
RESEARCH ARTICLE

Conservation genetics of two threatened

frogs from the Mambilla highlands, Nigeria

Denise Arroyo-Lambaer1☯, Hazel Chapman2☯*, Marie Hale2☯, David Blackburn3☯

1 Instituto de Biologı́a, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México,
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Abstract

Amphibians are the vertebrate group with the highest number of species threatened with

extinction, and habitat loss and fragmentation are considered to be among the leading

causes of their declines and extinctions. Little is known of the population biology of amphib-

ian species inhabiting montane forests in Central and West Africa, where anthropogenic

activities such as farming and cattle raising are major threats to native biodiversity. We used

Amplified Fragment Length Polymorphisms (AFLPs) to assess the population genetic struc-

ture of two poorly known species, Cardioglossa schioetzi and Leptodactylodon bicolor (both

in the Arthroleptidae), in and around Ngel Nyaki Forest Reserve on the Mambilla Plateau in

eastern Nigeria. The landscape comprises continuous forest on steep slopes and small

riparian forest fragments in a grassland matrix. While increased fragmentation is well docu-

mented for these and other forests in the mountains of Cameroon and Nigeria over the past

century, there are no previous assessments of the impact of forest fragmentation on mon-

tane amphibian populations in this region. Our estimates of genetic diversity are similar

across populations within each species with levels of heterozygosity values consistent with

local population declines. Except for a pair of populations (C. schioetzi) we did not observe

genetic differentiation between forest and riparian forest fragment populations, nor across

sites within continuous forest (L. bicolor). Our results demonstrate recent gene flow between

forest fragments and the adjacent protected forests and suggest that small forest corridors

connecting these may lessen the genetic consequences of at least 30 years of intense and

severe fragmentation in Ngel Nyaki.

Introduction

Globally, amphibians face the most extreme population declines of all major vertebrate groups

[1–3]. Contributing factors include climate change, disease, and habitat fragmentation [4–6].

The severity of amphibian declines vary across geographic regions [3] and despite evidence for

population declines in Africa [7], the influence of habitat fragmentation on these declines

remains unknown [7, 8]. Even less is known about the impact of habitat fragmentation on

population genetics of amphibian species in Africa [9,10].
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As is the case with many other taxa, habitat fragmentation likely has long-term effects on

the genetic viability of amphibian populations because of the combined effects of reduced pop-

ulation size and increased isolation [11]. Increased isolation among populations may lead to

reduced dispersal and gene flow, increased levels of inbreeding, smaller effective population

sizes, and loss of genetic variation [12–14]. Consequently, assessing the population genetics of

a species can provide valuable information for conservation much more quickly than longitu-

dinal demographic studies [15]. Such studies have already been widely used to inform manage-

ment strategies to halt or slow down amphibian decline [10,16–22].

To begin to redress the paucity of population genetics studies of African amphibians, we

focused on populations of frogs within the forests of the Nigerian Highlands of the Cameroon

Volcanic Line [23]. This is one of Africa’s biodiversity hotspots [24] and hosts a rich diversity

of amphibian species [25]. Despite recognition as a center of biodiversity [26,27], the diversity

and ecology of amphibians in Nigeria’s mountains remain understudied [25]. The montane

forests on the Mambilla Plateau have been fragmented for a long time, hundreds of years at

least. However, even 30 years ago there was more connectivity among the fragments [28] and

more likely the streamside forests were acting as corridors between larger forests. Within the

last 30 years (HC, personal observation) there has been a dramatic increase in cattle, which

first arrived on the Plateau in the 1950’s [29]. In addition to overgrazing by cattle, other threats

to these forests include grass burning and land clearance for farming [30]. We used this heavily

modified landscape in Nigeria’s mountains as a context for studying how forest fragmentation

and associated degradation impact population genetic structure in forest-associated frog

species.

Based on previous surveys of Ngel Nyaki amphibians [25,31,32], we selected two species

from the anuran family Arthroleptidae that is endemic to sub-Saharan Africa [33–37]. Both

species, Cardioglossa schioetzi and Leptodactylodon bicolor, are endemic to the montane forests

of Cameroon and Nigeria, they are small (<30 mm snout–vent length), have stream-adapted

tadpoles, and live in leaf litter and rocky areas [37–39]. Little information exists on the popula-

tion biology of these species, such as for example, the distances over which individuals dis-

perse. Cardioglossa schioetzi occurs within small degraded riparian forests close to, but outside

Ngel Nyaki Forest Reserve, as well as along the edge habitat of the continuous Ngel Nyaki for-

est (Fig 1). In contrast, L. bicolor is common along rocky streams within the continuous forest,

but is rarely found within riparian fragments (Fig 1; [32]). Both species are on the IUCN

Threatened species list (C. schioetzi–Endangered; L. bicolor–Vulnerable [40]) because of habi-

tat degradation and the decline of remaining forest habitats on the mountains of Cameroon

and Nigeria.

