figure 5a,b, the CV of the AC anode is performed under the voltage
window of −0.8~0 V. The CV curve is rectangular−like, indicating that the anode stores
zinc ions with electrostatic double−layer behavior. The PDA@3DVAG exhibits the appar-
ent redox peaks in the CV curve and is a battery type as a cathode. The two electrode
materials are assembled to construct an organic zinc−ion hybrid supercapacitor for further
investigation of performances.

Figure 5c shows the CV curves of the ZHSCs at the scan rate of 20 mV s−1 for a voltage
window of −0.8~0.7 V. Two pairs of redox peaks can be clearly observed in Figure 5c,
one oxidation peak appears at 0.26 V, and another reduction peak appears at −0.2 V. The
potential difference is 0.46 V, which is consistent with that (1.44 − 0.98 = 0.46 V) of the
redox peak (Figure 5d) in the Zn//PDA@3DVAG zinc−ion battery (ZIBs). In the two sets
of CV curves, the relative positions of the two pairs of redox peaks are close and their
shapes and sizes are similar, indicating that the energy storage effect of the AC anode as
the anode electrode is similar to that of metal zinc, while the mechanism is different. A
reversible dissolution/deposition process occurs for metal zinc anode, while an electrostatic
adsorption behavior for AC anode. Because of the low oxidation potential of AC anode and
low redox potential of PDA, the assembled ZHSCs exhibit a low potential of −0.8~0.7 V,
while the zinc cell voltage window can reach 0.5~1.7 V. However, the CV area of ZHSCs is
larger than that of Zn−ion batteries, and the redox peaks at both locations are remarkable,
indicating that the PDA is more electrochemically active in ZHSCs and has a greater ability
to bind zinc ions.
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The PDA@3DVAG electrode is impregnated in a 2M ZnSO4 electrolyte to observe its
solubility. There is a color change from colorless and transparent to slightly brown after 24 h,
as shown in Figure 6a. UV–vis spectroscopy of the electrolyte solution (Figure 6b) reveals
an absorption peak at 281 nm obtained after 24 h of impregnation, which is consistent with
the absorption peak of dopamine, indicating the presence of the soluble dopamine group
in the conventional 2M ZnSO4 solution [18]. In order to inhibit the dissolution of active
substances, an ultra-high concentration zinc salt electrolyte (18 m ZnCl2 + 6 m NH4Cl, WIS)
is used. As shown in Figure 6a, there is no obvious color change, and the UV–vis spectra
can also reveal no absorption peak of the dopamine group at 281 nm, indicating that the
highly concentrated salt electrolyte can significantly inhibit the dissolution of PDA.
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spectra.

The electrochemical performances of PDA@3DVAG are compared in the two aqueous
electrolytes of 2M ZnSO4 and highly concentrated salt. Figure 7a,c shows the CV curves of
ZHSCs constructed with the two electrolytes at different scan rates from 2 to 100 mV s−1.
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As shown in Figure 7a, the PDA@3DVAG//2M ZnSO4//AC ZHSCs shows two pairs
of redox peaks under the −0.8~0.6 V voltage window, with oxidation peak potentials of
~−0.1 V and ~0.3 V, and reduction peak potentials of ~0.1 V and ~−0.3 V, corresponding
to the coordination reaction of Zn2+ and H+ with quinone group in the PDA, respectively.
The highly concentrated salt electrolyte exhibits a wider voltage window (−0.8~0.8 V), as
shown in Figure 7c. Due to the introduction of NH4

+ in the electrolyte, the redox peaks
in the CV curves of PDA@3DVAG//18 m ZnCl2 + 6 m NH4Cl//AC ZHSCs are −0.3 V
and 0.35 V, and the reduction peak potentials are 0.15 V and −0.65 V, corresponding to
the coordination reaction of Zn2+ and NH4

