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Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and 
disorders such as Parkinson’s disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural 
circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue 
unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural 
stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory 
responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide 
spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the 
neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat 
thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially 
constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep 
reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus- 
response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and 
dynamic stimulation paradigm for both open and closed-loop DBS.
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Significance Statement

Despite initial clinical successes, electrical deep brain stimulation (DBS) is fraught with off-target current spillover into tissue outside 
of therapeutic targets, giving rise to patient side effects and the reduction of therapeutic efficacy. In this study, we validate infrared 
neural stimulation (INS) as a spatially constrained optical DBS paradigm by quantifying dose-response profiles and robust informa
tion transfer through INS-driven thalamocortical circuits. We show that INS elicits biophysically relevant responses that are spatially 
constrained compared to conventional electrical stimulation, potentially reducing off-target side effects. Leveraging the spatial spe
cificity of thalamocortical INS, we used deep reinforcement learning (RL) to close the loop on thalamocortical INS and showed the 
ability to drive subject-specific thalamocortical circuits to target response states in real-time.

Introduction
Electrical stimulation of the nervous system has emerged as a po
tent tool for the treatment and study of a wide variety of neuro
logical diseases (1–5), as well as a key research tool for 
modulating and mapping neural circuits (6–9). The most promin
ent of these stimulation paradigms are cochlear implants (CI), 
which induce sound percepts in individuals with profound hear
ing loss, and deep brain stimulation (DBS), which has proven 

effective in treating movement-related symptoms associated 
with Parkinson’s disease and essential tremor. Additionally, 

diseases treated by electrical neuromodulation are expanding, 

with anterior thalamic DBS receiving United States Food and 

Drug Administration (FDA) approval for the treatment of 

drug-refractory epilepsy (10) and interior capsule DBS receiving 

FDA humanitarian device exemption for treatment-resistive 

obsessive-compulsive disorder (11). DBS is also currently in 
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clinical safety and efficacy trials for the treatment of major de
pressive disorder (3) and Tourette syndrome (1). Peripheral nerve 
electrical stimulation technologies are also maturing into viable 
clinical tools, including vagus nerve stimulation for the treatment 
of epilepsy (12) and carotid sinus stimulation for the treatment of 
heart disease (2).

Despite initial clinical success, electrical paradigms of neuro
modulation are fraught with undesirable current spillover into 
off-target neural circuits (13–17) leading to undesirable side ef
fects and a reduction in therapeutic efficacy (18–20). The develop
ment of focal stimulation strategies is paramount to more 
effective clinical stimulation and the improvement of patient 
side-effect profiles. One such tool is infrared neural stimulation 
(INS), an optical modality that stimulates nerves and neurons us
ing near to midinfrared wavelength (700–2,000 nm) light (21–24). 
INS has shown spatially specific recruitment of both peripheral 
nerves (17, 25, 26) and central neurons (23, 24). Importantly, INS 
does not require genetic manipulation necessary for other optical 
stimulation methods (27), though at the cost of cell type-specific 
activation afforded by genetic tools, with INS acting purportedly 
on intrinsic cell biophysics (28). INS also shows promising safety 
profiles for translation to human patients (29–31) and has found 
use in diagnostic targeting of human nerve roots in surgical resec
tion procedures (32). While INS is a promising modality for neuro
modulation therapies, progress toward optically based DBS (oDBS) 
is hindered by a lack of understanding of INS entrainment of tha
lamocortical and subthalamocortical networks; the understand
ing of which is necessary for treating “circuitopathies” 
associated with diseases treated by DBS (33–38). Specifically, there 
is a dearth of information related to dose-response dependencies 
of INS laser parameters in circuital recruitment and the resulting 
spread of activation across neural circuits.

In this study, we validate INS as a potent oDBS paradigm by 
quantifying INS dose-response profiles from varying laser param
eters, INS driven information transmission across the thalamo
cortical synapse, and spatial specificity of network INS in the rat 
auditory thalamocortical model. Our experiments show strong 
evoked firing rate dependence on applied laser energy with in
creases in thalamocortical information transfer with increased la
ser energy. We further show that INS evokes cortical activity that 
maintains typical thalamocortical response profiles with con
strained spread of activation well below the spread of electrical 
stimulation. Owing to the targeted neural activation of INS, we en
gineered a closed-loop control approach called SpikerNet, a deep 
reinforcement learning (RL) based reactive DBS system (39, 40). 
Closed-loop DBS utilizes feedback from biomarkers of disease to 
apply stimulation only when needed (41) and has shown advanta
geous therapeutic efficacy and improved battery life (42). 
However, the relatively simple control algorithms of conventional 
closed-loop DBS limit the ability to capture complex dynamics of 
neural activity related to disease which can cause interference 
with normal activity, such as interruption of volitional movement 
(43) which is further exacerbated by large-scale activation from 
electrical stimulation (44). More complex control methods are ad
vantageous in accounting for brain-wide state changes, such as 
sleep-wake cycles (45). We, therefore, utilized deep RLs ability to 
develop statistical mappings of systems in response to state per
turbations in order to drive cortical activity to desired firing states.

Results
In this study, INS as a spatially specific DBS platform was assessed 
in a chronic rodent implantation preparation (n = 7 animals). In 

order to examine the effects of the optrode implantation on audi
tory pathway neurotransmission, subcortical and thalamocorti
cal function was quantified through comparison of pre and 
postsurgical electroencephalographic midlatency responses 
(MLR) (n = 6 animals). Dose-response relationships between ap
plied INS energy and single-unit firing rates were quantified using 
hierarchical linear regressions, with information theoretic ana
lysis showing INS provides robust information transfer across 
the thalamocortical synapse. Joint-peristimulus time histogram 
(JPSTH) analysis was utilized to quantify cortical spread resulting 
from thalamic INS. Owing to INS spatially constrained activation 
profiles, a novel RL-based closed-loop control paradigm was de
signed to drive subject-specific neural dynamic representation 
and control.