We aimed to determine levels of genetic diversity within and among populations of each

species and use these data to assess levels of gene flow and connectivity among the populations

within each species, in part to determine the extent to which grasslands act as a dispersal bar-

rier for these species. Because its populations occur in fragments surrounded by heavily grazed

grassland, we hypothesized that C. schioetzi would have less connectivity among populations

and less genetic diversity than in L. bicolor.

Material and methods

Study area and field sampling

The Mambilla Plateau in Taraba State Nigeria (Fig 1) is located on the margins of the Camer-

oon Highlands Forest ecoregion that is well known for its rich flora and fauna, which are

among the most diverse in Africa [41]. A high proportion of taxa are regional endemics

[27,28]. Ngel Nyaki Forest Reserve (7˚30’N, 11˚30’E) is part of a network of sub-montane/
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montane forests and forest fragments at elevations up to 2300 m, with a mean annual rainfall

of approximately 1800 mm and mean monthly temperatures of 13–26 ˚C and 16–23 ˚C for the

wet and dry seasons, respectively [30]. The reserve, on the western escarpment of the Mambilla

Plateau covers approximately 4600 ha and comprises a mosaic of overgrazed montane grass-

lands, degraded streamside forest/shrubland strips and 720 ha of dense sub-montane forest

[28,30]. We refer to these riparian fragments as ‘fragments’ and Ngel Nyaki forest as ‘continu-

ous forest’. The continuous forest has a rich floristic composition with over 146 vascular plant

species, many of which are endemic to Afromontane regions, including four IUCN Red Data

Listed species [28]. The fragments comprise a subset of the forest species and are typically

more open and disturbed than the forest.

Between July and October 2012, we searched for C. schioetzi and L. bicolor in both forest

and fragments (Fig 1, Table 1). We used a combination of visual and acoustic techniques [32]

to find the frogs, searching for at least four hours during the day and another four hours by the

night. After two weeks of searching, we identified sites with sufficient numbers of individuals

Fig 1. Sampling sites. Localities sampled for the frog species of interest in Ngel Nyaki at the Mambilla Plateau, Nigeria.

https://doi.org/10.1371/journal.pone.0202010.g001
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to meet our minimum sample size of (N = 15) for characterizing a population [32]: four sites

within the forest: Main Forest I (MFI), Main Forest II (MFII), Main Forest III (MFIII), and

Main Forest IV (MFIV); and four fragments from outside of the reserve: Fragment 1 (F1),

Fragment 2 (F2), Fragment 3 (F3), and Fragment 4 (F4). In total, we collected 69 adult toe

clips and 11 tadpole tail tips for C. schioetzi, and for L. bicolor one toe clip and 117 tadpole tail

tips. Tissue samples were preserved in microtubes with 95% ethanol and genetic analyses were

performed at the University of Canterbury, New Zealand. This study was conducted with

approval of the Animal Ethics Committee of the University of Canterbury (permit Ref: 2012/

24R); the field permit was granted for field work in Ngel Nyaki Forest Reserve.

AFLP profiling and data analysis

We chose to use AFLPs in our study because, while we are well aware of their limitaions [42]

and the fact that hypervariable genetic markers would have been preferable [15,43], we are

working on species without genomic resources to refer to (e.g. [18,44]). AFLPs have been

shown to be a cost-effective and rapid tool for generating many polymorphic loci useful for

inferring population genetic structure of species [45–47]. While we may not have achieved

the precison we could have using more sensitive molecular markers, we believe our data to

be important and a significant contribution to what is known about amphibian population

genetic diversity in West Africa. Moreover, an added advantage of using AFLPs is that it

allowed us to make direct comparisons with other African studies [18,44,46,48,49].

We extracted genomic DNA from tissue samples using a modified CTAB (cetyltrimethy-

lammonium bromide) protocol [50] and developed AFLPs based on Vos et al. [51] with minor

modifications. We used the two enzymes EcoRI and MseI to conduct digestion of genomic

DNA. We then ligated fragments to double-stranded adaptors with T4 DNA ligase. For pre-

selective PCR, we used primers complementary to the Eco RI with no added nucleotides and

MseI+A. For the selective PCR, we used two pairs primers: ESP1B / MSP3 and ESP1B / MSP6

(Table 2). The EcoRI selective primer, ESP1B, was labelled with a fluorescent dye (either

6-FAM or VIC, Applied Biosystems) and contained three selective bases, whereas MSP3 and

MSP6 (MseI selective primers) contained four bases of extension each (Table 2). We ran the

selectively amplified fragments on an ABI 3130xl Genetic Analyzer (Applied Biosystems) with

Gene-Scan LIZ size standard (Applied Biosystems). Finally, we visualized AFLP fragments

with GENEMAPPER 4 (Applied Biosystems) in which peaks were called using the default set-

tings except for the peak height detection which was set at 100 Relative Fluorescent Units

(RFU). It was assumed that each peak represents a different locus. The threshold intensity for a

Table 1. Sample site information for Cardioglossa schioetzi and Leptodactylodon bicolor. Number of animals sampled/genotyped (N), Percentage of Polymorphic Loci

(PPL), and Expected Heterozygosity (HE). The standard error (SE) is in brackets and was calculated over loci for each population, assuming each chromatogram peak rep-

resents a different locus.

