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Abstract: The Landsat 8 satellites have retrieved land surface temperature (LST) resampled at a 30-m
spatial resolution since 2013, but the urban climate studies frequently use a limited number of images
due to the problems related to missing data over the city of interest. This paper endorses a procedure
for building a long-term gap-free LST data set in an urban area using the high-resolution Landsat
8 imagery. The study is applied on 94 images available through 2013–2018 over Bucharest (Romania).
The raw images containing between 1.1% and 58.4% missing LST data were filled in using the Data
INterpolating Empirical Orthogonal Functions (DINEOF) algorithm implemented in the sinkr R
packages. The resulting high-spatial-resolution gap-filled land surface temperature data set was
used to explore the LST climatology over Bucharest (Romania) an urban area, at a monthly, seasonal,
and annual scale. The performance of the gap-filling method was checked using a cross-validation
procedure, and the results pledge for the development of an LST-based urban climatology.
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1. Introduction

The increasing population and the permanent quest for comfort and safe shelter have triggered
intense urbanization processes taking place all over the world, mainly in the 20th and 21st centuries.
The built-up areas substantially modify the environment, and the features of the local atmospheric
envelope are changed to the point that a new type of climate is formed. The urban climate is the
resultant of a different composition of the radiation budget, higher temperature, and lower humidity
values than the surrounding rural areas. The high heterogeneity of the urban environment is replicated
in a corresponding diversity of the local climate conditions within a city. For example, green areas are
cooler and more humid than impervious patches, urban canyons and squares disturb the wind flow,
and building heights and density are so influential for the urban climate that they form the base of the
definition of local climate zones (LCZs) [1–3]. As a consequence, urban climate modelling and weather
forecasting require adequate data relevant for different urban microclimates.

Due to some insurmountable challenges related to the deployment of sensors, such as
implementation and maintenance costs, it is very difficult to capture the climate of all distinct
spatial tracks in a city using ground measurements. In recent years, urban meteorological networks
(UMNs) have been implemented in several cities [4–7], and citizen observatories are increasingly used
in urban climate research [8,9], but a full coverage of the climatic instances of a city is still problematic.
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Alternatively, the use of satellite remote sensing for retrieving the urban land surface temperature (LST)
has been constantly intensified in the last decades, urged by easier access to low-cost ready-to-use
products, larger spatial coverage, finer temporal resolutions, and an extended time span of availability.
At present, the World Meteorological Organization (WMO) acknowledges 105 satellite instruments
that have provided LST along time, categorized from primary to marginal relevance [10]. Several
sensors that have provided LST products are particularly useful for the urban climate due to their
suitable resolutions and time span (Table 1).

Table 1. Characteristics of several satellite remote sensing products delivering LST data.

Sensor Satellite Spatial Resolution Temporal Resolution Time Span

SEVIRI MSG 3 to 5 km 15-min 1983 to date
AVHRR NOAA 1.1 km 2 images/24 h 1981 to date
MODIS Terra/Aqua 1 km 4 images/24 h 2000/2002 to date
SLSTR Copernicus Sentinel-3 1 km 1 image/24 h 2017 to date

TM, ETM+, OLI, TIRS Landsat 4, 5, 7, 8 30 m (resampled) 1 image/8 or 16 days 1982 to date

From a climatic perspective, the main differences between the satellite remote sensing products
refer to the spatial-temporal resolutions and time span of available data. For urban climate studies,
the ideal product will have ≤ a 1-km spatial resolution [11], daily frequency, and temporal continuity
over the area of interest. In this respect, one can remark that the Landsat missions jointly operated by
NASA and the U.S. Geological Survey have provided a series of Earth observation satellites since 1972.
The spatial resolution of the Landsat series reached 30 m (resampled) and contributed significantly
to the development of urban climate research [12–14]. The availability of such data has stimulated
detailed investigations of the surface urban heat island (SUHI) and its correlation with the land use/land
cover [15,16]. Nevertheless, the low frequency of full-coverage images, with all or the majority of
pixels valid over certain areas, and the coarse temporal resolution (i.e., one image at 8 or 16 days) bias
the potential benefits to use the Landsat series for urban climate research. Different solutions have
been proposed to address such limitations or to improve the quality of the outputs. Cristóbal et al.
(2009) [17] presented an enhanced methodology to retrieve LST from Landsat 4 TM, Landsat 5 TM,
and Landsat 7 ETM+ using different water vapor ranges.