Implantation of stimulation and recording devices
The auditory pathway has a rich history of neuromodulation, with 
electrical stimulation of the cochlea resulting in CI, one of the first 
and most successful clinical neuromodulation devices (46). Other 
clinical auditory devices include the auditory brainstem and mid
brain implants (47, 48) with electrical neuromodulation across all 
auditory nuclei (49–51) being investigated for clinical viability. 
Auditory thalamocortical circuits are particularly suited for neu
rostimulation because the regional architecture of the auditory 
thalamus permits stimulation of both core and belt pathways in 
rodents, primates (52), and humans (53) using a single dorsoven
trally oriented electrode. This enables testing stimulation strat
egies simultaneously in both tonotopic core pathways and 
higher-order belt pathways, along with the ability to rapidly test 
circuit function with minimally invasive scalp-evoked auditory 
potentials (54–56) before and after device implantation. To facili
tate understanding of dose-response effects of network function 
elicited through INS, rats were implanted with fiber optic optrodes 
into the medial geniculate body (MGB) of the auditory thalamus. 
The ventral and dorsal divisions of the MGB have primary excita
tory afferents to layer 3/4 of auditory cortex (57), while the medial 
division targets layers 1 and 6 more heavily (Fig. 1A and C) with all 
MGB subdivisions having at least some projection to primary audi
tory cortex (58). Sixteen channel planar arrays were implanted 
into layer 3/4 of primary auditory cortex (Fig. 1A). Postmortem 
histological analyses confirmed placement of optrodes into the 
MGB (Fig. 1D and Supplementary Methods).

Development of INS into a clinically viable neuromodulation 
system has been limited by a lack of understanding of underlying 
stimulation mechanisms and stimulus-to-response mappings. A 
confounding factor is that commercial INS systems are not widely 
available and are prohibitively expensive or removed from the 
market by product recalls (59). To facilitate continued INS studies, 
we developed INSight, a low-cost open source INS and optical 
stimulation system which uses off-the-shelf components for 
ease of building and modification. Importantly, INSight can inte
grate into established recording systems. Materials, build instruc
tions, and calibrations are found in the Supplementary Material
(Figs. S10 and S11) and the INSight Github repository: https:// 
github.com/bscoventry/INSight.

Changes in neural activity due to presence of 
devices in the brain
Implantation of recording and stimulation devices evokes an in
jury response and may perturb normal neural function (60, 61). 
Therefore, we first considered the effect of the presence of stimu
lation and recording devices on brain activity through auditory 
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Fig. 1. Implantation and EEG-MLR procedures. A) Rodents were implanted with fiber optic optrodes into the MGB and 16 channel microwire arrays into 
auditory cortex. Placement of microwire array was confirmed by tonic single-unit responses evoked from 80 dB filtered Gaussian noise stimuli during 
implantation. B) Schematic of the four-channel EEG-MLR recording preparation. C) Schematic of the rodent auditory thalamocortical circuit. Stimulation 
optrodes were placed in the MGB with excitatory thalamocortical projections to layers 3–4 of primary and secondary auditory cortices. Microwire array 
recording electrodes were placed in layers 3–4 of primary auditory cortex confirmed during surgery by low-latency single-unit activity. D) Histological 
confirmation of stimulation optrode placement in the MGB. E) EEG-MLR prepostsurgical ratios show small changes in wave P1, N1, and P2 correlates of 
auditory thalamocortical function in amplitude and latency due to passive presence of device at 65 or 85 dB-SPL click stimuli. While changes in 
amplitudes and latencies were observed, differences did not rise to level of significance (P > 0.05). Rodent implantation and EEG diagrams were created 
using BioRender (www.biorender.com) under publication license.
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evoked MLR in a subset of rats (n = 6). MLR stimuli consisted of 
evoked responses to auditory click trains with recordings taking 
place 24 h before and 72 h after implantation procedures. MLRs re
port auditory generators in thalamus and cortex and serve as a 
read-out of neural ensemble function (62–65). We utilized a 
four-positive channel electroencephalography (EEG) recording 
configuration to allow for responses of thalamocortical generators 
and rostral brainstem regions (54) (Fig. 1A, right) on each hemi
sphere. We analyzed ratios of postpre positive peaks 1 and 2 (P1, 
P2) corresponding to brainstem and cortical generators, respect
ively, and negative peak 1 (N1 or N1-P2) corresponding to thalamic 
generators (Fig. 1B). While there was some variability in wave am
plitudes and latencies, comparisons of evoked activity resulting 
from click-train auditory stimuli at 65 and 85 dB-sound pressure 
level (SPL) (Fig. 1E) showed no significant difference in response 
(P > 0.05, Wilcoxon sign-rank) suggesting that presence of stimu
lation optrodes and recording electrodes did not significantly 
damage or alter thalamic and cortical activity at the onset of 
INS experiments. Moreover, it allows for the possibility of residual 
hearing circuits working in concert with INS for optimal hearing 
function. It should be noted that postsurgical recordings were per
formed 72 h after surgery, well within the device heal-in window 
(66), with further neural reorganization likely to occur throughout 
the duration of the study.