Species Locality Code Latitude Longitude Elevation (m) N PPL HE

C. schioetzi MFI 7˚ 5.117’ 11˚ 3.918’ 1543 13 66.4 0.221(0.019)

F1 7˚ 4.737’ 11˚ 3.934’ 1643 26 84 0.227 (0.016)

F2 7˚ 4.939’ 11˚ 3.218’ 1647 20 71.20 0.199 (0.017)

F3 7˚ 4.573’ 11˚ 3.821’ 1655 21 77.60 0.229 (0.016)

L. bicolor MFI 7˚ 5.179’ 11˚ 3.894’ 1505 31 76.27 0.217(0.017)

MFII 7˚ 4.859’ 11˚ 3.465’ 1641 20 65.25 0.198 (0.018)

MFIII 7˚ 5.368’ 11˚ 3.771’ 1599 19 74.58 0.238 (0.018)

MFIV 7˚ 4.498’ 11˚ 3.282’ 1561 25 66.10 0.208 (0.018)

F4 7˚ 6.092’ 11˚ 3.613’ 1601 23 66.95 0.184 (0.017)

https://doi.org/10.1371/journal.pone.0202010.t001
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peak being considered a locus was 100 RFU with a length at least 100 bp. Above 300 bp the

resolution was such that it was not possible to accurately identify peaks, so that only peaks

between 100-300bp were included in the analysis. The presence or absence of all fragments

was confirmed manually. Following Stölting et al. [52] markers were scored for all the individ-

uals in the same analysis session to prevent scoring errors when analyzing several groups of

samples.

We conducted reproducibility tests by replicating samples, as suggested by Bonin et al. [53]

and Meudt and Clarke [54]. As recommended, we replicated analyses for a subset of samples

(ideally 5–10% of the total number of samples) to detect fragments producing erratic patterns.

To do so, we randomly selected 5% of the samples for each preferred primer combination for

duplication and then assessed the error rate.

Due to the fact that mitochondrial 16S DNA sequences of selected individuals from Ngel

Nyaki for both C. schioetzi and L. bicolor are less than 2% divergent from populations on

Mount Oku in the Cameroonian mountains (unpublished data), similar to Arthroleptis palava
[31], we are confident that genetic differences observed on the Mambilla Plateau are due to

population-level differences rather than cryptic species.

Genetic diversity. We used GenAlEx v6.5 [55] to perform frequency and distance-based

analyses. Allelic frequencies were estimated following the method of Lynch and Milligan [56],

assuming independent nuclear loci and Hardy–Weinberg equilibrium within populations.

The expected Heterozygosity (HE) was calculated as 2(p)(q) implemented for diploid binary

data (dominant markers) and assuming random mating, where q = (1—Band Frequency)^0.5

and p = 1—q.

We converted genetic data into a pairwise individual-by-individual genetic distance matrix

and used this to assess genetic structure within populations. This is a true Euclidean metric

[see 55] as required for the subsequent analysis of molecular variance.

Evaluating the population genetic structure. We performed an Analysis of Molecular

Variance (AMOVA) to investigate the hierarchical partitioning of genetic variation among

populations and estimate the population genetic differentiation via FPT. To do this, each of the

sampling sites were treated as populations (other hierarchical analysis such as different groups

of fragments or regions were not performed). FPT is analogous to FST and used for dominant

markers such as AFLP [57]. This measure was calculated as VAP ⁄ (VAP + VWP), where VAP is

the variance among populations and VWP the variance within populations. We tested for statis-

tical significance of the FPT values using a nonparametric permutation method [58] with the

number of permutations set to 999. By testing significance of the variance components and F

Table 2. Restriction enzymes, adapters and primers sequences used on the AFLP procedure. �Labeled with fluorescence.

Sequence (5’-3’)

Restriction enzymes EcoRI

MseI

G^AATTC
CTTAA^G
T^TAA
AAT^T

Adapters EA2

EA3

MA1

MA2

CTCGTAGACTGCGTACC
AATTGGTACGCAGTCTAC
GACGATGAGTCCTGAG
TACTCAGGACTCAT

Pre-selective primers ENP

MNP

GACTGCGTACCAATT
GATGAGTCCTGAGTAA

Selective Primers ESP1B

MSP3

MSP6

GACTGCGTACCAATTCAG�

GATGAGTCCTGAGTAACGAT
GATGAGTCCTGAGTAACCTC

https://doi.org/10.1371/journal.pone.0202010.t002
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statistic through a permutational approach removes the assumption of normality, which is

unsuitable for molecular data [58]. Significance levels following corrections for multiple com-

parisons via Bonferroni tests [59] were conducted.