Sparse or even singular Landsat images were often used in urban climate studies [14,15], while
temporally and spatially continuous data sets have been rarely employed simply because they are not
available. For example, Lemus-Canovas et al. (2020) [18] estimated Barcelona’s metropolitan daytime
hot and cold extremes using the LST retrieved from 24 Landsat 8 imagery, Tsou et al. (2017) [15] assessed
the SUHI of Shenzen and Hong Kong based on 4 Landsat 8 images, and Kaplan et al. (2018) [14]
explored the case study of the Skopje SUHI using only 2 July images. The value of such investigations
on the urban climate is doubtless, but one should also acknowledge the shortcomings of the results
due to the limited number of samples.

Comparatively, this study addresses the need for temporal and spatial continuity of remote
sensing data, and it explores the climatology of the LST in a large urban area (Bucharest, Romania)
based on 94 high-spatial-resolution images retrieved from Landsat 8. We used the Data INterpolating
Empirical Orthogonal Functions (DINEOF) algorithm [19] in order to solve the inherent problem of
missing data within satellite images, so that the exploratory study is ultimately based on a gap-free
data set. Zhou et al. (2017) [20] showed that the DINEOF reconstruction method can capture the
impact of land cover types on LST, pledging for a reasonable spatial pattern, which is particularly
important in urban climatology. The temporal extent and the data objectively available for this study
support a methodological approach, which can certainly be extended when more data are collected in
the future over the same area. In the end, the seasonal and annual variations of the LST were explored.

High-spatial-resolution data sets with full coverage over an urban area have multiple applications
beyond scientific research. For example, the temperature distribution over smaller administrative units
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within a city can provide useful information for urbanism, health risk assessment, or building industry.
In this respect, we illustrate the distribution of the LST values over census units of Bucharest.

The manuscript is structured in four sections, as follows: After the introduction (1), we briefly
present relevant geographical and climatic facts about the study area, and we detail the data and
methods (2), which fundament the results (3), and we supply a set of concluding remarks (4).

2. Materials and Methods

2.1. Study Area

The case study focuses on Bucharest, the capital and the largest city of Romania, with an
estimated population of about two million inhabitants [21], lying over approximately 240 km2.
The climate of Bucharest is monitored by three WMO stations, namely one ‘urban’ weather
station, i.e., Bucures, ti-Filaret, placed within the city limits; and two ‘peri-urban’ weather
stations, i.e., Bucures, ti-Băneasa, at 10 km N of the downtown, and Bucures, ti-Afumat, i, at approximately
11.5 km NE of the downtown (Figure 1). According to the Köppen–Geiger climate classification [22],
Bucharest has a hot-summer humid continental climate (Dfa) with the coldest month, January, averaging
below 0 ◦C, while in July and August, the average temperature is above 22 ◦C, and above 10 ◦C from
April to October. The wettest period is April–July (Figure 2).
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Figure 1. Urban administrative limit and functional urban areas (FAU) of Bucharest. (Source: Urban
Atlas LCLU 2012, available online at <https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012>).
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2.2. Data and Methods

The Landsat 8 mission provides timely high-quality visible and infrared images, sufficiently
consistent with other satellite data in terms of acquisition geometry, calibration, coverage, and
spectral characteristics [23]. We used the LST derived from the bands 10 (10.60–11.19 µm) and 11
(11.50–12.51 µm), resampled at 30 m, from Landsat 8 TIRS (Thermal Infrared Sensors) instruments.
The Landsat 8 TIRS products use split window algorithms and techniques for correcting atmospheric
disturbances, such as absorption and emission, or surface emissivity inferred from MODIS land-cover
calculations. Emissivity is a critical variable for the LST estimation. This study used Landsat 8 LST
with NDVI-based emissivity, estimated from the Landsat visible and near-infrared bands and typical
emissivity values, retrieved from http://rslab.gr/downloads.html, with full technical details available
online [13].