Dose-response relationships of cortical neuron 
response from thalamic INS
We next examined the interplay of INS laser energy and intersti
mulus pulse intervals (ISI) on evoked cortical single-unit firing 
rates. To estimate the firing rate and timing of INS-elicited single- 
unit activity, peristimulus time histograms (PSTHs) were con
structed (67, 68) (Materials and methods: Data processing and 
analyses) with true instantaneous firing rate functions estimated 
using Bayesian adaptive regression splines (BARS) (69–71). PSTHs 
of single units which were responsive to INS stimuli (Z-score in
crease ≥ 7.84 from basal firing rate, P < 0.00001) were analyzed. 
Units showing inhibitory responses or no change from basal firing 
rates were excluded from the present study. Examples of PSTHs 
and estimated instantaneous firing rate functions elicited from 
graded INS activation in A1 are shown in Fig. 2A. While INS 
dose-response relationships have been studied in cortex (23, 24), 
they remain unstudied across thalamocortical networks. 
Dose-response profiles were modeled as a Bayesian hierarchical 
linear random effects regression model, allowing us to account 
for hierarchical structure of data consisting of variability within 
and between subjects across implantation lifetimes. Bayesian in
ference is particularly powerful for this model as it provides com
plete quantification of posterior distributions over all regression 
parameters and allows for direct uncertainty quantification of pa
rameters. Bayesian hierarchical regression models can be viewed 
as akin to frequentist mixed-effects models but offering improved 
estimation of groupwise variance (72, 73), improved estimation of 
effect size (74), and robust quantification in error uncertainty (75– 
77). Inference was performed directly on observed data posterior 
distributions. As Bayesian methods require specification of prior 
probability distributions for inference, broad, noninformative 
normal prior distributions were used in inference models. Prior 
sensitivity analyses were performed in order to ensure prior distri
butions did not unduly influence inference (Fig. S5 and Table S2). 
Dose-response regression models took the form of

max (FR) = αi + β1,i ∗ E + β2,i ∗ ISI + β3,i ∗ (E ∗ ISI) + ϵi 

with response variable FR representing the natural log- 
transformed evoked firing rate and independent variables E and 
ISI being the natural log transformed energy per pulse and inter
stimulus interval, respectively. The β terms are regression coeffi
cients quantifying the effect of INS energy, ISI, and energy-ISI 
interactions on evoked firing rates from animal/electrode group 
i. The α term corresponds to the regression intercept and is inter
preted as the basal firing rate of animal/electrode group i. Model 
structure is shown in Fig. S1. Natural log transformations of re
sponse and independent variables were chosen as model terms 
after sensitivity analyses which dictated that log-transformed 
models best fit observed data (Fig. S5). An error term of ϵ was 
added for uncertainty quantification. Full model descriptions 
and sensitivity analyses are provided in SI:Bayesian model de
scription (Figs. S1–S9). Bayesian inference estimates the distribu
tion of likely regression parameters from observed data (78). 
Regression parameters were summarized by their maximum a 
priori estimate(MAP) (i.e. most probable value) with independent 
variables considered significant contributors to response if the 
highest-density interval (HDI) of the parameter distribution corre
sponding to the 95% most probable parameter values did not over
lap 0, following Bayesian inference convention (75). Significant 
regression parameter MAP estimates quantify change in evoked 
firing rates per unit change of laser energy and ISI, respectively. 
Uncertainty of regression parameter estimates is given in the 
spread of parameter distributions obtained from observed data. 
Regression models (Fig, 2B) show that INS responsive units had a 
basal firing rate >0 ( α MAP = 2.2 , 95% HDI excludes 0) with 
max evoked firing rates depending significantly on applied laser 
energy ( β1, MAP = 0.58, 95% HDI excludes 0) but not on ISI ( β2, 
MAP = −0.055) or energy-ISI interactions ( β3, MAP = 0.028). 
However, the relatively wide spread of the ISI parameter β2 across 
0 suggests a potential critical point in ISI timing past which thala
mocortical neurons are unable to entrain to individual pulses and 
instead integrate INS pulses into a single network event. Taken to
gether, INS pulse energy is the primary driver of evoked neural fir
ing rates, with increasing energy per pulse leading to increased 
maximum firing rates.

Cortical encoding of INS stimuli
We next used Shannon mutual information measures [ I(R; Sx), 
Supplementary Methods 3.2] to assess and quantify information 
carried by evoked spike-trains in response to INS stimulation en
ergy. Mutual information measures the reduction of uncertainty 
in neural response (R) given knowledge of the particular stimulus 
(Sx). Higher values of information represent more unique and separ
able encoding of neural response distributions for each stimulus. 
Stimulus-information profiles were calculated from 5 ms binned es
timates of response probability mass distributions during INS condi
tioned on applied energy. Bias in mutual information resulting from 
incomplete knowledge of population response distributions was es
timated and corrected using the methods of quadratic extrapolation 
(79, 80). We found that increasing INS energy per pulse resulted in 
increases in information contained in response spike trains 
(Fig. 2C). Increases in information are also positively correlated 
with increased INS energy per pulse showing strong dependence 
of evoked PSTHs on laser energy, particularly >0.8 mJ/pulse (Fig. 2C).

Auditory thalamocortical circuits perform complex transfor
mations of inputs at the auditory thalamocortical synapse (81) 
with cortical neurons employing differential coding strategies 
across local heterogeneous cells and circuits (82, 83). Therefore, 
it is imperative that any stimulation modality be able to drive 
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naturalistic response profiles. INS-evoked PSTHs were classified 
into onset, sustained, onset-sustained, and offset categories rep
resentative of the known range of possible responses (84) 
(Fig. 3A). PSTHs showing poststimulation drop of 95% of basal ac
tivity were assigned an “inhibitory” flag corresponding to presence 
of poststimulus inhibition. Classification results are summarized 
in Table 1. Onset responses were the most represented class (on
set + inhibition: 49.93%, onset: 12.04%) followed by sustained (sus
tained: 18.78%, sustained + inhibition: 4.51%) and onset-sustained 
classes (onset-sustained: 6.05%, onset-sustained + inhibition: 
2.82%). Offset responses were the least observed class (5.87%). 
Observed distributions of firing classes are supported by studies 
of auditory evoked cortical unit responses (84) showing similar 
distributions of onset, onset-sustained, sustained, and offset re
sponses in cortical layers III/IV as observed in our data, suggesting 
that INS drives naturalistic thalamocortical encodings.