Last, we investigated population genetic structure using the Bayesian model-based cluster-

ing algorithms implemented in STRUCTURE v2.3.3 [60]. STRUCTURE uses a Markov chain

Monte Carlo (MCMC) algorithm to cluster individuals into populations based on their geno-

types. It generates posterior probabilities of assignment of individuals to each of a given num-

ber of K groups or populations regardless of their site of origin [60]. For each species, we first

ran STRUCTURE on all populations across the entire study area using the admixture model

(no prior information) with correlated allele frquencies. We then used the population data

(sampling sites) as prior information (LOCPRIOR) to assist the clustering as recommended

when the signal of structure is weak [60,61]. For both species, a range of K values from 1 to

10 was performed. We ran batches of five independent runs with a burn-in of 100,000 and

500,000 iterations for each of the K values. We calculated the ‘optimal’ K (the number of

genetic clusters that best fits these data) using the web version of STRUCTURE HARVESTER

[62]. Below, we report estimates for K using two methods: (1) the log posterior probability of

the data Ln(K) given K genetic clusters [60] and (2) ΔK [63], which is based on the rate of

change in the log probability of data between successive K values.

To test for migration within each species, we used STRUCTURE to identify immigrants or

individuals with recent immigrant ancestry in the last two generations. The model for this

analysis uses population information with correlated allele frequencies. The model was set to

GENSBACK = 2 and MIGRPRIOR = 0.001, as suggested by Falush et al. [64]. Thus, the prior

probability that an individual has pure ancestry from its predefined population is 0.999.

To examine the pattern of isolation by distance, we tested for correlation between matrices

of geographic and genetic distances (FPT pairwise) using a Mantel test as implemented in Gen-

AlEx v6.5.

Although both GenAlEx and STRUCTURE can accommodate missing data, we removed

missing genotypes from the analyses for the two preferred combinations of primers for both

species in all analyses. Missing data may be problematic for some pairwise distance-based anal-

yses implemented in GenAlEx [65]. While GenAlEx provides an option for interpolating the

genetic distance for missing loci (by inserting the average genetic distances for each population

level pairwise contrast, that is, within a population, or between two populations), we prevent

any possible bias by eliminating the missing data from our analyses [see 55].

Results

The two species had different distributions. Cardioglossa schioetzi was recorded most often

near streams in riparian forests outside the boundary of Ngel Nyaki Forest Reserve and some-

times on the edge of the continuous forest within the reserve. Specimens of this species were

common in F1, but rare in F2 and F3 (see Fig 1). In contrast, L. bicolor was common along the

streams within the forest, but encountered in only one riparian forest outside of the reserve.

The two preferred primer combinations, ESP1B/MSP3 and ESP1B/MSP6, together yielded

275 loci for the 198 samples representing both species (S1 Table). Of these 275 loci, 243

(88.3%) were polymorphic. We estimated the genotyping error by comparing the presence-

absence matrices of repeated profiles. The genotyping error rate per locus was calculated as the

ratio between the number of single-locus mismatches (ml) and the number of replicated loci

(nt) [66]. The estimated genotyping error per locus was 2.9% (SD = 3.9) for ESP1B/MSP3 and

5.2% (SD = 4.3) for ESP1B/MSP6. We obtained an average error rate of 4% by taking into

account the two pairs of primers.

Amphibian conservation genetics in Nigeria
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Genetic diversity

Similar values of genetic diversity were obtained for both the four populations of C. schioetzi
and the five populations of L. bicolor (Table 1). The average percentage of polymorphic loci

for the four populations of C. schioetzi was 74.8% (Standard Error SE = 3.8). The average of

genetic diversity (HE) across these populations and loci was 0.219 (SE = 0.008). We did not

detect significant differences in average heterozygosity between populations (F(3,496) = 0.65,

P = 0.58). The average percentage of polymorphic loci for L. bicolor was 69.8% (SE = 2.3), and

the average value of genetic diversity was HE = 0.209 (SE = 0.008). Average heterozygosity was

not significantly different among the five populations of L. bicolor (F (4,585) = 1.28, P = 0.28).

Population structure

According to the overall FPT (calculated via AMOVA) no significant genetic differentiation

was detected among the populations of C. schioetzi (FPT = 0.018, p = 0.097). After Bonferroni

correction, pairwise estimates of FPT among populations (Table 3) showed differences only

among the population from the forest MFI with the riparian fragments F3. In contrast, no sig-

nificant difference was recorded among the three riparian fragments. For L. bicolor no genetic

differences were detected among the five populations following either the overall FPT (FPT =

0.026, p = 0.020) or the FPT pairwise matrix (Table 4).