The scenes were retrieved between 08:58 and 09:04 UTC, and the area of interest covers the
administrative perimeter of Bucharest and its surroundings within a rectangle ranging between 25.90◦

and 26.32◦ East, and 44.32◦ and 44.59◦ North. This study was based on 94 Landsat 8 imagery ranging
between 2013 and 2018, with an average percentage of data coverage of 91.4% (Table 2). Table 3 shows
the degree of completeness of the 94 images when downloaded. In order to secure the quality of
the results and to minimize the sampling and processing errors, the data beyond the 1st and 99th
percentiles were filtered out.

Table 2. Number of images used and average percentage of data coverage over the study area.

Year 2013 2014 2015 2016 2017 2018 Total

Number of images 13 14 13 21 19 14 94
Average percentage of data coverage (%) 91.4 94.7 93.0 88.5 90.0 90.7 91.4

Table 3. Percentage of LST data within the study area available from the selected Landsat 8 images.

Percentage of Data Coverage (%) 40.1–50.0 50.1–60.0 60.1–70.0 70.1–80.0 80.1–90.0 90.1–100.0

Number of images 2 0 1 7 16 68

Missing data is a major barrier for satellite meteorology and especially for climate applications,
which require long-term and good spatial coverage of information, and constant efforts address this
issue. Henn et al. (2013) [24] compared the performance of five techniques used to fill in missing
temperature data, namely (a) spatiotemporal correlations based on empirical orthogonal functions
(EOFs), (b) time series diurnal interpolation, and (c, d, e) three variations of lapse rate-based filling.
They found that the spatiotemporal correlations using EOF reconstruction were most accurate for a
large number of stations and missing data. Long et al. (2020) [25] combined MODIS and SEVIRI LST in
order to generate a complete daytime data set, and Zhao et al. (2020) [26] also used MODIS to obtain
all-weather conditions data. However, high-spatial-resolution data sets allow in-depth analysis of the
LST at an urban and intra-urban scale. Considering the results provided by Henn et al. (2013), this
study addressed such limitations by reconstructing complete LST data sets for the selected Landsat
images through 2013–2018 using the DINEOF algorithm [27–29]. The selection of this method was
justified by its relatively simple application in situations when relevant co-variables are not available.

Essentially, the missing LST values of each Landsat 8 image were reconstructed using the function
DINEOF implemented in sinkr R package [30]. This method does not require a priori knowledge about
the statistics of the full data set [31], which is an advantage for analyzing extensive data sets.

The DINEOF method consists of an iterative method to calculate the field values at missing
positions. It implies the application of the following routine [19,29,32]:

1. The spatial and temporal mean of the observation data are removed from the raw LST dataset.
2. The ‘no observation’ pixels are replaced with zero values.

http://rslab.gr/downloads.html
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3. The resulting dataset is used to compute the first EOF, and the values obtained during the EOF
decomposition are used to replace the missing data.

4. Sequential EOFs are calculated iteratively until a user-defined convergence criterion is reached.
5. The procedure is repeated by computing the two EOFs, three EOFs, etc.
6. The total number of EOFs is determined by the results of the cross-validation procedure, commonly

checked with 1% of the valid data selected at the beginning of the procedure.

The use of only one selected EOF configuration may be considered a limitation of the DINEOF
algorithm [33,34], but the accuracy of the results reported here pledge for applicability in urban climate
research. Overall, the cross-validation pixels were utilized to calculate the accuracy by comparing
the pixels of the raw data sets with the pixels of the filled data sets. Figure 3 exemplifies the visual
performance of the DINEOF method for filling in the missing LST values of two Landsat 8 images over
the urban areas of Bucharest (Romania).
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Figure 3. Land surface temperature (LST) (◦C) over Bucharest (Romania) as retrieved from raw and
gap-filled Landsat 8 images for 23 April 2013 (a) and 25 June 2016 (b). White spots correspond to
missing data.

The complete working flow of this study, from retrieving the Landsat 8 LST images to potential
applications of the resulted gap-free data set, is provided in Figure 4. The approach was applied here
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for the city of Bucharest, but it is clear that a similar flow would be applicable for any urban area, and
various applications may be proposed.Sensors 2020, 20, x FOR PEER REVIEW 6 of 14 

 

Figure 4. Workflow from raw Landsat 8 LST data to applications based on gap-free LST in an urban area. 