While these response states were categorically divided into 
possible response classes (84), these categories are not meant to 

suggest all responses fit neatly into well-defined clusters. 
Principal components analysis (PCA) dimensionality reduction 
was performed on response profiles to assess the extent to which 
responses fall on a continuum. Dimensionality reduction into the 
top three components of largest variance (65.11% variance ex
plained) shows that while responses do form some identifiable 
clusters, responses fall on a continuum of responses within a giv
en cluster (Fig. 3B), suggesting INS does not only generate singular 
stereotypic responses but drives biophysically relevant responses 
across the thalamocortical synapse. Bayesian multinominal re
gression models (Supplementary Methods) were utilized to infer 
whether firing class membership was solely a function of INS 
stimulation parameters. Multinominal regression compares log 
odds of a PSTH belonging to a given category against a reference 
category. The most populous onset + inhibition category was 
chosen as reference. Models suggest that class membership is a 
function of INS energy and ISI, with movement from onset + inhib
ition to onset resulting from increases in energy and ISI, 
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Fig. 3. Examples of auditory cortex firing classes evoked from INS stimuli. A) Evoked cortical firing activity was classified into onset, onset-sustained, 
sustained, and offset classes. Responses were classified as onset if INS induced a significant increase in firing activity above spontaneous activity 
compared to the 200 ms prestimulus window with a return to spontaneous firing rates before cessation of INS stimuli (top left). A response was classified 
as sustained if INS elicited a significant increase in firing rate above spontaneous rate that maintained firing rates of atleast onset rate

sustained rate < 3 through the 
duration of the stimulus (top right). Responses were classified as onset-sustained if INS elicited a significant increase above spontaneous rate with 
sustained activity above a firing rate of onset rate

sustained rate ≥ 3 (bottom left). A response was classified as offset if firing rates significantly increased from 
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defined shapes and strong overlap of offset clusters into a subsection of the onset space. The decomposition of all classes into top three components of 
explained variance is shown in (B) top right, bottom left, and bottom right, respectively.
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movement to onset-sustained resulting from decreases in energy 
and ISI, movement to onset-sustained + inhibition resulting from 
slight decreases in energy but large decreases in ISI, movement 
to sustained + inhibition resulting from larger decreases in ISI, 
and movement to offset class resulting from large decreases in ap
plied energy and smaller decreases in ISI (Fig. S12). These models 
suggest an interplay between INS stimulation parameters, net
work dynamics, and intrinsic cellular biophysics determines re
sponse profile class.

INS induces spatially constrained thalamocortical 
recruitment
We next investigated the spatial selectivity of thalamocortical INS 
using JPSTH analyses. JPSTHs allow for the assessment of the time- 
resolved correlation between pairs of neurons in response to both 
direct INS stimuli and poststimulation correlated activity (JPSTH 
formulation detailed in Fig. 4A). We utilized the spatial geometry 
of the implanted planar recording arrays to assess INS-induced cor
related activity between pairs of neurons as a function of distance, 
with distance 0 corresponding to neurons recorded on the same 
channel. We first assessed stimulation-induced correlations of ac
tivity related directly to the stimulation event (Fig. 4A, left). We 
next calculated the JPSTH with direct stimulus effects removed, 
representing functional connectivity between compared neurons 
after secession of the stimulus (Fig. 4A, middle). The maximum cor
related activity from all energies and distances was calculated to 
obtain an upper bound of lateral stimulation spread. Previous elec
trical mapping studies in rodent auditory thalamocortical areas us
ing linear, Michigan-style arrays in nearly all cases showed 
electrical stimulation spread across the entire extent of recording 
arrays, up to 1, 900 μm (85, 86). INS correlation analysis shows all 
responses were constrained to ≤ 1, 500 μm, with 90% of responses 
constrained to ≤ 1, 000 μm (Fig. 4B, left). We next recalculated max
imal spread for active units at stimulation intensities <1 mJ, corre
sponding to an inflection point of increased stimulus transmitted 
information (Fig. 2C), to assess if maximum spatial spread is modu
lated by INS intensity. At lower energy stimulation, maximal spatial 
spread was limited to <1,250  μm, with 90% of responses con
strained to ≤ 750 μm (Fig. 4B, right), including numerous instances 
of moderate correlation ≤ 500 μm. These data suggest maximal 
spreads of INS-induced activity is significantly less than electrical 
stimulation. Spread of activation after accounting for direct costi
mulation induced by INS shows similar results, with spreads of 
poststimulus correlated activity limited to 1,250  μm across all en
ergy levels and 1,000  μm for energies <1 mJ (Fig. 4C).