The clustering analyses implemented in STRUCTURE (both with and without prior infor-

mation) revealed multiple groups for both species. For C. schioetzi, the analysis using all the

sites across the study area without prior location information (S1 Fig) found an optimal K
(based on the Ln(K)) of 5, and ΔK = 2 based on Evanno’s method. When using prior informa-

tion (Fig 2), K = 8 and ΔK = 4 were recognized as the best K for each of the methods, respec-

tively. For L. bicolor, without prior location information (S2 Fig), the optimal K (based on the

Ln(K)) was 7, and ΔK = 2. Based on the Ln(K) estimation, with prior location information,

eight genetic groups (K = 8) were detected, whereas the Evanno’s estimation detected five clus-

ters (ΔK = 5) (Fig 3).

Migration test

The test for migration revealed that 53 of 80 individuals of C. schioetzi were immigrants or had

ancestry in other populations in the past two generations. Migration between forest and

Table 3. Pairwise matrix for Cardioglossa schioetzi of FPT. FPT values below diagonal, and above it probability val-

ues (significant values in bold, Bonferroni correction).

MF1 F1 F2 F3

MF1 - 0.026 0.042 0.005

F1 0.051 - 0.424 0.398

F2 0.061 0.000 - 0.371

F3 0.101 0.000 0.000 -

https://doi.org/10.1371/journal.pone.0202010.t003

Table 4. Pairwise matrix for Leptodactylodon bicolor of FPT. FPT values below diagonal, and above it probability

values.

MFI MFII MFIII MFIV F4

MFI - 0.103 0.260 0.280 0.013

MFII 0.021 - 0.112 0.366 0.007

MFIII 0.007 0.029 - 0.224 0.103

MFIV 0.003 0.001 0.011 - 0.055

F4 0.054 0.073 0.027 0.039 -

https://doi.org/10.1371/journal.pone.0202010.t004
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Fig 2. Structure assignments for Cardioglossa schioetzi using sampling location information. (A) K = 8 clusters

based on the Ln(K), and (B) following Evanno’s method shows the assignment into ΔK = 4 clusters. The bar plots at the

bottom show (C) K = 8 and (D) ΔK = 4. Each vertical bar represents an individual for which is shown the proportional

genetic assignment.

https://doi.org/10.1371/journal.pone.0202010.g002
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Fig 3. Structure estimates of K groups for Leptodactylodon bicolor using sampling location information. Graph (A)

and bar plot (C) show K = 8 based on the Ln(K) estimation. (B) and (D) represent respectively the graph and plot of the

best K following Evanno’s approach ΔK = 5. Each vertical bar represents an individual for which is shown the

proportional genetic assignment.

https://doi.org/10.1371/journal.pone.0202010.g003
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riparian fragments was 40% (21 individuals) and between riparian fragments was 60% (32

individuals). In the case of L. bicolor, 78 of 118 (66%) were immigrants or had ancestry in

other populations in the past two generations. Twenty-one (27%) individuals of L. bicolor were

migrants between forest and riparian fragments, whereas 57 (73%) were between the popula-

tions within the continuous forest. Due to the fact that the tissue samples used in this study

were toe clips from males (Cardioglossa schioetzi) and tadpole tails (Leptodactylodon bicolor), it

was not possible to test if migration is biased by sex.

Genetic isolation

No significant correlation was observed in either species between geographic and genetic dis-

tance (using FPT; C. schioetzi r = 0.226, P = 0.432; L. bicolor r = 0.511, P = 0.134).

Discussion

Our study aim was to investigate the extent to which fragmentation of existing forests may

impact gene flow and connectivity among populations of two Afromontane anuran species.

While Afromontane forests are typically small and naturally fragmented relative to lowland

forests [67,68], the extent and rate of fragmentation on the Mambilla Plateau has increased

since the 1970’s in response to increasing human and cattle populations [30]. We detected low

levels of genetic variation and genetic differentiation among forest and fragment populations

of both C. schioetzi and L. bicolor. However, the two species differed somewhat in patterns of

genetic diversity and gene flow among populations, which may reflect differences in depen-

dency on forest.

Within-population genetic variation

We estimated genetic diversity based on the proportion of polymorphic loci and expected het-

erozygosity; measures which are commonly used in studies based on dominant markers such

as AFLP’s. This allowed us to directly compare our results with previous AFLP studies on

amphibians undergoing local population declines. We found that our observed levels of

genetic diversity for both C. schioetzi and L. bicolor are within the range reported from such

previous studies (Table 5). For example, Curtis and Taylor [69] evaluated the impact of forest

clearcuts on the population structure of Dicamptodon tenebrosus in southwestern British

Columbia and reported heterozygosity (HE) ranging from 0.192 to 0.285 in recently clearcut

sites.