3. Results and Discussion 

3.1. Gap Filling the Landsat 8 Land Surface Temperature Data Set: Results and Validation 

By applying the DINEOF gap-filling method, we obtained 94 Landsat 8 images with full 

coverage of the study area. Between 2013 and 2018, the annual number of available images ranges 

between 13 and 21, while the monthly number of images varies between 2 in February, and 13 in July 

and August (Figure 5). More frequent images are available during the warm season (i.e., 9 to 13 

images from March to October) due to the lower cloudiness. 

 

Figure 5. Absolute and relative frequencies of Landsat 8 LST images and data available over the study 

area through 2013–2018: monthly (A) and annual (B) statistics. 

In order to evaluate the accuracy of the DINEOF gap-filling method, we artificially simulated 

gaps in the original LST data set, and the estimated values were compared to the raw LST values. 

The artificial gaps were created on a subset representing 50% of the selected LST images, and 1000 

randomly selected pixels were assigned as not available (NA) for each image. The DINEOF gap-

filling method was tested on the entire data set, namely on all the images containing artificially 

created gaps. Figure 6 shows the relationship between estimated and original LST values. One can 

notice that the DINEOF algorithm results in a gap-filled LST data set that is very well correlated and 

statistically consistent with the initial LST data set, i.e., Pearson’s correlation coefficient r2 = 0.979, and 

only −0.3 °C difference between the average values (Table 4). 

Table 4. Summary statistics of the raw and DINEOF gap-filled LST data sets. 

Statistical 

Parameter 

Raw Data Set 

LST (°C) 

Gap-Filled Data 

Set LST (°C) 

Difference between Raw  

and Gap-Filled Data Sets (°C) 

Minimum −0.9 −2.6 1.7 

1st Quartile 21.5 21.9 −0.4 

Median 26.8 26.9 −0.2 

Average 26.2 26.5 −0.3 

3rd Quartile 32.7 33.0 −0.3 

Maximum 53.6 51.3 2.3 

Figure 4. Workflow from raw Landsat 8 LST data to applications based on gap-free LST in an urban area.

3. Results and Discussion

3.1. Gap Filling the Landsat 8 Land Surface Temperature Data Set: Results and Validation

By applying the DINEOF gap-filling method, we obtained 94 Landsat 8 images with full coverage
of the study area. Between 2013 and 2018, the annual number of available images ranges between 13
and 21, while the monthly number of images varies between 2 in February, and 13 in July and August
(Figure 5). More frequent images are available during the warm season (i.e., 9 to 13 images from March
to October) due to the lower cloudiness.
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Figure 5. Absolute and relative frequencies of Landsat 8 LST images and data available over the study
area through 2013–2018: monthly (A) and annual (B) statistics.

In order to evaluate the accuracy of the DINEOF gap-filling method, we artificially simulated gaps
in the original LST data set, and the estimated values were compared to the raw LST values. The artificial
gaps were created on a subset representing 50% of the selected LST images, and 1000 randomly selected
pixels were assigned as not available (NA) for each image. The DINEOF gap-filling method was
tested on the entire data set, namely on all the images containing artificially created gaps. Figure 6
shows the relationship between estimated and original LST values. One can notice that the DINEOF
algorithm results in a gap-filled LST data set that is very well correlated and statistically consistent
with the initial LST data set, i.e., Pearson’s correlation coefficient r2 = 0.979, and only −0.3 ◦C difference
between the average values (Table 4).

Table 4. Summary statistics of the raw and DINEOF gap-filled LST data sets.

Statistical
Parameter

Raw Data Set
LST (◦C)

Gap-Filled Data
Set LST (◦C)

Difference between Raw and
Gap-Filled Data Sets (◦C)

Minimum −0.9 −2.6 1.7
1st Quartile 21.5 21.9 −0.4

Median 26.8 26.9 −0.2
Average 26.2 26.5 −0.3

3rd Quartile 32.7 33.0 −0.3
Maximum 53.6 51.3 2.3
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Figure 6. Comparison between DINEOF-filled LST and raw LST data over the validation sample.
The boxplots depict the statistical properties of the two data sets, i.e., median, 25th, 75th percentile
(the lower and upper hinges), and the 1.5 multiplied with the interquartile range (the upper and
the lower whiskers).