Closed-loop control through deep reinforcement 
learning
After observation of spatial selectivity in thalamocortical INS, we 
sought to control small neural populations through closed-loop 
feedback. Current adaptive DBS systems used in Parkinson’s 

disease use relatively simple control algorithms centered around 
reducing β band biomarker correlates of symptomology using sin
gle or dual threshold “thermostatic” control (43, 87, 88) which may 
interfere with activities such as volitional movement (43) and may 
potentially occlude oscillatory neural dynamics unrelated to dis
ease (40). Control of smaller populations of neurons relevant to 
disease with control algorithms that encode subject-specific firing 
dynamics may provide targeted treatment and a reduction in off- 
target side effects. We utilized deep RL to learn complex stimulus- 
response dynamics in real-time while finding stimuli to reach a 
desired firing state. State, in this study, refers to discrete classes 
of dynamical activity with stereotyped spontaneous and stimulus- 
evoked activity (89). RL consists of a computational agent that takes 
actions in response to observations of a given neural state and learns 
which actions to take to maximize current and future rewards. In 
our deep RL paradigm, termed SpikerNet, the RL agent can take ac
tions from an action space consisting of INS stimulus parameters of 
laser energy, ISI, and number of pulses which are constrained to 
consensus safe energy levels. Stimuli are applied in response to ob
servation of neuron PSTHs from recording electrodes. A reward was 
then calculated by quantifying mean-squared-error (MSE) distance 
between evoked firing and target PSTHs. Action policies and state re
sponse relationships are then learned using actor-critic deep neural 
networks, with the actor-network encoding actions to take in each 
environment and the critic learning present and future rewards of 
taking a given action (Figs. 5A and S13).

We have previously shown in computational models that 
SpikerNet is able to quickly learn stimulus trajectories to achieve 
desired firing patterns (40). SpikerNet’s ability to achieve desired 
firing patterns in vivo was tested by sampling from distributions 
of previously evoked responses to create novel, previously unob
served firing response target states for the recorded unit. We de
termined SpikerNet was able to find target firing states precisely 
(Fig. 5B, MSE = 3.872) within a limited number of search iterations 
(Fig. 5C) as predicted in our computational studies (40). It should 
be noted that search dynamics are intrinsically stochastic and 
unique to a given animal, target response, and algorithm seeding. 
Search trajectories during training stages show rapid discovery of 
target responses indicated by low mean square error followed by 
exploratory behavior away from the target (Fig. S13), characteris
tic of RL sampling of action-response distributions (90) and neces
sary to develop a full stimulus to response mapping. We also 
found that SpikerNet exploration generated a wide variety of firing 
classes during search that was not identified during our standard 
intensity and ISI stimulation protocol, including onset-inhibition 
responses (Fig. 5D, trials 0 and 2), sustained activity followed by 
burst offset response (Fig. 5D, trial 12), and multipeaked sustained 
responses (Fig. 5D, trial 22). The ability to create and observe such 
diverse firing patterns is critical to learning stimuli to generate 
any firing state as well as relearn stimulus-neural dynamics as re
sponses change due to age of recording and stimulation devices 
and neural adaptation over time.

Discussion
In this study, we demonstrated INS as a viable oDBS method 
for treatment of circuitopathy-related neurological diseases and 
disorders. We quantified INS dose-response profiles and stimulus- 
response information transformations while also showing the 
ability of INS to drive biophysically relevant cortical responses at 
safe energy levels. We further show that INS provides spatially 
specific activation in thalamocortical networks with spread well 
below conventional electrical stimulation. Finally, we leverage the 

Table 1. Distribution of cortical firing classes (n = 3,371).

Firing class % of responses % of responses in class

Onset 12.04 61.97
Onset + inhibition 49.93
Sustained 18.78 23.29
Sustained + inhibition 4.51
Onset-sustained 6.05 8.87
Onset-sustained + inhibition 2.82
Offset 5.87 5.87
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spatial specificity of INS to derive a deep RL-based closed-loop op
tical control system that can drive neural responses to target states.

INS drives physiological thalamocortical 
responses
While many previous INS studies have explored the role of wave
length dependence on INS activation (22, 91, 92), dose-response 
relationships have largely not been studied. Activation profiles 
are critical for therapeutic dosing of neuromodulation therapies 
to titrate efficacious pulses while minimizing patient discomfort 
from overdriving neurons. Dose-response curves show exponen
tial increases in maximum firing rates in response to increased la
ser energy with some evidence that extremes in ISI further shape 
neural response PSTHs through integration of INS pulses close in 
time (Fig. 2A and B). One caveat to our study is that only excitatory 
responses were considered. It has been observed that continuous 
pulse-width or high frequency ( ≥ 200 Hz) INS stimulation can 
drive selective inhibitory responses in nerve through introduction 
of a thermal block (93–95), though this type of stimulation can 
produce longer-lasting mixed excitatory and inhibitory responses, 
with a higher proportion of excitatory responses for lower stimu
lus energies (96). The MGB sends excitatory glutamatergic projec
tions to A1, and a small proportion of collaterals synapse onto 
GABAergic parvalbumin-positive interneurons (97) which facili
tates feedforward inhibition in cortical cells. We observed some 
evidence of inhibitory responses, showing decreases in basal firing 
rate following INS stimulation. These responses were excluded 

from further analysis in the study given their scarcity with the 
INS parameters tested. However, controlled induction of inhibi
tory responses should be studied as a means to enhance and di
versify A1 neural coding strategies in future studies using 
higher-density recording arrays and stimulation optrodes. An 
understanding of joint excitatory and inhibitory effects of circuital 
INS would potentially allow for bidirectional control of local mi
crocircuits and is planned for further study.