Genetic differentiation and genetic structure of populations

A common cause of genetic differentiation among populations is geographic distance so that

in continuous habitats, poor dispersal ability and large distances between individuals may

Table 5. Heterozygosity values reported for AFLP on amphibians undergoing local population declines.

Species Sample size Heterozygosity range Source

Cardioglossa schioetzi 80 0.199–0.229 This study

Leptodactylodon bicolor 118 0.184–0.238 This study

Amietia wittei 180 0.228–0.294 Zancolli et al. 2014

Amietia angolensis 301 0.223–0.343 Zancolli et al. 2014

Arthroleptis xenodactyloides 141 0.223–0.324 Measey et al. 2007

Gastrophryne carolinesis 100 0.165 Makowsky et al. 2009

Calotriton asper 241 0.006–0.105 Mila et al. 2010

Eurycea nana 85 0.161–0.180 Lucas et al. 2009

https://doi.org/10.1371/journal.pone.0202010.t005
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drive genetic differentiation [70,71]. However, the results of our Mantel test on the continu-

ous forest populations of L. bicolor showed no evidence for significant genetic differences

among them, regardless of distance. Within the continuous forest habitat dispersal occurs

over at least 1.85 km (between MFIII and MFIV), the greatest distances between any of our

continuous forest sites. The fact that estimates of FST from AFLP’s are likely to be over esti-

mates [72,73] gives us confidence that little, if any genetic differentiation exists among forest

populations.

Habitat fragmentation, which often isolates populations and reduces their size [72] is

another cause of population genetic differentiation at small geographic scales, e.g. less than

five km [72,73]. We found evidence for this in C. schioetzi, where a population from the ripar-

ian forest fragment (F3) is distinct from the forest population (MFI). While F3 and MFI are in

close geographic proximity (less than two km), they are separated by heavily overgrazed and

annually burnt grassland, so that movement between habitats would likely be difficult. How-

ever, because AFLPs have a lower mutation rate than microsatellites [74,75] it is important to

be aware that our estimates of FST will likely be higher than if we had used microsatellites

[69,75].

Similar findings have been reported by Dixo et al. [76] who compared genetic diversity of

the toad Rhinella ornata among small and medium forest fragments that were either isolated

or connected to large forest areas by corridors. They found a weak but significant FST between

small fragments and continuous forest, but no significant genetic differentiation among con-

tinuous forest sites.

The extent of gene flow among local populations determines their potential for genetic dif-

ferentiation [77]. Thus, at our study site, current gene flow may explain the lack of genetic dif-

ferentiation among populations within the forest (L. bicolor) and among the riparian forest

fragments (C. schioetzi). This is supported by our tests for migration, which indicated that in

both species, populations are weakly linked by gene flow, both current and within the past two

generations. In the case of C. schioetzi, the test revealed that population F3 contained immi-

grants from the other two riparian fragments as well as from the forest population MFI. In this

case, invidivuals may be dispersing via a stepping-stone dispersal model [78], moving, for

example, from MFI to F3 through F1, most probably in the rainy season when grass is tall and

there is no burning. Moreover, at this time of year streamflow is higher so that streams within

fragments which are isolated from each other in the dry season are able to join up, connecting

fragments (see Fig 1). Despite this potential homogenizing effect of the wet season, signiticant

genetic difference was detected among some population pairs. In the case of L. bicolor, the sin-

gle riparian fragment population F4, contained immigrants from all forest populations except

MFII, from which it was significantly genetically different. A possible explanation for this

could be non-random gene flow, i.e. gene flow which is not constant over time, nor the same

level between every population pair. Such variation could reduce the homogenizing effect of

gene flow and instead promote genetic differentiation [79,80]. Two studies we are aware of on

Parus major have demonstrated that non-random dispersal (such as we describe above) can

contribute to genetic differentiation at a fine scale [79,80]. For example Garant et al. [79]

found that non random dispersal influenced diversifying effects on body mass variation and

Postma and van Noordwijk [80] observed that small-scale genetic difference in clutch size was

produced by different levels of gene flow.

For both species, the results of clustering analyses in STRUCTURE differ based on the

estimator used (Ln(K) and ΔK) and groupings were not consistent with sampling location.

While the precise number of genetic clusters is not critical to our study, the finding of multiple

population groups using both estimators supports our interpretation of population genetic

structure.
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A synthesis of our results suggest they are similar to the findings of a similar study on Phry-
nobatrachus guineensis in Taï National Park (TNP), Ivory Coast [81]. As in our study, and in

contrast to expectations, Sandberger et al. [81] detected only a slight significant genetic differ-

entiation among populations of this leaf litter frog and no correlation between the geographic

and genetic distances (isolation by distance). Their Bayesian clustering revealed no genetic

substructure. Originally P. guineensis was thought to be weakly mobile and highly specialized,

however, high intra- and possibly inter-patch migration events explained the lack of popula-

tion structure. Thus, individuals of this species are more able to disperse than was expected.