The performance of the matching between the gap-filled and raw LST data sets was also
summarized in terms of the correlation, root-mean-square (RMS) errors, and amplitude of their
variance (standard deviations) using a Taylor diagram [35], computed for four distinct land-cover
categories derived from the Urban Atlas LCLU 2012 (https://land.copernicus.eu/local/urban-atlas/
urban-atlas-2018), namely urban, rural, forest, and water (Figure 7). One can indicate the following
deduction: (a) The performance of the DINEOF method is very good and similar for the land-cover
categories (i.e., very high correlation coefficients, and low RMS errors); (b) based on the standard
deviation values, the gap-filled data are closer to the raw data for land-cover categories closer to nature
(i.e., forest and water) than for the more anthropic ones (i.e., rural and urban); and (c) there is a clear
distinction between the more natural categories and more anthropic ones in terms of RMS errors, but
the values are low in all the cases (±2.0 ◦C).
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3.2. Climatic Analysis of the Land Surface Temperature over Bucharest Using the Gap-Filled Landsat 8 Data Set

Climate research requires long-term data and full spatial coverage, if possible. While a 30-year
period is recommended for climate prediction purposes, shorter time intervals may perform as
effectively as 30-year averaging periods and provide useful overall climate information [36]. It is
undoubtedly an advantage to have early climate information over an area even if it is consequently
from shorter periods, than to delay climate research and wait for the completion of a 30-year period of
data. In this respect, the spatial completeness and the temporal extent of the reconstructed Landsat
8 LST data series supports a preliminary climatic analysis over Bucharest at monthly, seasonal, and
annual scales.

Figure 8 shows the average LST values through May–September, namely the months with
more than 9 images each along the period 2013–2018. Figures 9–11 illustrate the seasonal and,
respectively, annual and multi-annual LST averages integrating all the images available over the period
analyzed in this study. One can remark that the LST seasonality is perfectly captured by the Landsat
data (Figures 8 and 9). For example, June, July, and August (JJA) are the hottest months; the LST
values decrease in spring (March, April, and May—MAM) and autumn (September, October, and
November—SON); and winter is the coldest season (December, January, and February—DJF).
Moreover, this is consistent with the thermal climate over the area of interest, as described in
Section 2.1. Mean daily LSTs above 30 ◦C prevail from May to August, while 40–44 ◦C are common
LSTs over the urban area of Bucharest during the daytime in July (Figure 8). In the central part of the
city, the multiannual average LST values of the warm seasons range between 22 and 27 ◦C, and over
the urban periphery the LST is 20–22 ◦C (Figure 11). The estimated SUHI intensity of 2.0–5.0 ◦C is in
perfect agreement with previous work based on MODIS LST products [37].
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Figure 11. Multi-annual average LST over Bucharest during the warm season (April–September)
retrieved from Landsat 8 imagery (2013–2018).

One can remark that the spatial pattern of the LST (Figures 8–11) is strongly connected with the
land cover-land use characteristics of the urban area (Figure 1) for all the temporal scales tackled in
this study. The warmest areas are concentrated in the central part Bucharest, overlapping the urban
fabric districts with high building density, but spots with high LST values occur towards the edges
of the administrative perimeter too, over industrial or residential urban fabric. The water and forest
surfaces may be 8–10 ◦C colder than the urban fabric in terms of the multi-annual average (Figure 11).

In order to confirm the accuracy of the method and the reliability of the results, the Landsat 8 LST
values were compared with the corresponding air temperature retrieved at the same time of the day
from the pixels containing the three WMO meteorological stations of Bucharest (i.e., Bucures, ti-Afumat, i,
-Băneasa, and -Filaret). According to Jin and Dickinson (2010) [38], the difference LST–Ta is higher at
noon (i.e., 15 ◦C), and lower by nighttime (i.e., <5 ◦C), while Mbuh et al. (2019) [39] found differences
of up to 5 ◦C in Chicago and Minneapolis, based on Landsat 4, 5, and 7 images from 1984–2016.
For Bucharest, the LST values retrieved from Landsat 8 OLI and TIRS over the pixels corresponding to
the weather stations Bucures, ti-Filaret, -Băneasa, and -Afumat,i are higher than Ta, with 0.1 to 4.0 ◦C
in 30% of the cases, and 4.1 to 6.0 ◦C in almost 30% of the cases (Figure 12). One can notice a strong
correlation between LST and Ta, with Pearson’s correlation coefficients (R2) above 0.9 over each of the
three meteorological stations analyzed here (Figure 13).
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Figure 13. Ta versus LST values retrieved from Landsat 8 over the pixels corresponding to the Bucharest
weather stations (2013–2018).