INS of thalamocortical neurons produced a variety of short- 
latency peristimulus responses in auditory cortex neurons, com
parable to sound-driven auditory cortex responses across species 
(84, 98–101). These results suggest that thalamocortical INS 
stimulation largely preserves natural network activation, as evi
denced by preserved A1 response class distributions between 
INS and auditory stimulation and including sustained responses 
where the response outlasts the stimulus as well as inhibitory re
sponses. Conservation of response classes between auditory 
stimulation and artificial INS suggests they drive comparable 
thalamic firing patterns. Our INS stimulation parameters differed 
from previous INS studies in somatosensory cortex with our re
sponses more closely resembling MGB firing rates (52, 102). 
There is evidence that DBS imparts its therapeutic effect partially 
through activation of motor cortex from antidromic activation of 
subthalamic nucleus collaterals (103). While our study can’t 
strictly rule in or out similar antidromic activation of thalamo
cortical targets, given that ventral MGB largely sends afferent pro
jections to layer III/IV of A1, INS activation in the present study is 
likely driven by orthodromic stimulation.
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Fig. 5. SpikerNet, a deep RL-based closed-loop control system. A) Schematic of SpikerNet operation, which utilizes TD3 RL. The state is representative of a 
response as recorded from the electrode environment. The agent is the set of all safe stimulation parameters. B) SpikerNet is able to find arbitrary neural 
firing patterns through repeated iterations of stimulation through the environment. C) SpikerNet partakes in search and targeting behavior to find target 
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Spatial selectivity of thalamocortical INS
A oft-touted advantage of INS for cochlear/peripheral (17, 26, 32) 
and cortical neuron (24) stimulation is constrained stimulation. 
However, there historically has been a dearth of understanding 
of network responses and spread of activation through synapses 
elicited from INS. Previous studies have often focused on intrinsic 
optical and calcium imaging recordings of cortical cells from dir
ect INS stimulation (23, 24, 104). Here we show that INS drives 
spiking responses across the thalamocortical synapse within a 
constrained region that is significantly smaller than the region af
fected by equivalent electrical stimulation. At low INS stimulation 
energies, activation could be ≤ 500 μm, and even at saturating en
ergy levels for firing rates, activation was typically less than 
1, 500 μm. It is possible that the activation spread at low energies 
could be even more restricted, given that we were not able to 
measure spread of activation in the immediate vicinity of the im
planted optrode and that we did not optimize thalamus/cortex 
overlap in our implantation. Both anatomically and electrophy
siologically in A1, there are matched reciprocal projections be
tween the auditory thalamus and cortex (105, 106). Additional 
mapping during implantation surgery to identify most effective 
stimulation sites for a given cortical site may reduce energies 
needed or increase informational capacity even further. As hybrid 
recording electrodes fixed with optrodes are in use in optogenetic 
studies, it is feasible to fabricate similar recording arrays with op
tics that pass near-infrared stimuli, allowing for the study of joint 
activation and spread in thalamus and cortex concurrently. 
Regardless, our results show finely graded thalamocortical re
cruitment, which would potentially reduce off-target stimulation 
side-effect profiles in oDBS applications. Further constrained 
stimulation could also be set during the programming stage of 
an oDBS system, potentially allowing for fine tuning of therapeutic 
stimulation.

Clinical viability of INS
This study lays the significant groundwork for the preclinical de
velopment of INS for use in a spatially constrained oDBS system. 
Furthermore, INS has already shown promise in human nerve 
mapping (32) and intracortical microstimulation (107). However, 
significant hurdles remain for translation of INS. Laser parame
ters necessary for stimulation have high optical energy (1–4 mJ) 
requirements, making fully implantable devices technically chal
lenging. Much progress is currently being made in implantable in
frared systems that satisfy requirements for stimulation which 
could be realizable on implantable pulse generators (IPG) (108). 
Safety profiles of INS are also promising, with tissue ablation 
thresholds well studied (30–32, 109, 110). While our data suggests 
INS drives biophysically relevant responses across a diversity of 
cell response patterns, disease models are necessary to fully as
sess therapeutic potential of INS as a DBS paradigm. The biophys
ical mechanisms of INS are still in debate, with transient thermal 
gradients (111, 112), transient cellular capacitance changes (113, 
114), intracellular calcium cycling (115, 116), intrinsic ion channel 
light transduction (28, 117), or combinations thereof suggested as 
causative mechanisms of INS. While not directly assessed within 
this study, observed short-latency, fast-spiking responses suggest 
primary ion channel mediation of INS as opposed to slower intra
cellular calcium signaling. In vitro whole cell and outside-out 
patch-clamp studies could elucidate the interplay of the intracel
lular and membrane-bound ion channel sequalae of transient and 
local thermodynamic changes. A better understanding of these 
photon-neuron interactions could give rise to more efficient 

stimulation with larger margins of safety for use in clinical 
settings.

Closed-loop reinforcement learning-based DBS
Closed-loop DBS provides key advantages over conventional 
open-loop DBS, including improved stimulation efficacy, reduc
tions in side effects, and longer IPG battery life (42, 118). 
However, current closed-loop approaches are limited by non
specific activation of neural targets (88) and relatively simple, 
threshold-based control algorithms that have difficulty in deci
phering pathologic and nonpathologic neural activity (40, 43). 
We developed SpikerNet to take advantage of spatial selectivity 
found in INS while also allowing for robust learning of complex 
neural firing patterns in real-time. An advantage of RL over other 
deep neural network paradigms is that statistical models of neur
al firing patterns are learned in situ and are specific to a subject’s 
unique neural responses, requiring little training time and not re
quiring retraining or recalibration. We show that SpikerNet rapid
ly finds and fits targeted firing patterns (Fig. 5B) with search 
behavior that suggests the ability to fit a wide range of possible 
neural firing patterns (Fig. 5C). We have previously shown in com
putational models that SpikerNet is flexible to drastic changes in 
firing patterns (40) suggesting that SpikerNet can adapt to long- 
term changes in neural environments present in chronic, clinical 
DBS and can reduce the number of trips to the clinic for stimulator 
adjustments. We also observed evidence of SpikerNet finding tar
get responses through the duration of a subject’s recording period, 
during which arousal can significantly change firing responses re
quiring retuning of stimulus parameters (Fig. S13). Taken to
gether, SpikerNet could serve as a powerful closed-loop DBS 
paradigm that can learn and adapt to changes in individual neural 
responses.