We cannot rule out that this is not the case in our study and future work is needed to test this

idea.

Another potential contributing factor to genetic differentaion in fragmented populations is

that in fragmented landscapes species often persist as metapopulations [82]. This may well be

the case for the two target species in this study [83]. If so, then the persistence of genetic varia-

tion within and among populations would depend on the factors discussed above and the abil-

ity of the species to form a metapopulation [84].

While we lack information on dispersal distances for our focal species, some examples are

available for other amphibian species. For the salamander Plethodon cinereus, Cabe et al. [85]

found clear genetic differences among plots that increased with distance (200m to 2 km). Geo-

graphic distances at larger scales (> 2 km) contributed to differentiation among populations

of the European tree frog Hyla arborea in a fragmented landscape Angelone et al. [86]. Because

the likelihood of detecting isolation by distance increases with the number of populations sam-

pled [87], the lack of correlation in our study between geographic distance and genetic differ-

entiation may be due to the relatively small number of sample sites included. However,

sampling more sites at greater distances is difficult in this system as Ngel Nyaki Forest Reserve

comprises only ~5.3 km2 of forest (with no straight-line distances within continuous forest

exceeding 5 km) and most of the few remaining forest fragments are relatively near to the

reserve.

Implications for conservation

Our results contribute to the relatively limited body of knowledge of dispersal in modified

landscapes for African amphibians [e.g., 18,81]. Our results suggest that despite considerable

habitat degradation (especially in the riparian fragments) gene flow is still occurring (or

occurred recently) among forest patches in two Afromontane frog species. This illustrates the

importance of these degraded riparian forest fragments to amphibian communities.

In Nigeria and all along the Cameroon Volcanic Line [88,89], as elsewhere in the tropics

[90,91], the survival of riparian forest fragments is under threat. Often fragments are not given

the official protection garnered by larger patches of continuous forest [92] with disasterous

consequences [93]. Evidence that these fragments not only harbour biodiversity but also have

on-going gene-flow with neighboring continuous forest may provide added leverage to conser-

vation practitioners aiming to protect isolated populations in forest fragments. On the Mam-

billa Plateau of eatern Nigeria, conservation efforts should focus not only on the existing Ngel

Nyaki and Kurmin Danko Forest Reserves but also the small riparian forest fragments on the

periphery of these forests as well as the many more like them across the mountains of Camer-

oon and Nigeria.

Supporting information

S1 Fig. Outcomes from structure without using population data for Cardioglossa schioetzi.
Graph A) and bar plot C) depict the optimal K based on the Ln(K) K = 5, whereas graph B)
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and bar plot D) show the better K based on Evanno‘s method ΔK = 2. Each vertical bar repre-

sents an individual for which is shown the proportional genetic assignment to each cluster.

(TIF)

S2 Fig. Outcomes from structure without using population data for Leptodactylodon
bicolor. Graph (A) and bar plot (C) depict the optimal K based on the Ln(K) K = 7, whereas

graph (B) and bar plot (D) show the better K based on Evanno‘s method ΔK = 2. Each vertical

bar represents an individual for which is shown the proportional genetic assignment to each

cluster.

(TIF)

S1 Table. Raw data of Cardioglossa schioetzi and Leptodactylodon bicolor. Together, the two

preferred primer combinations ESP1B/MSP3 and ESP1B/MSP6 yielded 275 loci for the 198

samples representing both species.

(XLSX)
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44. Zancolli G, Rödel MO, Steffan-Dewenter I, Storfer A. Comparative landscape genetics of two river frog

species occurring at different elevations on Mount Kilimanjaro. Mol Ecol. 2014; 23: 4989–5002. https://

doi.org/10.1111/mec.12921 PMID: 25230017

45. Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F. Comparative analysis of AFLPs and SSRs effi-

ciency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol. 2007; 16:

1377–1387. https://doi.org/10.1111/j.1365-294X.2007.03247.x PMID: 17391263
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populations of dioecious buffalograss Buchloë dactyloides. Mol Ecol. 1995; 4: 135–148. https://doi.org/

10.1111/j.1365-294X.1995.tb00203.x

58. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances

among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992; 131:

479–91. PMID: 1644282

59. Rice WR. Analyzing tables of statistical tests. Evolution. 1989; 43: 223–225. https://doi.org/10.1111/j.

1558-5646.1989.tb04220.x PMID: 28568501

60. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155: 945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x PMID:

10835412

61. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance

of sample group information. Mol Ecol Resour. 2009; 9: 1322–1332. https://doi.org/10.1111/j.1755-

0998.2009.02591.x PMID: 21564903

62. Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUC-

TURE output and implementing the Evanno method. Conserv Genet Resour. 2012; 4: 359–361. https://

doi.org/10.1007/s12686-011-9548-7

63. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software

structure: a simulation study. Mol Ecol. 2005; 14: 2611–2620. https://doi.org/10.1111/j.1365-294X.