The gap-filled high-spatial-resolution LST data set based on the Landsat 8 imagery can be combined
with other information and derive products that are very useful in different applications. For example,
the distribution of the LST over census units of Bucharest (Figure 14) is fundamental information for
assessing the thermal hazard risk at a fine scale, and it will be investigated as a follow-up of this study.
Such details cannot be retrieved unless high-spatial-resolution data, such as the one obtained from
gap-filling Landsat 8 imagery, is available.
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One could summarize several clear benefits and inherent limitations related to the DINEOF-based
gap filling of satellite imagery data, i.e., Landsat 8. The main benefits consist of (1) the delivery of a data
set at high spatial resolution, (2) with full coverage over remote and heterogeneous areas where in situ
weather stations’ measurements are lacking or are not continuous, which are (3) obtained at a relatively
low cost for the end user [40]. The main advantage of using the DINEOF gap-filling procedure is that
the method is easily applicable and does require supplementary variables (4). The coarse temporal
resolution when using Landsat 8 imagery is an insurmountable barrier for some applications, such as
operational forecasting, monitoring the rapid development of phenomena, or analysis of nighttime
processes. However, the Landsat 8 data sets can be used for climate monitoring or risk studies related
to more stable variables, such as LST [41].
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4. Conclusions

Gap-free satellite remote sensing products at a fine resolution may be an excellent compromise
between the need for full spatial coverage and temporal continuity of climate data in urban areas.
The results of this study demonstrated that 30-m-spatial-resolution Landsat 8 imagery can be extremely
useful for retrieving the LST in urban areas, despite the spatial and temporal discontinuity of the data
sets. Although missing data, due to factors like cloudiness or a limited number of satellite passages,
has been an important barrier for the proper use of Landsat LST in urban climate research, this study
employed an efficient solution for obtaining more extended and better data sets, regarding both
temporal and spatial coverage. This is an important advantage, especially in remote or heterogeneous
areas, where filling the observational spatiotemporal gaps in data becomes more crucial [40]. This study
demonstrated the advantage of applying the DINEOF method for filling LST gaps in satellite imagery
in order to take full advantage of the high spatial resolution of the Landsat 8 data sets.

The DINEOF gap filling algorithm was applied to each Landsat 8 image with at least 40% valid
LST values over Bucharest (Romania), and generated a consistent data set of 94 images with complete
spatial coverage in the urban area through 2013–2018. The DINEOF procedure was validated by filling
artificially created gaps in Landsat 8 images, and evaluating the results against the initial values in
terms of statistic parameters, such as the correlation, RMS error, and variance. The returned LST
values corresponding to the artificial gaps were found to be very well correlated and statistically
consistent with the original data, pledging for an efficient gap-filling procedure. The land cover biases
the performance of the gap filling, and the method performed slightly better for natural land cover
categories, very likely due to their higher temperature homogeneity, but the results were very similar
for all the categories.

The climatic analysis of the gap-free LST data set illustrated the role of the geographical setting
and urban land-cover on the local climate. The comparison between LST and Ta at three WMO stations
monitoring the climate of Bucharest (i.e., Bucures, ti-Afumat,i, -Băneasa, and -Filaret) returned strong
correlation coefficients (R2 > 0.9) and approximately 70% of the differences were less than 6 ◦C, in very
good agreement with the previous studies.

Further research may be envisaged aiming to complete this study with other data retrieved
from sources like the updated Landsat 8, previous Landsat or other missions, ground-based data,
modelling outputs, and ancillary data. Relevant improvements of the outputs in terms of the accuracy
may be pursued by more complex validation campaigns using ground-based LST measurements
and other satellite products. The LST distribution over census units of Bucharest exemplifies that by
combining (1) high-spatial-resolution Landsat 8 images, with full urban coverage, and (2) detailed
ground information, one can derive very useful products and applications.
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