Deep neural network-based approaches, however, present a 
significant challenge for translation, in that algorithm decisions 
are typically made through a “black box” and ultimately unob
servable system that may limit guarantees on device efficacy. RL 
methods however are advantageous in that the stimulus- 
response relationships after training can be directly observed in 
implanted devices, allowing for better inference on device oper
ation. However, as stimulation policies are learned using deep 
neural networks, the salient neural state features leading to 
stimulus policy formation are still subject to the blackbox prob
lem. The use of novel small network RL policy interpretability 
tools (119) with a posteriori evaluation of trained input/output re
sponses can allow for a deeper understanding of algorithmic deci
sion making. In this way, we see SpikerNet as a tool that can be 
utilized as a “physician in the loop” system, where SpikerNet 
can be utilized in concert with a trained DBS technologist to assist 
in difficulties found in DBS programming (120) and with physician 
monitoring during autonomous learning and stimulation.

Materials and methods
All experimental and surgical procedures and protocols were ap
proved by the Institutional Animal Care and Use Committee 
(PACUC) of Purdue University (West Lafayette, IN, #120400631) 
and in accordance with the guidelines of the American 
Association for Laboratory Animal Science (AALAS) and the 
National Institutes of Health guidelines for animal research. A to
tal of 11 rats were used in this study. All animals received presur
gical EEG-MLR recordings to ensure function of the auditory 
thalamocortical circuit. An initial subset of animals (n = 6) 
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received postsurgical MLRs to assess the passive effect of device 
presence in the thalamocortical circuit. Inclusion criteria for 
chronic INS recordings included animals with functional optrodes 
and recording electrodes throughout the duration of the study. A 
total of seven animals met chronic recording criteria and were in
cluded in analysis.

Surgical procedures
Adult Sprague–Dawley rats with weights between 300 and 400 g 
(Envigo, Indianapolis IN) were initially anesthetized in an induc
tion chamber with 5% isoflurane and given a bolus injection of a 
ketamine/dexmedetomidine cocktail (70 mg

kg and 0.2 mg
kg , respective

ly). Surgical plane of anesthesia was monitored continuously 
throughout the procedure by evaluation of toe-pinch reflex. A pre
operative analgesic dose of Buprenorphine (1 mg/kg) was admin
istered 30 min before first incision and every 6–12 h for 72 h 
postsurgery. Rats were placed in a stereotaxic frame secured by 
hollow ear bars. An initial incision was made down midline with 
blunt dissection of periosteum performed to reveal cranial su
tures. Three stainless steel bone screws were placed in the skull 
to ensure stability of implanted devices and headcap with a fourth 
titanium bone screw placed to serve as a ground and reference 
electrode (121). Right hemisphere temporalis muscle was gently 
resected and a 2×2 mm craniectomy was made above auditory 
cortex (A1) (centered: −6 anterior-posterior (AP), −5 medial-lateral 
(ML)) (122). Dura was gently resected using a 25G curved needle. A 
2 mm × 2 mm 16 channel microwire array (TDT, Alachua, FL, USA, 
electrode spacing given in Fig. 1A) was inserted perpendicular to 
the surface of the brain. Devices were slowly inserted into A1 dur
ing application of 80 dB Gaussian noise stimuli. Devices were 
placed centered putatively in layer III/IV of A1 after confirmation 
of low latency, high amplitude multiunit activity was observed on 
the array (50, 123). One animal received a 3 mm linear array 
(NeuroNexus A1-16, 200  μm between contacts) with contacts 
placed in A1 layers 3/4 in place of TDT planar array. A second cra
niectomy was made above the MGB (−6 AP and −3.5 ML) (50) and a 
fiber optrode (Thor Labs, Newton, NJ, USA) was placed −6 mm into 
tissue (Fig. 1A). Recording arrays and fiber optics were sealed into 
place by application of ultravioltet-curable composite (Pentron, 
Wallingford, CT, USA). Rats were returned to their home cage 
and allowed to recover for 72 h before beginning of the recording 
regime.

Electrophysiological recordings
All recordings were performed in a 9′ × 9′ electrically and acoustic
ally isolated chamber (Industrial Acoustics Corporation, 
Naperville, IL, USA) with laser electronics placed outside of the 
chamber to prevent field interactions from high current pulses 
(124, 125). Before recording sessions, rats were given a bolus intra
muscular injection of dexmedetomidine (0.2 mg/kg) for sedation 
(50, 54, 126). Optical stimuli were delivered via a custom made, 
open-source INSight system (all plans available at our Github re
pository: https://github.com/bscoventry/INSight and included in 
Supplementary Material) with a 1,907 nm semiconductor laser 
(Akela Trio, Jamesburg, NJ, USA) fiber coupled to the optrode 
with a 200 μm, 0.22 numerical aperture fiber (Thor Labs 
FG200LCC). Laser stimuli were controlled via a RX-7 stimulator 
(TDT) and consisted of train stimuli with pulse widths between 
0.2 and 10 ms, ISI between 0.2 and 100 ms, and energy per pulse 
between 0 and 4 mJ, below reported thresholds of laser ablation 
(29, 32).