2005.02553.x PMID: 15969739

64. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:

dominant markers and null alleles. Mol Ecol Notes. 2007; 7: 574–578. https://doi.org/10.1111/j.1471-

8286.2007.01758.x PMID: 18784791

65. Peakall R, Smouse PE. genalex 6: genetic analysis in Excel. Population genetic software for teaching

and research. Mol Ecol Notes. 2006; 6: 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

66. Pompanon F, Bonin A, Bellemain E, Taberlet P. Genotyping errors: causes, consequences and solu-

tions. Nat Rev Genet. 2005; 6: 847–859. https://doi.org/10.1038/nrg1707 PMID: 16304600

67. White F. The vegetation af Africa. A descriptive memoir to accompany the Unesco/AETFAT/UNSO veg-

etation map of Africa. Switzerland: Unesco; 1983.

68. Adie H, Kotze DJ, Lawes MJ. Small fire refugia in the grassy matrix and the persistence of Afrotempe-

rate forest in the Drakensberg mountains. Sci Rep. 2017; 7: 6549. https://doi.org/10.1038/s41598-017-

06747-2 PMID: 28747738

69. Curtis JMR, Taylor EB. The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus)

in a managed forest. Biol Conserv. 2003; 115: 45–54. https://doi.org/10.1016/S0006-3207(03)00092-2

70. Wright S. Isolation by Distance. Genetics. 1943; 28: 114–138. PMID: 17247074

71. Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987; 236: 787–792.

https://doi.org/10.2307/1699930 PMID: 3576198

72. Andersen LW, Fog K, Damgaard C. Habitat fragmentation causes bottlenecks and inbreeding in the

European tree frog (Hyla arborea). Proc Biol Sci. 2004; 271: 1293–1302. https://doi.org/10.1098/rspb.

2004.2720 PMID: 15306354

Amphibian conservation genetics in Nigeria

PLOS ONE | https://doi.org/10.1371/journal.pone.0202010 August 15, 2018 16 / 17

https://doi.org/10.1093/nar/23.21.4407
http://www.ncbi.nlm.nih.gov/pubmed/7501463
https://doi.org/10.1111/j.1755-0998.2010.02957.x
http://www.ncbi.nlm.nih.gov/pubmed/21481207
https://doi.org/10.1111/j.1365-294X.2004.02346.x
https://doi.org/10.1111/j.1365-294X.2004.02346.x
http://www.ncbi.nlm.nih.gov/pubmed/15487987
https://doi.org/10.1016/j.tplants.2007.02.001
http://www.ncbi.nlm.nih.gov/pubmed/17303467
https://doi.org/10.1093/bioinformatics/bts460
https://doi.org/10.1093/bioinformatics/bts460
http://www.ncbi.nlm.nih.gov/pubmed/22820204
https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
http://www.ncbi.nlm.nih.gov/pubmed/8019690
https://doi.org/10.1111/j.1365-294X.1995.tb00203.x
https://doi.org/10.1111/j.1365-294X.1995.tb00203.x
http://www.ncbi.nlm.nih.gov/pubmed/1644282
https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
http://www.ncbi.nlm.nih.gov/pubmed/28568501
https://doi.org/10.1111/j.1471-8286.2007.01758.x
http://www.ncbi.nlm.nih.gov/pubmed/10835412
https://doi.org/10.1111/j.1755-0998.2009.02591.x
https://doi.org/10.1111/j.1755-0998.2009.02591.x
http://www.ncbi.nlm.nih.gov/pubmed/21564903
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/15969739
https://doi.org/10.1111/j.1471-8286.2007.01758.x
https://doi.org/10.1111/j.1471-8286.2007.01758.x
http://www.ncbi.nlm.nih.gov/pubmed/18784791
https://doi.org/10.1111/j.1471-8286.2005.01155.x
https://doi.org/10.1038/nrg1707
http://www.ncbi.nlm.nih.gov/pubmed/16304600
https://doi.org/10.1038/s41598-017-06747-2
https://doi.org/10.1038/s41598-017-06747-2
http://www.ncbi.nlm.nih.gov/pubmed/28747738
https://doi.org/10.1016/S0006-3207(03)00092-2
http://www.ncbi.nlm.nih.gov/pubmed/17247074
https://doi.org/10.2307/1699930
http://www.ncbi.nlm.nih.gov/pubmed/3576198
https://doi.org/10.1098/rspb.2004.2720
https://doi.org/10.1098/rspb.2004.2720
http://www.ncbi.nlm.nih.gov/pubmed/15306354
https://doi.org/10.1371/journal.pone.0202010


73. Kraaijeveld-Smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L. Low gene flow but high genetic

diversity in the threatened Mallorcan midwife toad Alytes muletensis. Mol Ecol. 2005; 14: 3307–3315.

https://doi.org/10.1111/j.1365-294X.2005.02614.x PMID: 16156804
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