+ with quinone group, respectively. According
to the potential difference between AC anode and metal zinc, the redox peaks at 0.35 V
and 0.15 V are coordination reactions occurring in Zn2+, which is consistent with the
three−electrode system.
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Figure 7b,d shows the GCD curves of the two ZHSCs at different current densities.
As shown in Figure 7b, the symmetrical GCD curves can be observed in the conventional
electrolyte ZHSCs, which indicates the good electrochemical performance of ZHSCs in
conventional electrolytes. As the current density increases from 0.5 to 3 A g−1, the specific
capacitance decreases from 128 F g−1 to 71.1 F g−1, with the capacitance retention of 55.54%.
In the GCD curves of the highly concentrated salt electrolyte ZHSCs (Figure 7d), two
pairs of charge and discharge plateaus can be clearly observed, corresponding to the redox
peaks in CV. As the current density increases from 0.5 to 3 A g−1, the specific capacitance
decreases from 133.9 F g−1 to 65.5 F g−1, with the capacitance retention of 48.92%. The
specific capacitances of the two electrode materials at different current densities are also
shown in Figure 7e. It can also be seen that the PDA@3DVAG with vertical orientation
exhibits better multiplier performance compared to the system of PDA//WIS//AC ZHSCs
with the capacitance retention of 40.67%. This result can also be found in the electro-
chemical impedance spectrum (EIS), as shown in Figure 7f. The slope is higher in the
AC−based electrode, which indicates double−layer capacitance and not diffusion, while
the PDA/WIS/AC follows a diffusion pattern. Therefore, there is a fundamental differ-
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ence between these systems. In the Nyquist plot, the semicircular arc appearing in the
high−frequency range is the charge transfer resistance, which is mainly affected by the
contact interface resistance between the electrolyte and the electrode. The sloping line in
the low-frequency range reflects the ion transfer resistance of the pores inside the electrode.
Both PDA@3DVAG//2M ZnSO4//AC ZHSCs and PDA@3DVAG//18 m ZnCl2 + 6 m
NH4Cl//AC ZHSCs have higher slopes in the low−frequency range due to the presence
of carbon material in the positive electrode, but there is still ion diffusion resistance due
to the presence of PDA pseudocapacitive material. The main energy storage contribution
of PDA//WIS//AC is pseudocapacitance, so it exhibits large ion diffusion resistance. As
shown in the enlarged figure of the high−frequency range, PDA@3DVAG exhibits a smaller
ionic conductivity in WIS electrolytes compared to that in 2M ZnSO4, mainly due to the
low ionic conductivity of the highly concentrated electrolyte. However, it has a positive
effect on pseudocapacitance, which has a priority of high energy density compared with
traditional Electrochemical Double−Layer Capacitors (EDLCs). The EIS characterizations
of the two electrolytes exhibit different ion transport resistances, with the conventional
electrolyte having a smaller equivalent resistance than the highly concentrated salt elec-
trolyte. In the low−frequency range, conventional electrolytes have a higher slope than
highly concentrated electrolytes, indicating a lower resistance to ion transport, while PDA
electrodes exhibit the poorest ion diffusion. From the three−dimensional vertical channels
and the conductive network, PDA@3DVAG ensures good ion diffusion, achieves excellent
multiplicity performance under highly concentrated electrolytes, and improves the voltage
window and achieves better electrochemical performance [24,25].

Figure 8 shows the cycle performances of conventional and highly concentrated salt
electrolytes for ZHSCs at the current density of 1 A g−1. After 3000 cycles, the specific
capacitance of the conventional electrolyte decreases from 95.8 to 42.3 F g−1, with poor
capacitance retention of only 44.2%, which may be caused by the dissolution of PDA during
the long-term charge and discharge process as discussed before. The highly concentrated
salt electrolyte shows a decrease in specific capacitance from 96.7 to 59.8 F g−1 after the long-
term cycles, with a relatively high capacitance retention rate of 61.8%, which is improved
by 17.6% compared with that of the conventional electrolyte.
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Figure 9 shows the Ragone plot of ZHSCs constructed with highly concentrated salt
electrolytes. It can be found that the PDA@3DVAG composite electrode shows both high
energy and power densities. The energy density reaches 46.14 Wh kg−1 at the power density
of 393.75 W kg−1 and 19.29 Wh kg−1 at 2183 W kg−1, respectively. The energy density
exceeds that of conventional electrochemical capacitors and some large−size batteries.
As shown in Table 1, compared with the ZHSCs reported in the literature, the ZHSCs
constructed with PDA@3DVAG composite electrodes exhibit an excellent energy density
and good power density.
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Table 1. Performance of ZHSCs constructed by PDA@3DVAG composites compared with other
systems.

Electrode Material Electrolyte Voltage
(V)

Energy Density
(Wh kg−1)

Power Density
(W kg−1) Reference

PDA@3DVAG//AC WIS 0.8 46.14 393.75 This work
NTC 1M H2SO4 0.8 4.5 40 [26]

V2O5//AC 2M ZnSO4 2 34.6 1300 [27]
MnO2–CNTs//MXene 2M ZnSO4 1.9 29.7 2480 [28]

V2O5–ECF//ECF 6M LiCl 2 22.3 1500 [29]
LiNi0.5Mn1.5O4//AC 1M LiPF6 1.75 19 103 [30]

TiO2@EEG//EEG 1M LiPF6 1.5 10 2000 [31]
rGO/COF//rGO 1M H2SO4 1 10.3 50 [32]

4. Conclusions

The selection of material and the design of structure for electrode are of great im-
portance for the performances of ZHSCs, which requires large surface area, good electric
conductivity, certain channels with a proper diameter of pores, and so on for ion and
mass transfer, abundant active chemical sites, etc. In this work, a method of unidirectional
freezing and subsequent self-polymerization is used to obtain a PDA@3DVAG composite,
which has a three-dimensional vertically aligned structure with long ordered channels and
uniform pores. When the composite is assembled as electrode materials for an aqueous
organic zinc-ion hybrid supercapacitor, the electrochemical performances are fairly well
with a wide voltage window, good cycle performance, and high energy density, especially
in highly concentrated salt electrolyte systems. The structure of three-dimensional vertically
aligned graphene and the composite of PDA polymer may provide some references for the
development of high-performance aqueous organic zinc-ion energy storage devices.
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