Each recording trial was composed of a 200 ms prestimulus 
interval to facilitate spontaneous rate calculations, application 
of the train stimuli, and a poststimulus interval with total trial 
length equal to 1 s. Applied laser energies were randomized to lim
it effects from neural adaptation with 30–60 repetitions per pulse 
width/interstimulus interval combinations. Signals from record
ing electrodes were amplified via a Medusa 32 channel preampli
fier and discretized and sampled at 24.414 kHz with a RZ-2 
biosignal processor and visualized using Open-Ex software 
(TDT). Action potentials were extracted from raw waveforms via 
real-time digital band-pass filtering with cutoff frequencies of 
300–5,000 Hz, with local field potentials extracted from real-time 
digital filters with bands 3–500 Hz. Chronic recordings were 
made through the lifetime of implanted optrodes and electrodes. 
To assess the impact of unilaterally implanted devices, pre, and 
postsurgery MLR EEG was performed. The experimental setup 
used has been described in detail in previous studies (55, 56) and 
further explained in Supplementary Methods.

Data processing and analyses
Action potentials and MLRs were exported and processed using 
custom-written programs in the Matlab programming environ
ment (Mathworks, Natick, MA, USA). Spikes were sorted into sin
gle units using superparamagnetic clustering methods in 
Wave-Clus (127). PSTHs were constructed by first aligning spike 
times to INS stimulation. The recording window (200 ms presti
mulus and 1,000 ms total recording window) was divided into 
5 ms nonoverlapping bins. The total number of spikes per bin 
(Sbin) was counted with histogram bar height given by

Hbin =
Sbin

nτ 

where n is the total number of trials for a given stimulus per re
cording session and τ the total bin size of 5 ms. The resulting histo

gram has bin height Hbin in units of spikes
s . As PSTHs represent a 

noisy estimator of true firing rates, density estimation of true 
underlying instantaneous firing rate functions was calculated us
ing BARS under a Poisson prior with λ = 6 (69, 70). Calculation of in
stantaneous firing rate functions has been shown to better 
estimate true neural firing rates than raw PSTH estimates (71). 
Furthermore, BARS serves as a better estimator than conventional 
PSTH smoothing or frequentist approaches (70, 71).

Trials containing artifacts due to breathing or volitional move
ment were detected via between-channel cross correlation and 
RMS voltages exceeding 1 mV were removed from recordings. To 
facilitate comparisons between electrodes and animals, PSTHs 
were standardized using the following equation:

Z =
PSTH − μPSTH

σ2
PSTH 

where Z is the standardized PSTH and μ, σ2
PSTH are the mean and 

standard deviation of the PSTH. Neurons were classified as re
sponsive to INS if a PSTH in the stimulus series showed a z-score 
firing increase of ≥ 7.84 (4 ∗1.96, 1.96 = critical Z-score threshold) 
above mean spontaneous firing rate.

After detection and PSTH calculation, single-unit responses 
were sorted into one of seven established firing pattern classes 
found in rat auditory cortex (84, 128). Responses were first classi
fied into onset, offset, sustained, or onset-sustained classes, with 
onset responses exhibiting a rise above spontaneous activity fol
lowed by a drop to spontaneous rates before cessation of the 
stimulation and offset responses characterized by an increase in 
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firing rate from baseline after termination of stimulus plus 7 ms to 
account for maximal response latencies in cortex from thalamic 
stimulation (128, 129). Responses showing firing activity above 
spontaneous activity throughout the duration of the stimulus 
were classified as sustained or onset-sustained, with onset- 
sustained responses showing a ratio of peak onset response to 
sustained rates >3. The inhibited response subclass showed a 
peri or poststimulus reduction in basal firing rate to below 95% 
of mean rate during the 200 ms prestimulus interval.

Mutual information (MI) measures of thalamocortical encoding 
of INS stimulation were calculated using the methods of Borst and 
Theunissen (114) with bias correction performed using quadratic 
extrapolation (63). Full information theoretic calculations are pro
vided in the Supplementary Methods. Lateral spreads of activa
tion across cortical neurons were assessed through JPSTH 
analyses (130). Full JPSTH models and algorithmic descriptions 
are given in the Supplementary Methods.

Deep reinforcement learning-based closed-loop 
control
Closed-loop DBS control was achieved through a novel deep 
RL-based paradigm which we termed as SpikerNet (39). SpikerNet 
was programed in Python using the Pytorch deep learning backend 
(131). A custom made OpenAI Gym environment served as the 
interface between TDT data acquisition hardware and Pytorch. 
Deep RL seeks to maximize a target reward by continually sampling 
an environment while learning which actions taken provide highest 
future rewards through time (132, 133). In SpikerNet, the environ
ment space was defined as the continuum of evoked cortical neu
ron firing rate PSTH densities. The action space was the 
continuum of stimulation amplitudes, pulse widths, and number 
of INS pulses delivered in a trial. The action space of stimulation pa
rameters was limited in both hardware and software to below abla
tion thresholds to ensure SpikerNet did not damage thalamic 
structures during parameter search. Deep RL was performed using 
the twin-delayed deep deterministic policy gradients (TD3) algo
rithm, which is a model-agnostic double Q learning method for con
tinuous environment and action spaces that outperforms other 
model-free deep-Q learning methods (134). To assess the ability of 
SpikerNet to reach arbitrary spike PSTHs, distributions of all ob
served PSTHs were formed. From that distribution, a target PSTH 
was sampled and represented a nonobserved but biophysically 
plausible target PSTH. Reward functions were set as

1
MSE(PSTHtarget, PSTHObserved ) 

with MSE chosen as it provides asymptotically the maximum like
lihood estimator. Online multiunit PSTHs were calculated online 
from 10 repetitions of INS stimuli with densities estimated using 
online BARS. A MSE value <0.14 denoted an observed result that 
is sufficiently close to the target response and acts as a signal to ini
tialize a search episode. It is important to note that SpikerNet per
forms reward maximization through all episodes and is not 
truncated at the threshold of a sufficiently close fit.

Statistical methods
All statistical methods, models, and sensitivity analyses are given 
in Supplementary Methods.
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